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Abstract We investigate path integral quantization of two
versions of unimodular gravity. First a fully diffeomorphism-
invariant theory is analyzed, which does not include a uni-
modular condition on the metric, while still being equivalent
to other unimodular gravity theories at the classical level.
The path integral has the same form as in general relativity
(GR), except that the cosmological constant is an unspecified
value of a variable, and it thus is unrelated to any coupling
constant. When the state of the universe is a superposition
of vacuum states, the path integral is extended to include an
integral over the cosmological constant. Second, we analyze
the standard unimodular theory of gravity, where the metric
determinant is fixed by a constraint. Its path integral differs
from the one of GR in two ways: the metric of spacetime sat-
isfies the unimodular condition only in average over space,
and both the Hamiltonian constraint and the associated gauge
condition have zero average over space. Finally, the canoni-
cal relation between the given unimodular theories of gravity
is established.

1 Introduction

The idea of unimodular gravity is nearly as old as general
relativity (GR) itself. Originally, Einstein considered the uni-
modular condition [1],
√−g = 1, (1.1)

as a convenient way to partially fix a coordinate system in
GR, which simplifies the calculations in certain situations.
Later on, unimodular gravity has also been considered as an
alternative theory of gravity closely related to GR, which was
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first suggested in [2]. The definition of unimodular gravity
is usually based on the invariance under a restricted group
of diffeomorphisms that leave the determinant of the metric
invariant, so that the determinant of the metric can be set
equal to a fixed scalar density ε0,
√−g = ε0, (1.2)

which provides a fixed volume element in spacetime. We
consider a theory based on the condition (1.2) and on the
associated restricted group of diffeomorphisms, as the first
example of unimodular gravity.

Fully diffeomorphism-invariant extensions of unimodu-
lar gravity exist as well, which also involve a condition on
the determinant of the metric such that the right-hand side
of the condition (1.2) is replaced with a scalar density field.
The most prominent theory of this kind is the Henneaux–
Teitelboim theory [3], where the unimodular condition sets√−g equal to the divergence of a vector density field.

It is well known that classically unimodular gravity pro-
duces the same physics as GR with a cosmological constant.
The field equation for the metric is either the traceless Ein-
stein equation or, thanks to the Bianchi identity, the Einstein
equation with a cosmological constant [4]. The difference
is that the cosmological constant of unimodular gravity is
a constant of integration, rather than a coupling constant.
Since the value of the cosmological constant is unspecified
and unrelated to any coupling constant, problems associated
with the cosmological constant have been reconsidered (see
[5–10] for reviews).

Quantum corrections to the energy-momentum tensor of
matter, Tμν, which are of the form Cgμν , where C is a con-
stant over spacetime, do not contribute to the traceless field
equation for the metric in unimodular gravity. In particular,
vacuum fluctuations in the trace of the energy-momentum
tensor of matter do not affect the metric. This well-known
feature of unimodular gravity has been recently revisited via
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an explicit calculation of one-loop corrections [11]. Since
a small nonvanishing cosmological constant is required, the
full Einstein equation and an associated action need to be
considered. There the vacuum corrections are absorbed into
the arbitrary cosmological constant, whose value should be
specified experimentally. However, this does not solve the
cosmological constant problem. Unimodular gravity faces a
similar problem with the renormalization or fine tuning of the
cosmological constant as GR [5,7,9,10]. The expression for
the vacuum energy generated by the quantum fluctuations
is highly dependent on the details of the effective descrip-
tion, in particular on the chosen Wilsonian cut-off scale [9].
Therefore we do not consider the vacuum energy problem
in this paper. Instead we concentrate on the formal differ-
ences between the unimodular gravity theories and GR at
the quantum level. In other words, our treatment assumes
that somehow the observed cosmological constant Λ will be
stabilized against vacuum corrections.

Predicting or deriving the observed value of the cosmolog-
ical constant is a hard problem as well. A highly speculative
but interesting attempt to address this problem in unimodular
gravity has been made in [12–14], where an integral over the
cosmological constant was included into the path integral.
We will show how this argument can be derived in a straight-
forward way, when a new action for unimodular gravity is
introduced. Problems associated with the given argument are
also discussed.

