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Abstract We study the wide angle Compton scattering
process on a proton within the soft-collinear factorization
(SCET) framework. The main purpose of this work is to esti-
mate the effect due to certain power suppressed corrections.
We consider all possible kinematical power corrections and
also include the subleading amplitudes describing the scatter-
ing with nucleon helicity flip. Under certain assumptions we
present a leading-order factorization formula for these ampli-
tudes which includes the hard- and soft-spectator contribu-
tions. We apply the formalism and perform a phenomeno-
logical analysis of the cross section and asymmetries in the
wide angle Compton scattering on a proton. We assume that
in the relevant kinematical region where −t,−u > 2.5 GeV2

the dominant contribution is provided by the soft-spectator
mechanism. The hard coefficient functions of the correspond-
ing SCET operators are taken in the leading-order approxi-
mation. The analysis of existing cross section data shows that
the contribution of the helicity-flip amplitudes to this observ-
able is quite small and comparable with other expected the-
oretical uncertainties. We also show predictions for double
polarization observables for which experimental information
exists.

1 Introduction

Wide angle Compton scattering (WACS) on a proton is one
of the most basic processes within the broad class of hard
exclusive reactions aimed at studying the partonic structure
of the nucleon. The first data for the differential cross section
of this process has already been obtained long time ago [1].
New and more precise measurements were carried out at
Jefferson Lab (JLab) [2]. Double polarization observables for
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a polarized photon beam and by measuring the polarization
of the recoiling proton were also measured at JLab [3]. New
measurements of various observables at higher energies are
planned at the new JLAB 12 GeV facility, see e.g. [4].

The asymptotic limit of the WACS cross section, as pre-
dicted by QCD factorization, has been studied in many theo-
retical works [5–8]. It was found that the leading-twist con-
tribution described by the hard two-gluon exchange between
three collinear quarks predicts much smaller cross sections
than is observed in experiments. One of the most promising
explanations of this problem is that the kinematical region of
the existing data is still far away from the asymptotic limit
where the hard two-gluon exchange mechanism is predicted
to dominate. Hence one needs to develop an alternative the-
oretical approach which is more suitable for the kinematic
range of existing experiments.

Several phenomenological considerations, including the
large value of the asymmetry KLL [3] indicate that the domi-
nant contribution in the relevant kinematic range can be pro-
vided by the so-called soft-overlap mechanism. In this case
the underlying quark–photon scattering is described by the
handbag diagram with one active quark while the other spec-
tator quarks are assumed to be soft. Various models have
been considered in order to implement such a scattering pic-
ture within a theoretical framework: diquarks Ref. [9], GPD
models [10–13] and constituent quarks [14].

An attempt to develop a systematic approach within the
soft collinear effective theory (SCET) framework was dis-
cussed in Refs. [15,16]. The description can be considered
as a natural extension of the collinear factorization to the
case with soft spectators. In our previous work the factoriza-
tion of the three leading power amplitudes has been studied
and a phenomenological analysis was made. The three ampli-
tudes describing Compton scattering which involve a nucleon
helicity-flip are power suppressed and they were neglected in
our previous analysis. In the present work we want to include
these amplitudes into our description, together with all kine-
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matical power corrections. For that purpose we discuss the
factorization of helicity-flip amplitudes assuming that it can
be described as a sum of hard- and soft-spectator contribu-
tions. We show that the corresponding soft contributions are
described by the appropriate subleading so-called SCET-I
operators. As a first step toward a proof of the factorization
we restrict our attention only to the relevant operators which
appear in the leading-order approximation in αs . Assuming
that such soft contributions are dominant we estimate their
possible numerical impact on the cross section and asymme-
tries.

Our work is organized as follows. In Sect. 2 we briefly
describe the kinematics, amplitudes, cross sections and
asymmetries. In Sect. 3 we discuss the factorization scheme
for the subleading amplitudes, describe the suitable SCET-I
operators and their matrix elements. We also compute the
corresponding leading-order coefficient functions and pro-
vide the resulting expressions for the amplitudes. Section 4
is devoted to a phenomenological analysis and in Sect. 5 we
summarize our conclusions.

2 Kinematics and observables

In this paper we follow the notations introduced in Ref. [16].
For convenience, we briefly summarize the most important
details. In our theoretical consideration we will use the Breit
frame where in and out nucleons (with momenta p and p′,
respectively) move along the z-axis and pz = −p′

z . Using
the auxiliary light-like vectors

n = (1, 0, 0,−1), n̄ = (1, 0, 0, 1), (n · n̄) = 2, (1)

the light-cone expansions of the momenta can be written as
follows:

p = W
n̄

2
+ m2

W

n

2
, p′ = m2

W

n̄

2
+ W

n

2
, (2)

where m is nucleon mass and the convenient variable W can
be expressed through the momentum transfer t as

W = m

(√ −t

4m2 +
√

1 + −t

4m2

)
. (3)

The photon momentum reads

q = (q · n)
n̄

2
+ (q · n̄)

n

2
+ q⊥, (4)

with

(q · n) = −
(
u − m2

) + κ(s − m2)

W (1 − κ2)
,

(q · n̄) = s − m2 + κ
(
u − m2

)
W (1 − κ2)

, (5)

where κ = m2/W 2. In the limit s ∼ −t ∼ −u � m2

these expressions can be simplified neglecting the power sup-
pressed contributions:

p � W
n̄

2
, p′ � W

n

2
, q � −u

W

n̄

2
+ s

W

n

2
+ q⊥,

q ′ � s

W

n̄

2
+ −u

W

n

2
+ q⊥ (6)

where we assume that W � √−t .
For the amplitude we borrow the parametrization from

