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Abstract The effect of dark matter/energy on the grav-
itational time advancement (negative effective time delay)
has been investigated considering a few dark energy/matter
models including cosmological constant. It is found that
dark energy gives only a (positive) gravitational time delay,
irrespective of the position of the observer, whereas a
pure Schwarzschild geometry leads to a gravitational time
advancement when the observer is situated at a relatively
stronger gravitational field point in the light trajectory. Con-
sequently, there will be no time advancement effect at
all at radial distances where the gravitational field due to
dark energy is stronger than the gravitational field of the
Schwarzschild geometry.

1 Introduction

The discovery of the acceleration of the universe’s expansion
[1–5] has led to the inclusion of a new component into the
energy-momentum tensor of the universe having a negative
pressure, the so-called dark energy component. On the other
hand data from rotation curve surveys [6] and a few other
observations [7,8] require there to be a dominating compo-
nent of matter in galaxies which is non-luminous or dark. Sev-
eral other observations, which include the cosmic microwave
background (CMB) measurements [9–12], baryon acoustic
oscillations (BAO) [13–15], and lensing in clusters [16,17],
support the existence of dark energy as well as the presence
of a dark matter halo surrounding the Galactic disc. Conse-
quently on large distance scales, astrophysical and cosmo-
logical phenomena are governed mainly by dark matter and
dark energy.

The simplest candidate for dark energy is the cosmolog-
ical constant (�): a constant energy density with equation-
of-state parameter w = −1 and the �CDM model where
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CDM refers to cold dark matter, which is in accordance with
all the existing cosmological observations [18,19] such as
the cosmic microwave background (CMB) anisotropies, the
large scale structure, the scale of the baryonic acoustic oscil-
lation in the matter power spectrum, and the luminosity dis-
tance of the supernovae type Ia; but it has a big theoretical
problem—its size (∼10−52 m−2) is many orders of magni-
tudes below the expected vacuum energy density in the stan-
dard model of particle physics [20]. Hence many other the-
oretical explanations for the DE have been proposed in the
literature in which the parameterw evolves with time or is dif-
ferent from −1 such as the quintessence [21–23], k-essence
[24–27], phantom field [28,29], and Chaplygin gas [30,31]
models. There are also proposals for a modification of gen-
eral relativity, which include scalar tensor theories [32] or
f(R) gravity models [33], conformal gravity models [34,35],
massive gravity theories [36] including Dvali–Gabadadze–
Porrati (DGP) braneworld gravity [37,38] models etc., which
lead to late-time accelerated expansion without invoking any
dark energy.

Like dark energy, there are also several candidates for dark
matter [39] such as WIMPs, axions, sterile neutrinos etc.
There are proposals for the modifications at the fundamental
theoretical level as well, which include MOND [40–43], that
suggest modifications in Newtonian dynamics. The evidence
of the presence of non-baryonic dark matter from the CMB
data, however, questions the MOND-like schemes. The con-
formal gravitational theory [34,35], which is based on Weyl
symmetry, also can explain flat rotation curves of galaxies
without the need of dark matter.

Dark energy/matter is likely to affect the gravitational phe-
nomena on all distance scales including the local scales. Sev-
eral investigations have so far been made to estimate the influ-
ence of dark energy (mainly through cosmological constant)
on different local gravitational phenomena, which include
the three classical observables—the perihelion shift of plan-
ets [44,45], gravitational bending of light [45–49], and grav-
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itational time delay (or Shapiro time delay) [45,50,51]. Due
to the tiny value of �, the influence of dark energy has been
to be found very small, not detectable by the ongoing experi-
ments. Out of the local gravitational phenomena the effect of
� is found to be maximum in the case of perihelion preces-
sion of planets and the observations on perihelion precession
of Mercury put an upper bound of � ≤ 10−42 m−2 [52]. On
the other hand analysis of the perihelion precession of Mer-
cury, Earth, and Mars also lead to a upper bound 3 × 10−19

g/cm3 for dark matter density (ρdm) [53], whereas the rota-
tion curve data implies that ρdm in the Milky Way at the
location of the solar system is ρdm = 0.5 × 10−24 g/cm3