Conventionally, the idea of unimodular gravity has been
to impose a condition on the determinant of the metric, e.g.,
(1.2). In comparison with GR, making the cosmological con-
stant an arbitrary constant of integration can be regarded as
the key feature of unimodular gravity. In order to achieve
it, however, there is no need to constrain the determinant
of the metric. We consider a fully diffeomorphism-invariant
theory (see (2.13)), which has recently appeared in the con-
text of gravity with mimetic dark matter [15], where an
additional scalar field was also included to describe the
mimetic matter. The given theory is no longer unimodular
in the sense that there is no condition on the determinant of
the metric, but we will establish how the theory is canoni-
cally related to the conventional unimodular theories of grav-
ity.

It has been argued that unimodular gravity can offer a
new perspective on the problem of time in quantum grav-
ity and cosmology [4,13,16,17]. Since the bulk part of the
Hamiltonian of unimodular gravity is nonvanishing, and the
four-volume provides a cosmological time, an analogy of the
Schrödinger equation exists, and hence quantum states of the
universe can evolve in terms of a global time. On the other
hand, it has been concluded that unimodular gravity cannot
solve the problem of time in quantum gravity [18], since the
four-volume labels only equivalence classes of hypersurfaces
separated by a zero four-volumes.

Since all versions of unimodular gravity must be classi-
cally equivalent to GR, quantization of each version of uni-
modular gravity can be regarded as a potential quantization
of GR. Hence it is necessary to understand how the different
versions of unimodular gravity differ from each other and
from GR at the quantum level. The equivalence of GR and
unimodular gravity was recently discussed in [19], conclud-
ing that the equivalence can be retained at quantum level
when the UV extension of unimodular gravity is performed
appropriately. We will see that the form of the path inte-
gral depends on which version of unimodular gravity is cho-
sen.

A path integral quantization of the Henneaux–Teitelboim
version of unimodular gravity has been considered previ-
ously in [14] (see also [20]), where the unimodular condition
was shown to be imposed locally in the quantum theory. In
this paper, we study the path integral quantization for the
two other versions of unimodular gravity discussed above.
The results are compared to both GR and the Henneaux–
Teitelboim theory. In the fully diffeomorphism-invariant the-
ory (see (2.13) for action), the path integral has the same
form as the one of GR with a cosmological constant, but the
value of Λ is an unspecified constant value of a variable. Two
approaches regarding the interpretation of the cosmological
constant are considered: either (i) the effective value of the
cosmological constant is fixed by the physical boundary con-
ditions of the path integral, or (ii) the state of the universe is
taken as a superposition of states with different values of Λ,
and consequently the path integral includes an integral over
Λ. In the latter approach, we derive the path integral in the
form originally proposed in [12] (see also [13,14]). In the
theory with a fixed metric determinant (see (2.6) for action),
the unimodular condition (1.2) is found to be imposed in
average over space, but not locally.

In Sect. 2 we present the different actions of unimodular
gravity which are relevant for this paper, and we discuss how
the (classical) actions are related to each other. Section 3
is devoted to the canonical path integral quantization of the
fully diffeomorphism-invariant theory of unimodular gravity.
In Sect. 4 the same is achieved for the conventional version of
unimodular gravity with a fixed metric determinant. Section 5
establishes the canonical relation of the theories. The results
are discussed in Sect. 6.

2 Three versions of unimodular gravity

2.1 Unimodular gravity with a fixed metric determinant

Conventionally, the field equations of unimodular gravity are
obtained from the Einstein–Hilbert action under a restricted
variation of the metric gμν that preserves the determinant of
the metric,
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δ

δgμν

√−g = 0, (2.1)

where g = det gμν . Since the metric transforms under an
infinitesimal diffeomorphism,

x ′μ(x) = xμ + ξμ(x), (2.2)

as

δξ gμν = ∇μξν + ∇νξμ, (2.3)

the unimodular condition (2.1) requires that

δ
√−g = 1

2

√−ggμνδgμν = 0, (2.4)

i.e.,

∇μξμ = 0. (2.5)

These transformations are often referred to as transverse
diffeomorphisms or volume-preserving diffeomorphisms.
However, the name transverse diffeomorphisms (TDiff) is
sometimes reserved for the transformations that satisfy the
noncovariant condition ∂μξμ = 0 [21]. In order to avoid any
confusion, we shall refer to the given transformations (2.1)–
(2.5) as metric determinant-preserving diffeomorphisms.