Ref. [17]

Mγ p→γ p = −e2 ε∗μ(q ′)εν(q)N̄ (p′)AμνN (p), (7)

Aμν = {−T μν
12 (T1 + K/ T2) − T μν

34 (T3 + K/ T4)

+T μν
5 iγ5 T5 + T μν

6 iγ5K/ T6
}
, (8)

where e denotes the electromagnetic charge of the proton,
N (p) is the nucleon spinor. In Eq. (7) we introduced the
orthogonal tensor structures

T μν
12 = − P ′μP ′ν

P ′2 , T μν
34 = NμN ν

N 2 ,

T μν
5 = P ′μN ν − P ′νNμ

P ′2K 2 , T μν
6 = P ′μN ν + P ′νNμ

P ′2K 2 ,

(9)

with

P = 1

2
(p + p′), K = 1

2
(q + q ′),

P ′ = P − K
(P · K )

K 2 , Nμ = εμαβγ P
α 1

2
(p − p′)βK γ .

(10)

The scalar amplitudes Ti ≡ Ti (s, t) are functions of the Man-
delstam variables.

The analytical expressions for various observables can
also be found in Ref. [17]. In our consideration it will be
convenient to redefine two helicity-flip amplitudes as

T̄1 = T1 + m(s − u)

4m2 − t
T2, T̄3 = T3 + m(s − u)

4m2 − t
T4, (11)

The reason for such a redefinition will be clarified later. The
cross section reads

dσ

dt
= πα2

(s − m2)2 W00, (12)

with

W00 = (m4 − us)(−t)

(4m2 − t)

(
1

2
|T2|2 + 1

2
|T4|2 + |T6|2

)

+ 1

2
(4m2 − t)

(∣∣T̄1
∣∣2 + ∣∣T̄3

∣∣2
)

− t |T5|2 , (13)
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cf. with Eq. (3.15a) in Ref. [17]. We also describe the asym-
metries which will be considered in this work. We are inter-
ested in the beam target asymmetries with circular photon
polarization (R, L). In the case of a longitudinally polarized
nucleon target, the corresponding asymmetry ALL reads (in
c.m.s)

ALL = −σ R
z − σ L

z

σ R
z + σ L

z
= −CK

z W+
12 + CQ

z W+
22

W00
. (14)

Two further asymmetries describe the correlations of the
recoil polarization with the polarization of the photons:

KLL = σ R
z′ − σ L

z′

σ R
z′ + σ L

z′
= CK

z′ W
−
12 + CQ

z′ W
−
22

W00
, (15)

KLS = σ R
x ′ − σ L

x ′

σ R
x ′ + σ L

x ′
= CK

x ′ W
−
12 + CQ

x ′ W
−
22

W00
, (16)

where (for more details see [17])

W±
12 = (4m2 − t)(T̄3 − T̄1)T

∗
6 ± t (T2 + T4) T

∗
5 , (17)

W±
22 = ± 4m

m4 − su

4m2 − t
(T2 − T4) T

∗
6 ± (s − u)(T̄3 − T̄1)T

∗
6

− (s − u) (T2 + T4) T
∗
5 − 4m(T̄3 + T̄1)T

∗
5 . (18)

The coefficients CK ,Q
i read

CK
z = −CK

z′ = − s − m2

2m
− t (s + m2)

4m(s − m2)
, (19)

CQ
z = CQ

z′ = − t (s + m2)

4m(s − m2)
, (20)

CK
x ′ = −CQ

x ′ = −
√−t (m4 − su)

2(s − m2)
. (21)

3 Factorization of the subleading helicity-flip
amplitudes T1,3,5

In Ref. [16], the factorization of the helicity-conserving
amplitudes T2,4,6 was considered in the SCET framework
[18–23]. The helicity-flip amplitudes are power suppressed
and were neglected. In the current paper we would like to
extend the SCET analysis and also consider the subleading
amplitudes T1,3,5. Below we are using the same notation for
the SCET fields and charge invariant combinations as in Ref.
[16].

The factorization of the helicity-conserving amplitudes
T2,4,6 is described by the sum of the soft- and hard-spectator
contributions. It is natural to expect that the same general
structure also holds for the subleading amplitudes T1,3,5.

Therefore we assume that the T -product of the electromag-
netic currents can be presented as

T {Jμ(x), J ν(0)} =
∑

C̃μν ∗OI +
∑

O(i)
n ∗ T̃μν ∗ O( j)

n̄ ,

(22)

where OI denotes the different SCET-I operators associated
with the soft-spectator contribution and O(i)

n ∗ T̃μν ∗ O( j)
n̄

describes the hard-spectator term with the collinear operators
O(i)
n ∼ λi , with λ ∼ √

�/Q a generic small parameter. The
sums in (22) include all possible operators in both terms. The
power counting of the hard-spectator contribution is provided
by the collinear operators

O(i)
n ∗ T̃μν ∗ O( j)

n̄ ∼ λi+ j . (23)