[54].
In this work we would like to examine the influence of

dark energy and dark matter on gravitational time advance-
ment. The gravitational time advancement effect takes place
when the observer is situated at a stronger gravitational field
with respect to the gravitational field encountered by the
photon while traversing a certain path [55]. We found that
dark energy and dark matter do affect the gravitational time
advancement and though the magnitude of the effect is small,
it induces an interesting observational consequence, at least
in principle.

The organization of the paper is as follows. In the next
section we discuss briefly the gravitational time advance-
ment effect. The influence of dark energy and dark mat-
ter on gravitational time advancement are evaluated in
Sect. 3. The results are discussed and finally we conclude
in Sect. 4.

2 Gravitational time advancement

The gravitational time delay is one of the classical solar
system tests of general relativity. The general perception
as regards the gravitational time delay is that due to the
influence of a gravitating object the average global speed
of light is reduced from its special-relativistic value c0 and
hence the signal always suffers an additional time delay. But
depending upon the position of the observer, the delay can
as well be negative, which was called a gravitational time
advancement [55]. To exemplify the effect let us consider
light propagating in a gravitational field between two points
A and B. Assuming the standard Schwarzschild geometry,
i.e.

ds2 = −(1 − 2μ/r)dt2 + (1 − 2μ/r)dr2 + r2/d�2, (1)

the total coordinate time required for the round-trip journey
between the points A and B (or between the points B to
A and back) to the first order in μ = GM/c2

0 is given by
[53]
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where rA and rB are the radial coordinates of the point A and
B, respectively, and ro is the closest distance to the gravitating
object in the photon path.

Suppose the point A is located at a relatively much weaker
gravitational field due to a mass M than the point B i.e. rA >>

rB where rA and rB are the values of coordinate r evaluated at
the position A and B, respectively. Hence the proper time for
transmission and the reception of the signal to be measured
by the observer at the point A is
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In the above expression the first term on the right hand side
is the usual special-relativistic time of travel. The remaining
two terms are general-relativistic corrections. As a result the
observed time will be higher than the time taken between
transmission and the reception in the absence of a gravitating
object, which is the well-known gravitational time delay.

Now let us consider the case that the observer is at the
point B instead of the point A. In that case the proper time
between transmission and the reception of the signal to be
measured by the observer will be [55]
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Due to the last term of the right hand side of the above
expression, which is the dominating one among the general-
relativistic correction terms, the time taken between trans-
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mission and the reception will be reduced from the usual
special-relativistic time of travel when the distance between
A and B exceeds a certain value. This effect is known as the
gravitational time advancement (negative time delay), which
arises because of the clock running differently at different
positions in the gravitational field.

3 Influence of dark energy/matter on gravitational time
advancement

In the presence of dark energy the exterior space-time
of a spherically symmetric mass distribution is no longer
described by the Schwarzschild geometry, but by some mod-
ification of the Schwarzschild metric. For instance if dark
energy is the cosmological constant, the exterior static space-
time will be the Schwarzschild–de Sitter (SDS) space-time.

Here we shall consider a general static spherically sym-
metric metric of the form

ds2 = −B(r)dt2 + A(r)dr2 + r2/d�2 (5)

with

B(r) = 1 − 2m/r − a�rn/3 (6)

and

A(r) = (1 − 2m/r − �rn/3)−1 (7)

where a and � are constants. Different choices of n and a
lead to different models of dark energy.

Case 1: With n = 1/2, a = 2, and � = ±√
GM/r2

c ,
the model represents the gravitational field of a spheri-
cally symmetric matter distribution on the background of
an accelerating universe in the Dvali–Gabadadze–Porrati
(DGP) braneworld gravity, provided only leading terms are
considered [56]. rc is the crossover scale beyond which grav-
ity becomes five dimensional.