One way to define unimodular gravity is to introduce the
unimodular condition (1.2) into Einstein–Hilbert action as a
constraint multiplied by a Lagrange multiplier λ,

SUG[gμν, λ, Ψ ] =
∫
M

d4x

(√−gR

κ
− λ

(√−g − ε0
))

+ 2

κ

∮
∂M

d3x
√|γ |K + Sm[gμν, Ψ ],

(2.6)

where ε0 is a fixed scalar density, such that ε0d4x defines a
proper volume element, the gravitational coupling constant
is denoted as κ = 16πG, and Sm is the action for the matter
fields (denoted collectively by Ψ ) which are coupled to the
metric in the same way as in GR. In the surface integral over
the boundary ∂M of spacetime, γ is the determinant of the
induced metric on ∂M , and K is the trace of the extrinsic
curvature of the boundary. The boundary term is included
as in GR, so that the variational principle for the action is
well defined without imposing boundary conditions on the
derivatives of the metric.1 The full diffeomorphism invari-
ance of GR is lost due to the presence of the fixed volume
element ε0d4x . The action (2.6) is invariant under the met-
ric determinant-preserving diffeomorphisms. We shall refer
to the theory defined by (2.6) simply as unimodular gravity
(UG).

1 When we write about boundary conditions without specifying their
nature in the canonical formalism, we refer to both the initial conditions
and the conditions on the spatial boundary. Likewise in Lagrangian
formalism we refer to conditions on the boundary of spacetime.

An unrestricted variation of gμν gives the Einstein equa-
tion

Rμν − 1

2
Rgμν + κ

2
λgμν = κ

2
Tμν. (2.7)

The variation of λ gives the unimodular condition (1.2). The
field equations for matter fields are identical to those of GR.
The unimodular condition (1.2) ensures that (2.1) holds. The
energy-momentum tensor of matter is defined in (2.7) as
usual, Tμν = − 2√−g

δSm
δgμν . We assume that the action for mat-

ter is diffeomorphism invariant, so that energy-momentum
is conserved, ∇νTμν = 0. Then we take the divergence of
(2.7) and obtain

∇μλ = ∇νTμν − 2

κ

(
∇νRμν − 1

2
∇μR

)
= 0, (2.8)

where the (contracted) Bianchi identity is used. Thus we see
that λ is fixed as a constant of integration, which we denote
as λ = 2

κ
Λ, where Λ is the cosmological constant. Inserting

this into the field equation (2.7) gives

Rμν − 1

2
Rgμν + Λgμν = κ

2
Tμν. (2.9)

Compared to GR the only difference is that we are restricted
to use coordinate systems that satisfy (1.2). In GR, the con-
dition (1.2) can always be satisfied locally by choosing the
inertial coordinates. Then every coordinate system obtained
via metric determinant-preserving diffeomorphisms satisfies
(1.2) as well.

2.2 Fully diffeomorphism-invariant unimodular gravity

Extensions of unimodular gravity with full diffeomorphism
invariance have been proposed as well. The most prominent
theory is defined by the Henneaux–Teitelboim (HT) action
[3] (see [22] regarding the boundary surface term),

SHT[gμν, λ, τμ, Ψ ]=
∫
M

d4x

(√−gR
κ

−λ
(√−g − ∂μτμ

))

+
∮

∂M
d3x

(
2

κ

√|γ |K − λrμτμ

)
+ Sm[gμν, Ψ ],

(2.10)

where τμ is a vector density and rμ is the outward-pointing
unit normal to the boundary ∂M . The field equations consists
of the Einstein equation (2.7), the equation for the cosmo-
logical constant variable,