These operators are constructed from the collinear quark and
gluon fields. The leading-twist operator is given by the three
quark operator O(6)

n = χ̄c
n χ̄

c
n χ̄

c
n and is of order λ6 (twist-

3 operator). In order to describe the helicity-flip amplitudes
one has to include the subleading operators of order λ8 (twist-
4). Therefore the helicity-flip amplitudes are suppressed by
at least a factor λ14 while the leading power amplitudes
are described by the operator O(6)

n ∗ T ∗ O(6)
n̄ ∼ λ12. The

explicit calculations of the hard-spectator part in Eq. (22) is
ill defined, because of end-point singularities in the collinear
convolution integrals, see for instance the calculation of the
form factor F2 in Ref. [24]. Only the sum of the soft- and hard-
spectator contributions in Eq. (22) provides a well defined
result. A mechanism of cancellation of the end-point singu-
larities among different contributions in exclusive amplitudes
have been discussed in Refs. [25–29]. In present case, in order
to see such cancellation one has to consider the hard-collinear
factorization for the soft-spectator contribution described by
the first term on the rhs of Eq. (22). However, such an analy-
sis is very complicated and will be not considered here. More
details as regards the soft-spectator contribution can be found
in Refs. [29,30] where the factorization of the nucleon form
factors was considered. In the case of WACS one has a dif-
ferent hard scattering subdiagram (handbag diagram instead
of the simple vertex at the tree level) and similar SCET oper-
ators OI describing the hard-collinear configurations. Hence
using an analogy with the form factors we accept as a plau-
sible assumption that the complete factorization formulas in
SCET framework can be derived in the form of Eq. (22).

In Refs. [15,16] a description of the leading-order WACS
amplitudes based on Eq. (22) has been used for a phenomeno-
logical analysis of WACS data. Results obtained in these
works allow one to conclude that the soft-spectator contribu-
tion dominates over the hard-spectator one that allows one
to describe existing cross section data at sufficiently large
−t and −u. In this work we suppose that similar scattering
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Fig. 1 The SCET diagram
illustrating the T -product in Eq.
(32). The black squares show
the interaction vertices, dashed
quark lines denote the
hard-collinear and external
collinear particles. The parallel
(‖) and transverse (⊥) signs
show the contractions of the
appropriate hard-collinear gluon
fields
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mechanism is also relevant for the subleading helicity-flip
amplitudes and these amplitudes are also dominated by the
soft-spectator terms. This allows us to study a contribution of
such subleading corrections to various WACS observables.

The soft-spectator contribution is described by the opera-
tors OI which are constructed from the hard-collinear fields
in SCET-I. In Ref. [16] it was shown that for the leading
power contribution this operator reads

OI = Oσ =
∑

e2
q

{
χ̄
q
n γ σ⊥χ

q
n̄ − χ̄

q
n̄ γ σ⊥χ

q
n
} ∼ O(λ2). (24)

The matrix element of this operator gives only the helicity-
conserving amplitudes

〈
p′∣∣ Oσ |p〉SCET = N̄nγ

σ⊥ Nn̄ F1(t), (25)

where

N̄n = N̄ (p′)
/̄n/n

4
, Nn̄ = /̄n/n

4
N (p). (26)

Hence in order to describe the soft-spectator contribution of
the helicity-flip amplitudes we need the subleading operators.
A similar situation also holds for the proton form factors F1

and F2 see e.g. Ref. [30].
The matrix element of the required subleading operator

must describe the chiral-odd Dirac structures appearing in
the amplitudes

〈
p′ |OI | p

〉
SCET = N̄n1Nn̄ A + N̄niγ5Nn̄ B, (27)

where A and B are some scalar SCET-I amplitudes. From
Eq. (27) it follows that the SCET operator OI can only have
an even number of the transverse Lorentz indices.

The simplest operator with the required structure that can
be built from the gluon fields and is of order λ2:

O(2)
μν = An⊥μAn̄⊥ν + An⊥νAn̄⊥μ. (28)

The SCET matrix element of this operator can be written as

〈
p′∣∣An⊥μAn̄⊥ν |p〉SCET = g⊥

αβ N̄n1Nn̄ F g(t)

+ ε⊥
αβ N̄niγ5Nn̄ F̃ g(t), (29)

with

g⊥
αβ = gαβ − 1

2
(nα n̄β + n̄αnβ), (30)

ε⊥
αβ = 1

2
εαβρσn

ρ n̄σ . (31)

In SCET-II, the contribution of each collinear sector yields a
soft-collinear operator at least of order λ7:

T
{
An⊥μ,L(1,n)[ξ̄ A⊥q],L(1,n)[ξ̄ c(n · A)ξ ],L(2,n)

[ξ̄ c(n̄ · A)A⊥q],L(2,n)
int [ξ̄ c A⊥q]

}
∼ O(6)

n ∗ Jn ∗ qqq,

(32)

where Jn is the hard-collinear kernel (jet function) and the
asterisks denotes the appropriate convolutions. The SCET
interactions L(i,n)

int are shown schematically.1 The T -product
in Eq. (32) can be illustrated with the help of the Feynman
diagrams in Fig. 1. A similar T -product also describes the
second collinear sector. Notice that the collinear operators
in this case are the leading-order operators. Nevertheless,
the helicity-flip structure of the amplitude is provided by the
chiral-odd three-quark soft correlator. The total contribution
associated with the operator (28) is of order λ14 as required.
However, the hard coefficient function of the gluon operator
(28) is subleading in αs . In our further analysis, we restrict
our consideration to the leading-order accuracy in the hard
coupling αs . Therefore we neglect the contribution of the
pure gluonic operator (28).