Case 2: For the choice n = 1, a = 1, and negative �, the
model well describes the gravitational potential due to a cen-
tral matter distribution plus dark matter [34,35,57].

Case 3: If n = 3/2, a = 2/3, and � = −m2
g

√
2GM
13c2 , the

model corresponds to the non-perturbative solution of a mas-
sive gravity theory (an alternative description of accelerating
expansion of the universe) [58] where mg is the mass of
graviton.

Case 4: When a = 1, n = 2, and m = μ the above met-
ric describes the Schwarzschild–de Sitter (SDS) or Kotler
space-time, which is the exterior space-time due to a static

spherically symmetric mass distribution in the presence of
the cosmological constant � [59].

3.1 General trajectory

Now let us suppose that a light beam is moving between two
points A and B in the gravitational field of Eqs. (5–7). The
expression for the coordinate time required for light rays to
traverse the distance ro to r , where ro is the closest distance
from the gravitating object over the trajectory can be obtained
from the geodesic equations, given by

δt =
∫ r
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For a general power index (n) of � in Eq. (5), the above
equation after integration can only be expressed in terms of
hyper-geometric functions and thereby are not very useful.
However, for n = 1 and n = 2, the integral can be written in
a handy form, particularly when higher order terms in M and
� are ignored. The extra coordinate time delay (δt�1 ) induced
by the dark sector terms in Eq. (8) is given, for n = 1 and
� = −�, by
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while for n = 2 we have
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and for general n (n �= 1) when rA >> ro and rB >> ro,
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Hence the proper time between the transmission and the
reception of the signal to be measured by the observer at point
B will be for n = 1
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Usually for observing a time advancement effect, ro = rB.
Further for describing a flat rotation curve, a has been chosen
as 1. Hence the above equation reduces to
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When rA >> rB, the above equation transforms to
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Similarly for n = 2 with ro = rB
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which for rA >> rB becomes
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Unless the� effect dominates over the pure Schwarzschild
effect, the net time delay will be negative in all the above cases
resulting in time advancement.

3.2 Small distance travel

Let us suppose a light beam is moving from a point on the
Earth surface (B) (R, θ, φ), where the radius of Earth is
denoted as RE , to a nearby point with coordinates C(R +
�R, θ, φ) and reflects back to the transmitter position (B).
The light signal will travel a null curve of space-time, sat-
isfying ds2 = 0. Then the proper distance between point B
and point C is given by
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The coordinate time interval in transmitting a light signal
from B to C and back, is given by
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The observer at B will experience that coordinate time
interval in proper time to be measured by the observer at B
between transmission and reception of the signal as given
by
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In deriving the above equations, the higher order terms in
� andm2�,m3,m2 �R2

R2 , and terms of higher order in m have
been neglected.

4 Discussion and conclusion

Dark energy has a significantly different kind of influ-
ence on gravitational time advancement than that of pure
Schwarzschild geometry. The time advancement effect is
entirely due to the pure Schwarzschild geometry, while dark
energy leads only to a time delay effect, which means the
gravitational time advancement effect will be reduced in the
presence of dark energy. When �r2

A > 2μ/rB, there no time
advancement at all. So in principle the time advancement
effect should be able to identify dark matter clearly.

In contrast the conformal theory description of a flat rota-
tion curve suggests a large time advancement effect. The
fitting of galactic rotation curves suggests �/3 = −(5.42 ×
10−42 M

M� + 3.06 × 10−30)cm−1 [60]. Therefore, in our
galaxy, the dark matter potential should start dominating over
the luminous matter contribution (pure Schwarzschild part) at
distances larger than about 30 kpc. Hence at distances beyond
the ∼30 kpc time advancement effect will be quite large. The
experimental realization to examine the gravitational time
advancement effect at such distances is a challenging issue.