∇μλ = 0, (2.11)

a (fully diffeomorphism-invariant) unimodular condition,
√−g = ∂μτμ, (2.12)

and standard field equations for matter.
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The HT action (2.10) can indeed be derived from
the UG action (2.6) via parameterization of the space-
time coordinates [18]. Parametrization of coordinates in a
mechanical system is a well known method for obtaining a
reparameterization-invariant action (see [23] for a review).
Parametrization of field theories was introduced later (see
[24] for a description). We treat the coordinates of the
action (2.6) as four independent scalar variables Xα(x) that
depend on the actual coordinates xμ. One can think of this
as a transformation xα → Xα(x). The Einstein–Hilbert
and matter parts of the action (2.6) are invariant under
such transformation, but the part with a fixed volume ele-
ment is not invariant, since it transforms as

∫
d4xε0λ →∫

d4xε0λ|∂μXα|, where |∂μXα| is the Jacobian determinant
of the transformation. When we identify a vector density as
τμ = 4!ε0δ

[μ
α δν

βδ
ρ
γ δ

σ ]
δ Xα∂νXβ ∂ρXγ ∂σ X δ , we obtain the

HT action (2.10). It is clear that the HT theory is classically
equivalent to the UG theory (2.6). However, differences are
expected to arise upon quantization.

We consider an alternative action that is fully diffeomor-
phism invariant and retains the classical equivalence with
the other unimodular theories, in particular with (2.6) and
(2.10). The action has been studied in the context of gravity
with mimetic dark matter [15], where an additional scalar
field was also included to describe the mimetic matter. The
action is written (without the scalar field) as

SDUG[gμν, λ, Vμ,Ψ ] =
∫
M

d4x
√−g

(
R

κ
− λ − Vμ∇μλ

)

+ 2

κ

∮
∂M

d3x
√|γ |K + Sm[gμν, Ψ ],

(2.13)

where the variable Vμ is a vector field. We shall refer to
this theory as the fully diffeomorphism-invariant unimodular
gravity (DUG). The action (2.13) is arguably the most trans-
parent definition of such a theory. The action (2.13) consists
of the Einstein–Hilbert action with a variable cosmological
constant λ, and a constraint term for λ. The vector field Vμ

acts as a Lagrange multiplier that ensures ∇μλ is zero in every
direction, and thus λ is a constant. The field equations con-
sists of the Einstein equation (2.7) for the metric, Eq. (2.11)
for the cosmological constant variable λ, an equation for the
auxiliary vector field

∇μV
μ = 1, (2.14)

and standard field equations for matter. The unimodular con-
dition on the metric determinant, (1.2) or (2.12), has been
replaced with the condition (2.14) on the vector field. The
vector field does not contribute to the Einstein equation due
to Eq. (2.11). In Sect. 3, we will show how the vector field
can be eliminated from the Hamiltonian formulation while

the canonical representation of diffeomorphism invariance is
retained.

It is obvious that the DUG action (2.13) is closely related
to the HT action (2.10). An integration by parts in the term∫

d4xλ∂μτμ of the HT action, followed by a replacement
of the vector density variable with a vector field variable,
τμ = √−gVμ, gives the action (2.13). Hence it is clear that
these theories are equivalent classically. However, the path
integral for the action (2.13) will be shown to differ from the
HT case significantly due to the different choice of variable.

The field equations for both the HT and the DUG theories
are invariant under the shift

Tμν → Tμν + Cgμν, λ → λ + C, (2.15)

where C is a constant. Hence quantum corrections to the
trace of the energy-momentum tensor are absorbed into the
variable λ, whose value is an arbitrary constant. The variable
λ will be shown to remain constant at quantum level in Sect. 3.

There exist more versions of unimodular gravity in addi-
tion to the three theories discussed above; see, for example,
[14,19] for other actions. In this paper we will concentrate
on the three theories defined by (2.6), (2.10) and (2.13).