The other suitable operators OI are of order λ3 and can
be built from the quark–gluon combinations χ̄n(0)γ α⊥An⊥β

(λn̄)χn̄(0) and χ̄n(0)γ α⊥An̄⊥β(λn)χn̄(0). We find the follow-
ing two relevant scalar operators:

O(3)
q (λ) = χ̄

q
n

{
/An

⊥ + /An̄
⊥
}

χ
q
n̄ + χ

q
n̄

(
/An̄

⊥ + /An
⊥
)

χ
q
n ,

(33)

Õ(3)
q (λ) = χ̄

q
n

{
/̃A
n
⊥ − /̃A

n̄
⊥
}

χ
q
n̄ + χ

q
n̄

(
/̃A
n̄
⊥ − /̃A

n
⊥
)

χ
q
n ,

(34)

1 The explicit expressions can be found in Ref. [16].
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where the index q denotes the quark flavor and

Ãn⊥α = ε
αβ
⊥ An⊥β. (35)

The higher-order subleading operators of this type can be
constructed adding the gluon fields A⊥ ∼ λ or (An · n) ∼ λ2.
Such operators will be suppressed as O(λ5). We find that in
SCET-II these operators provide the power suppressed con-
tributions ∼ O(λ16) and therefore can be neglected. We shall
not provide a proof of this statement in the present work and
accept it as a plausible working assumption. Then at leading
order in the hard coupling αs the power suppressed helicity-
flip contribution is only described by the two operators O(3)

q

and Õ(3)
q .

In order to show the relevance of the SCET-I operators
let us demonstrate the mixing of the soft-spectator contri-
butions described by the operators (33) and (34) with the
hard-spectator configuration. Such a mixing is provided by
the appropriate hard-collinear T -products which describe the
matching on the SCET-II soft-collinear operators. In order to
simplify this discussion we consider the contractions of the
hard-collinear fields in each hard-collinear sector separately
(the collinear and soft fields are considered as external)

T {O(3)
q } = T {χ̄n /An

⊥} T {χn̄}. (36)

The total soft-collinear operator is given by the suitable soft-
collinear combinations from each hard-collinear sector. The
T -product of the hard-collinear field χn,n̄ can be interpreted
as a transition of the hard-collinear quark and two soft-
spectator quarks into three collinear quarks or vice versa,
schematically

T {χn̄} � q̄q̄ ∗ Jn̄ ∗ O(6)
n̄ ∼ λ6. (37)

A combination of such T -products yields the soft-collinear
operator describing the soft-spectator contribution for the
leading amplitudes T2,4,6; see details in Ref. [16]. The con-
figurations with the subleading collinear operators can be
generated from the hard-collinear sub-operator χ̄n /An

⊥ in Eq.
(36). For instance, matching on a twist-4 collinear opera-
tor O(8)

n ∼ ξ̄ cn ξ̄ cn ξ̄ cn A
n⊥c can be described by the following

T -products:

T
{
χ̄c
n /An

⊥,L(1,n)
int [ξ̄ A⊥q],L(2,n)

int [ξ̄ c Ac⊥A⊥ξ ],L(2,n)
int [ξ̄ c A⊥q]

}
∼ O(8)

n ∗ Jn ∗ qq ∼ λ8, (38)

T
{
χ̄n /An

⊥c,L
(1,n)
int [ξ̄ c(n · A)ξ ],L(2,n)

int [ξ̄ c(n̄ · A)A⊥q],
L(2,n)

int [ξ̄ c A⊥q]
}

∼ O(8)
n ∗ Jn ∗ qq ∼ λ8. (39)

The diagrams described by these T -products are shown in
Fig. 1b, c, respectively. We also accept that the collinear fields
which appear in the SCET-I operators in Eqs. (38) and (39)

are generated by the substitution φhc → φhc+φc performing
matching onto SCET-II operators. Combining results of the
two hard-collinear T -products one obtains a soft-collinear
operator

T {O(3)
q } � O(8)

n ∗ Jn ∗ qqq̄q̄ ∗ Jn̄ ∗ O(6)
n̄ ∼ λ14, (40)

which consist of the same collinear operators as the appropri-
ate hard-spectator contribution O(8)

n ∗ T̃ ∗O(6)
n̄ . Here we will

not study the structure of all possible collinear contributions.
We expect that the two presented examples clearly illustrate
the presence of the soft-spectator contributions in Eq. (22). In
the following discussion we assume that at the leading order
in αs the soft-spectator contribution is only described by the
matrix elements of the two operators (33) and (34).

Let us consider SCET matrix elements of these operators.
They can be described as〈
p′∣∣ ∑

q=u,d

e2
q O(3)

q (λ) |p〉SCET

= m N̄n1Nn̄

∫ 1

0
dτ

{
eiλ(p′·n̄)τ + e−iλ(p·n)τ

}
G(τ, t),

(41)〈
p′∣∣ ∑

q=u,d

e2
q Õ(3)

q (λ) |p〉SCET

= m N̄nγ5Nn̄

∫ 1

0
dτ

{
eiλ(p′·n̄)τ + e−iλ(p·n)τ

}
G̃(τ, t),

(42)

where on the lhs we defined the required flavor combina-
tions. Dimensionless amplitudes G and G̃ also depend on
the factorization scale μF which is not shown for simplic-
ity. This scale separates contributions from the hard and
hard-collinear regions. The SCET-I amplitudes describes the
dynamics associated with hard-collinear scale ∼ √

�Q and
soft scale ∼ �. Therefore these amplitudes are functions of
the momentum transfer. The fraction τ can be interpreted as
the fraction of the collinear momentum carried by the hard-
collinear transverse gluon.

In order to obtain a formal factorization formula for the
amplitudes T1,3,5 one has to take the matrix element from Eq.
(22) and use for the soft-spectator contributions on the rhs
the matrix elements defined in Eqs. (25), (42), and (41). On
the other hand, the nucleon spinors in the parametrization (7)
appearing on the lhs must be rewritten in terms of the large
components defined in (26).