Here it is worthwhile to mention that the gravitational
time advancement effect has not been experimentally veri-
fied yet, but it should not be very difficult to test the effect.
This is because the magnitude of the time advancement effect
is reasonably large. In fact, gravitational time advancement
is a much stronger effect than gravitational time delay when
large distances are involved. However, time delay has the
advantage of probing stronger gravity. In the solar system
tests of gravitation, time delay measurements mainly rely

on the passage of radiation grazing the sun, and thereby the
solar gravitational potential at the surface of the sun comes
into play. In such a situation the time delay is about 240µs,
whereas the total special-relativistic travel time between the
earth and the sun is about 1000 s, which means the gravita-
tional time delay is about a 2 × 10−7 part of the total travel
time. For testing gravitational time advancement from the
earth or its surroundings, on the other hand, the solar grav-
itational potential at the position of earth will be applicable
and when light propagates from the earth to say Pluto and
back, the time advancement will be about 1 ms over a total
propagation time of 50,000 s i.e. here the time advancement
is about a 0.2 × 10−7 part of the total travel time, which
is just one order smaller than the time delay caused by the
sun and hence is detectable. Note that the above estimates
need to be corrected taking into account the variations in
round-trip travel time due to the orbital motion of the tar-
get relative to the Earth by using radar-ranging or any other
similar kind of data. Since gravity cannot be switched off,
one does not have access to a special-relativistic propaga-
tion of a photon against which the time delay is to be mea-
sured. Therefore, the variation of the time delay is measured
as a function of distance to verify the radial profile of Eq.
(3). A similar check can be made for the time advancement
also.

The future missions, such as the Beyond Einstein Adva-
nced Coherent Optical Network (BEACON) [61] or the
GRACE Follow-On (GRACE-FO) mission [62], will probe
the gravitational field of the Earth with unprecedented accu-
racy. The BEACON mission will employ four small space-
craft equipped with laser transceivers and the spacecraft will
be placed in a circular Earth orbit at a radius of 80,000 km.
All the six distances between the spacecraft will be mea-
sured to high accuracy (∼0.1 nm), out of which one diagonal
laser trajectory will be very close to the Earth and thereby
pick up the gravitational time delay effect. If the distance
between the spacecraft and the Earth is also measured by
an Earth bound observer and compared with distances mea-
sured by the spacecraft, the time advancement effect may be
revealed from the measurements. The GRACE-FO, which is
scheduled for launch in 2017, will be equipped with a laser
ranging interferometer and is expected to provide a range
with an accuracy of 1 nm. With such a level of accuracy
general-relativistic effects may become significant [63]. It is,
therefore, important to examine whether the time advance-
ment can have any significant effect on the observables of
GRACE-FO.

To probe dark matter through its influence on the gravita-
tional time advancement properly, one is required to observe
a time advancement (delay) effect at distance ∼30 kpc or
beyond. For probing dark energy, observations are to be
made at even higher distances. This is currently not feasible.
At present, observations can be made only from the Earth
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or from its neighborhood via a satellite/space station. So
strategies to be developed for observing the time advance-
ment/delay effect at other distances may be some indirect
means. This would be a very challenging task.

For small distance travel, the time advancement effect is a
second order effect, unlike the long distance travel where the
time advancement occurs due to first order effect. However,
since the time advancement effect is cumulative in nature, if
a light beam is allowed to travel, say, from the Earth surface
radially upwards to a nearby point large number of times it
(the light beam), this should acquire a time advancement of
reasonable magnitude when observed from the Earth surface
and should be measurable.

In summary, we investigate the influence of dark mat-
ter/energy on gravitational time advancement. We obtain ana-
lytical expressions for the time advancement to first order in
M and � where � is the parameter describing the strength
of the dark matter/energy. From our results it is found that
dark energy leads to a gravitational time delay only, whereas
a pure Schwarzschild metric gives both a time delay and a
time advancement (negative effective time delay) depending
on the position of the observer.

The present finding suggests that in principle the measure-
ments of gravitational time advancement at large distances
can verify the dark matter and a few dark energy models or
put an upper limit on the dark matter/energy parameter.
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