3 Quantization of the fully diffeomorphism-invariant
unimodular gravity

3.1 Arnowitt–Deser–Misner decomposition of the action

Spacetime is assumed to admit a foliation to a union of nonin-
tersecting spacelike hypersurfaces. The hypersurfaces Σt are
labeled by a scalar t that is constant across each hypersurface.
The future-pointing unit normal to Σt is denoted by nμ. The
so-called direction of time vector tμ satisfies tμ∇μt = 1.
The metric gμν has the signature (−,+,+,+), and hence
nμnμ = −1. Each hypersurface is described by the induced
metric on Σt ,

hμν = gμν + nμnν, (3.1)

and by the extrinsic curvature tensor

Kμν = ∇μnν + nμaν, (3.2)

where we have defined the acceleration vector of Eulerian
observers by

aμ = nν∇νnμ. (3.3)

Now we introduce the Arnowitt–Deser–Misner (ADM)
variables. The scalar t is taken as the time coordinate. The
unit normal to Σt is written as

n0 = 1

N
, ni = −Ni

N
, (3.4)
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where N is the lapse variable and Ni is the shift vector on
Σt . Latin indices (i, j, . . .) range from 1 to 3. Now the metric
takes the form

g00 = −N 2 + Ni N
i , g0i = Ni , gi j = hi j , (3.5)

where Ni = hi j N j . The extrinsic curvature is written as

Ki j = 1

2N
(∂t hi j − Di N j − Dj Ni ), (3.6)

where D is the covariant derivative that is compatible with the
metric hi j on Σt , and hi j is the inverse metric, hi j h jk = δ k

i .
The trace of extrinsic curvature is denoted by K = hi j Ki j .

The action is decomposed as follows. The metric deter-
minant is given by
√−g = N

√
h, (3.7)

where h = det hi j . The scalar curvature is written as

R = Ki jG
i jkl Kkl + (3)R + 2∇μ(nμK − aμ), (3.8)

where the De Witt metric is defined as

G i jkl = 1

2
(hikh jl + hilh jk) − hi j hkl (3.9)

and (3)R is the (intrinsic) scalar curvature of Σt . The last term
in (3.8) is a total derivative which contributes a boundary term
into the action.

The vector field is decomposed into components tangent
and normal to Σt as

Vμ = ⊥Vμ − nμVn, (3.10)

where

⊥Vμ = hμ
νV

ν, Vn = nμV
μ, (3.11)

and the projection operator onto Σt is defined as

hμ
ν = δμ

ν + nμnν . (3.12)

The gravitational part of the action (2.13) is written in ADM
form as

SDUG[N , Ni , hi j , λ, Vn, V
i , Ψ ] =

∫
dt

∫
Σt

d3xN
√
h

×
[

1

κ

(
Ki jG

i jkl Kkl + (3)R
)

− λ + Vn∇nλ − V i∂iλ

]

+SB + Sm[gμν, Ψ ], (3.13)

where we denote V i = ⊥V i and

∇nλ = 1

N
(∂tλ − Ni∂iλ), (3.14)

and the boundary contribution SB is given as in GR,

SB = 2

κ

∫
B

d3x
√−γ

(
K + rμn

μK − rμa
μ
)
, (3.15)

where B is the timelike part of the boundary ∂M . The sur-
face B is foliated to a union of two-dimensional surfaces

Bt , which come from the intersection of Σt and B. When
the hypersurfaces B and Σt are orthogonal, the surface term
(3.15) can be written as [25]

SB = 2

κ

∫
dt

∫
Bt

d2xN
√

σ (2)K , (3.16)

where σ is the determinant of the induced metric on Bt , and
(2)K is the trace of the extrinsic curvature of Bt in Σt .

3.2 Hamiltonian analysis

Hamiltonian analysis of unimodular gravity in its different
forms has been considered in several papers [3,4,14,17,18,
20,26,27]. Since the action (2.13) differs from the previous
theories by lacking a unimodular condition and involving the
vector field, we present a detailed Hamiltonian analysis.