For illustration let us consider the calculation of ampli-
tudes T1,2. These amplitudes can easily be singled out using
the contraction

−T μν
12 N̄ (p′)AμνN (p) = N̄ (p′) (T1 + K/ T2) N (p)

= −T μν
12 〈p′|

∑
C̃μν ∗ OI

+
∑

O(i)
n ∗ T̃μν ∗ O( j)

n̄ |p〉. (43)
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The lhs can be rewritten as

N̄ (p′) (T1 + K/ T2) N (p) = N̄n1Nn̄(1 + κ)

×
{
T1 + m(s − u)

4m2 − t
T2

}
+ N̄n/q⊥Nn̄ (1 − κ) T2, (44)

where we used

N̄ (p′)K/N (p) = N̄n/q⊥Nn̄ (1 − κ) + N̄n1Nn̄
m

W
K · (n + n̄),

(45)

N̄ (p′)1N (p) = N̄n1Nn̄(1 + κ). (46)

The rhs of (43) can be written as

− T μν
12 〈p′|

∑
C̃μν ∗ OI +

∑
O(i)
n ∗ T̃μν ∗ O( j)

n̄ |p〉
= N̄n/q⊥Nn̄ {C2(s, t)F1+�tw3∗H2(s, t) ∗ �tw3} (47)

+N̄n1Nn̄ {m C1(s, t) ∗ G(t) + �tw3 ∗ H1(s, t) ∗ �tw4}+· · ·
(48)

Here C1,2 and H1,2 denote the momentum space hard coeffi-
cient functions in the soft- and hard-spectator contributions,
respectively. The asterisks denote the convolution integrals
with respect to the collinear fractions, the hard-spectator
contributions are shown schematically, �tw3, �tw4 denote
the nucleon distribution amplitudes of twist-3 and twist-4,
respectively.

Comparing Eqs. (44) and (47) one obtains

T2 � (1 − κ)−1 { C2(s, t)F(t) + �tw3 ∗ H2(s, t) ∗ �tw3} ,

(49)

T1 � −m(s − u)

4m2 − t
T2 + (1 + κ)−1 {m C1(s, t) ∗ G(t)

+�tw3 ∗ H1(s, t) ∗ �tw4} . (50)

Using Eq. (11) one also finds

T̄1 �(1+ κ)−1 {m C1(s, t) ∗ G(t)+�tw3∗H1(s, t) ∗ �tw4} .

(51)

This clarify the substitution introduced in Eq. (11): such
redefinition removes the kinematical part associated with T2

from the expression for T1 in Eq. (50). The soft-spectator
contribution of the amplitude T̄1 is only defined by the sub-
leading SCET amplitude G(τ, t). We also keep the power
suppressed factors (1 ± κ) in Eqs. (49)–(51) as the kinemat-
ical power corrections.

Fig. 2 The tree diagrams required for the matching onto subleading
operators

Similar calculations give

T̄3 = (1 + κ)−1 {mC3(s, t) ∗ G(t) + �tw3 ∗ H3(s, t) ∗ �tw4} ,

(52)

T4 = (1 − κ)−1 {C4(s, t)F(t) + �tw3 ∗ H4(s, t) ∗ �tw3} ,

(53)

T5 = (1 − κ)−1
{
mC5(s, t) ∗ G̃(t) + �tw3 ∗ H5(s, t) ∗ �tw4

}
,

(54)

T6 = (1 + κ)−1 {C6(s, t)F(t) + �tw3 ∗ H6(s, t) ∗ �tw3} . (55)

The hard coefficient functions C2,4,6 can be found in Ref.
[16]. The subleading coefficient functionsC1,3,5 can be com-
puted from the diagrams in Fig. 2 and read

C1(s, t, τ ) = − 1

1 − τ

t̂

ŝû
+ 2

(
t̂

ŝû
+ 1

t̂

)
, (56)

C3(s, t, τ ) = − 1

1 − τ

t̂

ŝû
− 2

t̂
, (57)

C5(s, t, τ ) = τ

1 − τ

t̂

ŝû
, (58)

where τ is the gluon fraction, 0 < τ < 1, and the hat denotes
the partonic (massless) Mandelstam variables related to the
scattering angle in c.m.s. as

t̂ = − ŝ

2
(1 − cos θ), û = − ŝ

2
(1 + cos θ), ŝ + t̂ + û = 0.

(59)

To calculate the observables of Eqs. (17) and (18) the
following combinations are needed:

T̄1 − T̄3 = (1 + κ)−1
{
m �(s, t)

∫ 1

0
dτ G(τ, t)

+�tw3 ∗ (H1 − H3) ∗ �tw4

}
, (60)

T̄1 + T̄3 = (1 + κ)−1
{
m�(s, t)

∫ 1

0
dτ

τ

1 − τ
G(τ, t)

+�tw3 ∗ (H1 + H3) ∗ �tw4

}
, (61)

where

�(s, t) = 2
t̂

ŝû

(
1 + 2

ŝû

t̂2

)
, �(s, t) = −2

t̂

ŝû
. (62)
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The soft- and hard-spectator contributions in the expressions
for the amplitudes Ti (49)–(55) have end-point singularities
which cancel in their sum.

4 Phenomenology

The estimates based on the hard-spectator scattering mecha-
nism predict an order of magnitude smaller cross section for
the WACS cross section; see e.g. Refs. [6–8]. Therefore we
assume that the soft-spectator contributions dominate over
the hard-spectator ones in the relevant kinematical region. It
is convenient to introduce the function R(s, t) as:

T2 = C2(s, t) (1 − κ)−1
{
F(t) + � ∗ H2(s, t)

C2(s, t)
∗ �

}
≡ C2(s, t)R(s, t). (63)

In the kinematical region where the soft-spectator contribu-
tion dominates, the introduced ratio R(s, t) must be almost
s-independent, i.e.