3.2.1 Hamiltonian and constraints

We shall obtain the Hamiltonian and the full set of constraints
for the action (2.13). Here we consider pure gravity, since
the matter sector is identical to that of GR, and in the end we
include matter into the path integral in Sect. 3.3.

First we introduce the canonical momenta πN , πi , π i j ,
pλ, pi , and pn conjugate to N , Ni , hi j , λ, V i , and Vn,
respectively. Since the action (3.13) is independent of the
time derivatives of the variables N , Ni , Vn, and V i , their
canonically conjugated momenta are primary constraints:

πN ≈ 0, πi ≈ 0, pn ≈ 0, pi ≈ 0. (3.17)

In addition, the definition of the momentum conjugate to λ

implies the primary constraint

Cλ = pλ − √
hVn ≈ 0. (3.18)

The momentum conjugate to the metric hi j is defined as

π i j =
√
h

κ
G i jkl Kkl . (3.19)

The Hamiltonian is obtained as

H =
∫

Σt

d3x(NHT + NiHi + vNπN + viNπi + vλCλ

+vn pn + vi pi ) + HBt , (3.20)

where the so-called super-Hamiltonian and supermomentum
are defined as

HT = κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R + √
hλ + √

hV i∂iλ

(3.21)

and

Hi = −2hi j Dkπ
jk + ∂iλpλ, (3.22)
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respectively, where we introduced the inverse De Witt metric
as

Gi jkl = 1

2
(hikh jl + hilh jk) − 1

2
hi j hkl , (3.23)

and vN , viN , vλ, v
i , vn are unspecified Lagrange multipliers

for the primary constraints. Regarding the surface terms, the
analysis follows the standard set by [25]. The surface term
in the Hamiltonian (3.20) is obtained as

HBt = − 2

κ

∫
Bt

d2xN
√

σ (2)K + 2
∫
Bt

d2xNihi j rkπ
jk,

(3.24)

which is the same expression as in GR. The physical Hamilto-
nian is defined with respect to a chosen reference background
as Hphys = H − Href , where the Hamiltonian of the back-
ground is denoted as Href . The total gravitational energy of
the system is the value of the physical Hamiltonian. The sur-
face term (3.24) is given in a generic form that produces the
correct expression of total gravitational energy for different
reference backgrounds [25].

We must ensure that every constraint is preserved under
time evolution that is generated by the Hamiltonian (3.20).
The preservation of πN ≈ 0 is ensured by the Hamiltonian
constraint

HT ≈ 0 (3.25)

and the preservation of πi ≈ 0 is ensured by the momentum
constraint

Hi ≈ 0. (3.26)

We can extend the momentum constraint (3.22) with a term
that is proportional to the primary constraint pn so that the
momentum constraint generates spatial diffeomorphisms on
Σt for all the variables that are involved in the constraints.2

For that reason we redefine

Hi = −2hi j Dkπ
jk + ∂iλpλ + ∂i Vn pn ≈ 0. (3.27)

It is useful to define global (smeared) versions of these con-
straints for calculational purposes:

HT [ξ ] =
∫

Σt

d3xξHT , Φ[χ i ] =
∫

Σt

d3xχ iHi , (3.28)

where ξ and χ i are functions on Σt . The preservation of the
constraint pi ≈ 0,

∂t pi = {pi , H} ≈ −N
√
h∂iλ ≈ 0, (3.29)

is ensured by introducing a new constraint,

Ci = ∂iλ ≈ 0. (3.30)

2 We do not need to include a generator for the variables V i and pi ,
since the V i -dependent term in the Hamiltonian constraint (3.21) is
proportional to the constraint (3.30) found below.

This constraint implies that λ is a constant across Σt . We
define the smeared form of Ci as

C [χ i ] =
∫

Σt

d3xχ i∂iλ. (3.31)

This constraint is included into the Hamiltonian with a
Lagrange multiplier as C [viλ]. The preservation of the con-
straint Cλ ≈ 0,

∂tCλ = {Cλ, H}
≈ {Cλ,HT [N ]} − √

hvn +
{
Cλ,C [viλ]

}
≈ 0, (3.32)

is ensured by fixing the Lagrange multiplier vn of the con-
straint pn as

vn = −N + κ

2
N
hi jπ i j

√
h

Vn + 1√
h

∂iv
i
λ. (3.33)

The preservation of the constraint pn ≈ 0,

∂t pn = {pn, H} ≈ √
hvλ ≈ 0, (3.34)

is ensured by fixing the Lagrange multiplier vλ of the con-
straint Cλ as

vλ = 0. (3.35)

Since the constraint Ci is included into the Hamiltonian with
a Lagrange multiplier, we can simplify the system by redefin-
ing HT without the part that is proportional to Ci . Now the
total Hamiltonian is written as

H =
∫

Σt

d3x(NH ′
T + NiHi + vNπN + viNπi

+vi pi + viλC
′
i ) + HBt , (3.36)

where we have defined the constraints

H ′
T = HT − pn + κ

2

hi jπ i j

√
h

Vn pn ≈ 0, (3.37)

HT = κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R + √
hλ ≈ 0,

C ′
i = Ci − ∂i

(
pn√
h

)
≈ 0, (3.38)

and vN , viN , vi , viλ are unspecified Lagrange multipliers.
What remains to be established is the preservation of the

secondary constraints HT , Hi , and Ci under time evolution.
The constraints HT , Hi , Ci have vanishing Poisson bracket
with pn. The constraints HT , Hi , Ci satisfy the following
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algebra:

{HT [ξ ],HT [η]} =
∫

Σt

d3x(ξ∂iη − η∂iξ)hi j

×(H j − pλC j − ∂ j Vn pn),{
Φ[χ i ],HT [ξ ]

}
= HT [χ i∂iξ ],{

Φ[χ i ], Φ[ψ j ]
}

= Φ[χ j∂ jψ
i − ψ j∂ jχ

i ],{
HT [ξ ],C [χ i ]

}
= 0,{

Φ[χ i ],C [η j ]
}

= C [χ i∂ jη
j ]. (3.39)

The first three Poisson brackets in (3.39) are the familiar rela-
tions found in GR. The constraint in the right-hand side of
the first Poisson bracket is just the momentum constraint of
GR, Hi − pλCi − ∂i Vn pn = −2hi j Dkπ

jk ≈ 0. The last
two Poisson brackets tell that Ci is preserved in time and
that it transforms as a vector density under the spatial dif-
feomorphisms generated by the momentum constraint. The
constraints πN , πi , pi have vanishing Poisson bracket with
every constraint. Thus all the constraints are preserved under
time evolution.

We can now see that all the constraints (H ′
T ,Hi , πN , πi ,

pi ,C ′
i ) in the Hamiltonian (3.36) are first class constraints.

The Lagrange multipliers in the Hamiltonian (3.36) remain
unspecified, until they are determined as a part of the gauge
fixing procedure. In addition, pn ≈ 0 and Cλ ≈ 0 are the
second class constraints.

In order to clarify the nature of the constraint Ci , it is
useful to decompose the variables λ, pλ as follows:

λ(t, x) = λ0(t) + λ̄(t, x),

pλ(t, x) =
√
h∫

Σt
d3x

√
h
p0
λ(t) + p̄λ(t, x), (3.40)

where the zero modes describe the time-dependent averages
of λ and pλ over space,

λ0(t) = 1∫
Σt

d3x
√
h

∫
Σt

d3x
√
hλ(t, x),

p0
λ(t) =

∫
Σt

d3xpλ(t, x), (3.41)

and the barred components have vanishing average values
over space,∫

Σt

d3x
√
hλ̄(t, x) = 0,

∫
Σt

d3x p̄λ(t, x) = 0. (3.42)

If the space Σt is infinite, the definition of the zero modes
(3.41) has to be specified more precisely. For example, in
the asymptotically flat case, the spatial integrals would be
defined up to a finite radius r in the asymptotic region, and
finally the limit r → ∞ would be taken. In the definition of
λ0 the two infinite integrals cancel out, since the asymptotic

value of λ must be a constant, so that the average value λ0

remains finite. The momentum pλ can be defined to have
such an asymptotic behavior that the definition of its zero
mode remains finite. Other scalar fields or scalar densities
can be decomposed in a similar way. The zero modes satisfy
the canonical Poisson bracket{