R(s, t) � R(t), (64)

because the s-dependent term in Eq. (63) is only given by
the hard-spectator contribution. The expressions for the other
helicity-conserving amplitudes can also be defined in terms
of this ratio up to small next-to-next-to-leading order correc-
tions [16]

T4 � C4(s, t)R(t) + O(α2
s ), (65)

T6 �
√ −t

4m2 − t
C6(s, t)R(t) + O(α2

s ), (66)

The similar expressions for the amplitudes T2,4,6 have
already been considered in Refs. [15,16] but without the
power suppressed factor

√−t/(4m2 − t) in Eq. (66). This
factor is part of the full kinematical power correction which
was neglected in the previous work.

Deriving Eqs. (65) and (66) we use that all three ampli-
tudes T2,4,6 depend on the same t-dependent SCET ampli-
tude F(t) and factorize multiplicatively. For the helicity-flip
amplitudes the situation is more complicated because in this
case one deals with the convolution integrals of the hard coef-
ficient functions with two different SCET amplitudes. This
leads to a more complicated structure of power suppressed
contributions. In order to proceed, we introduce the three
amplitudes G0(s, t), G1(s, t), and G̃1(s, t):

G0(s, t) = (1 − κ)−1
{ ∫ 1

0
dτ G(τ, t)

+�tw3 ∗ (H1 − H3) (s, t)

m�(s, t)
∗ �tw4

}
, (67)

G1(s, t) = (1 − κ)−1
{ ∫ 1

0
dτ

τ

1 − τ
G(τ, t)

+�tw3 ∗ (H1 + H3) (s, t)

m�(s, t)
∗ �tw4

}
, (68)

and

G̃1(s, t) = (1 − κ)−1
{∫ 1

0
dτ

τ

1 − τ
G̃(τ, t)

+�tw3 ∗ H5(s, t)

C5(s, t)
∗ �tw4

}
. (69)

Analogously toR(s, t) these new functions are defined using
the expressions for the amplitudes obtained in Eqs. (54), (60)
and (61). Assuming the dominance of the soft-spectator part
we again can expect that the s-dependence of these functions
is weak

G0,1(s, t) � G0,1(t), G̃1(s, t) � G̃1(t). (70)

Under such an assumption, we obtain

T̄1 − T̄3 � m�(s, t)

√ −t

4m2 − t
G0(t), (71)

T̄1 + T̄3 � m�(s, t)

√ −t

4m2 − t
G1(t), (72)

T5 � m C5(s, t)G̃1(t). (73)

Substituting the obtained expressions for the amplitudes Ti
in Eq. (13) for W00 we obtain

W00 � m4 − su

4m2 − t
(−t)

{
1

2
(C2

2 + C2
4 ) + C2

6

}
R2(t)

+ m2(−t)
{

�2G2
0(t) + �2G2

1(t) + C2
5 G̃

2
1(t)

}
.

(74)

The rhs of Eq. (74) depends on the four unknown t-dependent
functions R, G0,1, and G̃1. Three of these functions are
related to the helicity-flip amplitudes. One can expect that
at large −t these functions are smaller than R. For instance,
for the case of the nucleon form factors, data at large momen-
tum transfer show that GE/GM � 1. Let us also assume that
the helicity-flip amplitudes G0,1 and G̃1 in WACS are also
smaller thanR. This assumption is also plausible because the
amplitudes G0,1 are defined by similar subleading operators
as the form factor GE within the SCET formalism, see, e.g.
[30]. Neglecting the helicity-flip contributions in Eq. (74)
(G0 ≈ G1 ≈ G̃1 = 0) one can use the cross section data in
order to extract the ratio R and to check the scaling behavior
implied by Eq. (64). We recall that the leading-order coeffi-
cient functions C2,4,6 read [16]
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Fig. 3 Left the ratio R as a function of t . The corresponding values
of u are shown by the numbers next to the symbols. The open squares
mark out the points with −u < 2.5 GeV2. The solid line represents
the empirical fit of Eq. (77), the gray bands show the 99 % confidence

interval. Right the ratio R as a function of t , where only data with
−u > 2.5 GeV2 are shown. The open triangles show the values of
R obtained without the kinematical power corrections, i.e. by setting
m = 0

C2 = −C4 = ŝ − û

ŝû
= −1

s

3 + cos θ

1 + cos θ
,

C6 = t̂

ŝû
= 1

s

1 − cos θ

1 + cos θ
. (75)

For the scattering angle θ in Eq. (75) we use the substitution

cos θ = 1 + 2st

(s − m2)2 , (76)

which also includes the power suppressed terms which are
considered as a part of the kinematical corrections. The
obtained results for R are shown in Fig. 3.

The left plot in Fig. 3 shows the value of R as a function
of the momentum transfer for −t ≥ 2.5 GeV2. As it was
assumed above, see Eq. (64), the extracted values of R are
expected to show only a small sensitivity to s when the soft-
spectator mechanism dominates. From Fig. 3 we see that this
approximate scaling behavior is observed in the region where
−u ≥ 2.5 GeV2. Hence we can adopt this value as a phe-
nomenological lower limit of applicability of the described
approach. For smaller values of u the extracted values of R
(shown by the open squares) demonstrate already a clear sen-
sitivity to s. Thus one can observe that for −u = 1.3 GeV2

(−t = 3.7 GeV2) the obtained value of R is about a fac-
tor 2 larger than the scaling curve. This observation clearly
demonstrates that the given approach cannot describe the
cross section data at small values of u.

The solid line in both plots in Fig. 3 corresponds to the fit
of the points with −t,−u ≥ 2.5 GeV2 by a simple empirical
ansatz

R(t) =
(

�2

−t

)α

, (77)

where � and α are free parameters. For their values we obtain
� = 1.17±0.01 GeV and α = 2.09±0.06. The shaded area
in Fig. 3 shows the confidence interval with CL = 99 %.

On the right plot in Fig. 3 we show the effect of the kine-
matical power suppressed contributions. The empty triangles
show the values of R obtained without kinematical power
corrections with m = 0. The difference between the values
of R extracted with and without power suppressed contri-
butions is about 30 % at the lower value −t ≈ 2.5 GeV2.
Let us notice that the values of R obtained in this work are
somewhat larger than ones obtained in Refs. [15,16]. This
difference is explained by the incomplete description of the
kinematical power corrections in the previous work.

The consistent results for the ratio R, extracted in the
present framework, indicate that the assumption as regards
the relative smallness of helicity-flip amplitudes is probably
correct. We next investigate if one can obtain an estimate
of the helicity flip amplitudes from the cross section data.
For this purpose, it is convenient to introduce the following
ratios:

G0(t)

R(t)
= r0(t),

G1(t)

R(t)
= r1(t),

G̃1(t)

R(t)
= r̃1(t). (78)

In the following discussion we assume that numerically these
three quantities are of the same order and small

|r0| ∼ |r1| ∼ |r̃1| < 1. (79)

In order to see the relevance of the different subleading con-
tributions let us consider the following ratio of the cross sec-
tions at s = 8.9 GeV2 and −t = 2.5 GeV2, which can be
expressed as

dσ(r0, r1, r̃1)

dt
/

dσ(0, 0, 0)

dt
= 1 + 2.08r2

0 + 0.02r2
1

+ 0.005r̃2
1 , (80)

One can see that the largest numerical impact is pro-
vided by the contribution proportional to r0, the other two
contributions in Eq. (80) have very small coefficients and
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Fig. 4 The ratio of the cross sections as a function of momentum trans-
fer at different values of r0 = r1 = r̃1 = r

therefore their numerical impact is negligible. This observa-
tion also remains valid for other values of s in the region
−t,−u ≥ 2.5 GeV2. In Fig. 4 we show the cross section
ratio of Eq. (80) at s = 8.9 GeV2 as a function of momen-
tum transfer. For simplicity we take the same values for all
ratios, i.e. r0 = r1 = r̃1 = r .

We can see that correction from the helicity-flip contri-
butions are largest at small −t and smallest at the boundary
where −u � 2.5 GeV2. For illustration we also show the
backward region where −u ≤ 2.5 GeV2 and our description
is not applicable. One can see that in this region the contribu-
tion of the subleading amplitudes grows and becomes more
and more important. This can also be understood from Eq.
(74). The kinematical coefficient in front of R2 disappears
in the backward region because (m4 − su) → 0. Due to the
relative smallness of the contribution proportional to R2 in
the cross section at small −u, the helicity-flip terms become
more important.

The relative smallness of the contributions with unknown
r1 and r̃1 allows one to exclude them from the consideration
and perform an analysis of the cross section data in order to
extract the values of R(t) and to constrain G0(t). Each data
point provides an inequality dσmin ≤ αR2 + βG2

0 ≤ dσmax

where dσmax,min = dσ ± � is the maximal and minimal
experimental values of the cross section and α, β are known
coefficients. In order to find the restrictions on two unknown
quantities R2 and G2

0 one needs at least two data points at
the same t and different s. The largest effect from G0 is
expected at small momentum transfer; see Fig. 4. There-
fore we consider three data points at −t � 2.5 GeV2 and

s = 6.8, 8.9, 10.9 GeV2 that provide us with three cou-
ples of inequalities. Combining the constraints from each
set of inequalities we obtain the following restrictions: R =
0.273 − 0.279 and G0 = 0.0 − 0.045. The obtained value
of R is within the confidence interval shown in Fig. 3. This
results allows us to estimate the upper bound for the ratio r0

|r0(−t = 2.5 GeV2)| ≤ 0.16. (81)

From Fig. 4 it is also seen that in this case the contribution to
the cross section provided by r0 is below 10 %. Such uncer-
tainty is comparable with the theoretical uncertainties such as
next-to-leading corrections or the hard-spectator corrections.
Hence the result (81) must be understood as a qualitative esti-
mate.

Let us study the effect of subleading amplitudes in the
asymmetries described in Sect. 2. The asymmetries KLL and
KLS have already been measured at JLab in two experiments:
for large −t but relatively small −u = 1.1 GeV2 [3] and
in the more appropriate kinematical region for the present
work [31] (the latter analysis is not yet completed). One more
experiment has recently been suggested in order to measure
the initial state helicity correlation ALL in WACS [32].

As we concluded above the presented approach is not
applicable in the region of small −u < 2.5 GeV2. Hence we
cannot use it in order to describe asymmetries presented in
Ref. [3]. Therefore despite the numerical results obtained in
Ref. [16], agreement with KLL should only be interpreted as
qualitative. However, the here obtained results can be used
for estimates of the asymmetries in the other experiments
with more suitable kinematics; see Table 1.

Using the leading-order expressions (63)–(66) and (75)
the different combinations of the amplitudes appearing in
Eqs. (17), (18) can be presented as follows:

(T2 − T4) T
∗
6 � 2C2C6

√ −t

4m2 − t
R2(t), (82)

(T2 + T4) T̄
∗
5 ∼ O(αs) ≈ 0. (83)

Using Eqs. (71), (72), and (73) we also obtain

(T̄3 − T̄1)T
∗
6 � m� C6

−t

4m2 − t
G0(t)R(t), (84)

(T̄3 + T̄1)T
∗
5 � m2� C5

√ −t

4m2 − t
G1(t)G̃1(t). (85)

Table 1 The kinematical regions in the two experiments of Refs. [31,32]

KLL at s = 9 GeV2, Ref. [31] ALL at s = 8 GeV2, Ref. [32]

θ 70◦ 90◦ 110◦ θ 60◦ 90◦ 136◦

−t, GeV2 2.4 3.6 4.9 −t, GeV2 1.6 3.1 5.4

−u, GeV2 4.8 3.5 2.3 −u, GeV2 4.6 3.0 0.8
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From the given expressions one can easily observe that the
contribution proportional to r0 appears in the numerator of all
asymmetries and therefore one can expect that these observ-
ables can be more sensitive to this subleading amplitude. By
evaluating these asymmetries at −t = 2.5 GeV2, we obtain

KLL[s = 9 GeV2, θ = 71.5◦]
= 0.46 + 0.27r0 + 0.01r1r̃1

1.47 + 3.1r2
0 + 0.03r2

1 + 0.007 r̃2
1

≈ 0.46 + 0.27r0

1.47 + 3.1r2
0

, (86)

KLS[s = 9 GeV2, θ = 71.5◦]
= 0.36 − 0.34r0 + 0.009r1r̃1

1.47 + 3.1r2
0 + 0.03r2

1 + 0.007 r̃2
1

≈ 0.36 − 0.34r0

1.47 + 3.1r2
0

, (87)

ALL[s = 8 GeV2, θ = 78◦]
= 0.56 + 0.28r0 − 0.02r1r̃1

1.49 + 2.7r2
0 + 0.06r2

1 + 0.01 r̃2
1

≈ 0.56 + 0.28r0

1.49 + 2.7r2
0

. (88)

We again observe that the contributions proportional to r1

and r̃1 are practically negligible. In this case, all three asym-
metries depend on the same unknown quantity r0 at fixed
momentum transfer. Assuming that r0 is restricted as in (81)
we find

KLL[s = 9, θ = 71.5◦] = 0.31+0.01
−0.04, (89)

where the central number is computed at r0 = 0. The uncer-
tainty in (89) is smaller than the estimated statistical accuracy
±0.06 in this experiment [31]. It is natural to expect that KLS

is more sensitive to the value r0 because in this observable
helicity-flip contributions are not power suppressed. Using
(87) we find

KLS[s = 9, θ = 71.5◦] = 0.24+0.03
−0.04 (90)

yielding an uncertainty of around 16 % which is smaller than
the expected statistical accuracy ±0.05 [31], for a prelimi-
nary result, see Ref. [33].2

If we assume that in the leading-order approximation the
combination (T2 + T4) T̄ ∗

5 is small, see Eq. (83), then the
analytical expressions for the two asymmetries KLL and ALL

only differ by the combination in Eq. (85) (T̄3 + T̄1)T ∗
5 ∼

r1r̃1. But as one can observe from Eqs. (86) and (88) that the
corresponding contribution is numerically small and there-
fore one obtains that KLL � ALL. The uncertainty provided

2 The final results has been published in Ref. [34]
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Fig. 5 The asymmetry KLL as a function of scattering angle. The
red solid curve shows the result without kinematical power corrections
(Klein–Nishina result). The black dashed and solid lines correspond to
s = 8, 9 GeV2, respectively

by the ratio r0 in ALL in Eq. (88) yields

ALL[s = 8, θ = 78◦] = 0.37+0.02
−0.04, (91)

around 11 % which is again smaller than the statistical accu-
racy discussed in Ref. [32].

In order to see the effect of the kinematical power cor-
rections we plot in Fig. 5 asymmetry KLL as a function
of scattering angle for two different values of energy s =
8, 9 GeV2 with and without power suppressed contribu-
tions. All helicity-flip contributions are taken to be zero
r0 = r1 = r̃1 = 0. The red line in Fig. 5 denotes the
asymmetry without the power corrections which reduces to
the Klein–Nishina result on the pointlike massless target
K KN

LL = (4− (1+ cos θ)2)/(4+ (1+ cos θ)2). We only con-
sider the angles for which −t,−u ≥ 2.5 GeV2. In this region
the power corrections do not change the angular dependence
but reduce the value of the massless asymmetry by 25%. One
can also observe that the values of KLL at both values of s
are almost the same. This prediction can be checked by mea-
suring the asymmetry ALL in the new experiment [32] at the
same angles as KLL measured in [31].

5 Discussion

In this work we presented a phenomenological analysis
of the cross section and asymmetries of WACS in which
we accounted for different power suppressed contributions.
For the first time we include in the analysis the sublead-
ing helicity-flip amplitudes using the SCET framework. We
assume that the dominant contribution to these amplitudes is
provided by the soft-overlap configurations described by the
matrix elements of SCET-I operators. We only consider the
operators which appear in the leading-order approximation.
The corresponding hard coefficient functions were also com-
puted. Within this formalism we estimated the effect due to

123



Eur. Phys. J. C (2015) 75 :483 Page 11 of 11 483

the power suppressed corrections in different WACS observ-
ables.

An analysis of existing cross section data allows us to
conclude that the developed description can work reasonably
well in the region where −t,−u > 2.5 GeV2. The contri-
bution from the helicity-flip amplitudes in the cross section
is smaller than 10 %. We also found that the corresponding
effect due to power corrections in the different asymmetries
are also relatively small and to a good accuracy ALL = KLL

in the relevant kinematical region.
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