λ0, p
0
λ

}
= 1, (3.43)

while the average free components satisfy

{
λ̄(x), p̄λ(y)

} = δ(x − y) −
√
h(y)∫

Σt
d3z

√
h

, (3.44)

and the Poisson brackets between zero modes and average
free components are zero

{λ0, p̄λ(x)} = 0,
{
λ̄(x), p0

λ

}
= 0. (3.45)

When λ is decomposed, the constraint (3.30) can be replaced
with a local constraint

λ̄ ≈ 0, (3.46)

since ∂iλ = ∂i λ̄ = 0 implies that λ̄ is constant over space
and the zero average condition (3.42) requires that constant
to be zero. The corresponding first class constraint (3.38) is
replaced with

C̄ ′ = λ̄ −
(

pn√
h

)
≈ 0, (3.47)

where the overline denotes a component whose integral over
space vanishes. The purpose of the decomposition (3.40) of
the cosmological variable is to separate the perturbative com-
ponent λ̄ that vanishes due to the constraint (3.30). The aver-
age component λ0 is left unconstrained.

The total Hamiltonian (3.36) is rewritten as

H =
∫

Σt

d3x(NH ′
T + NiHi + vNπN + viNπi

+v̄λC̄
′ + vi pi ) + HBt , (3.48)

where the variable λ in the Hamiltonian constraint (3.37)
is replaced with its zero mode λ0. Next we consider gauge
fixing and simplification of the Hamiltonian via elimination
of some variables.

3.2.2 Gauge fixing and the second class constraints

Each of the first class constraints generates a gauge transfor-
mation. The constraint pi generates a gauge transformation
of the vector V i as

δV i =
{
V i ,

∫
Σt

d3xεi pi

}
= εi , (3.49)

where εi is an infinitesimal gauge parameter. This means that
V i can be fixed throughout spacetime as a gauge choice. We
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choose the gauge fixing condition as V i = 0. We can further
simplify the system by considering the gauge symmetry that
is associated with the constraint (3.47). The constraint (3.47)
generates the transformation of the average free momentum
p̄λ,

δ p̄λ =
{
p̄λ,

∫
Σt

d3x ε̄C̄ ′
}

= −ε̄, (3.50)

where the infinitesimal gauge parameter ε̄ is a now a scalar
density whose integral over Σt vanishes. Equivalently, the
constraint (3.38) generates the transformation

δ p̄λ =
{
p̄λ,

∫
Σt

d3xεiC ′
i

}
= ∂iε

i , (3.51)

where the integral of the component of the infinitesimal
gauge parameter εi in the direction of the outward-pointing
unit normal ri to the boundary of Σt is zero, so that∫
Σt

d3x∂iεi = ∫
Bt

d2xriεi = 0. The corresponding gauge
freedom can be fixed by setting p̄λ = 0.

Now we have the set of second class constraints (Cλ, pn,
V i , pi , λ̄, p̄λ). The second class constraints can be set to zero
strongly, if we replace the Poisson bracket with the Dirac
bracket. In this case the Dirac bracket is equal to the Pois-
son bracket. Then we can eliminate six canonical variables
(Vn, pn, V i , pi , λ̄, p̄λ) by using the constraints

Vn = pλ√
h

, pn = 0,

V i = 0, pi = 0,

λ̄ = 0, p̄λ = 0. (3.52)

The Hamiltonian (3.48) is written as

H =
∫

Σt

d3x(NHT + NiHi + vNπN + viNπi ) + HBt ,

(3.53)

where

HT = κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R + √
hλ0 ≈ 0, (3.54)

and

Hi = −2hi j Dkπ
jk ≈ 0. (3.55)

This is the Hamiltonian of GR with a time-dependent cosmo-
logical constant λ0. However, it is evident that λ0 is a constant
in time as well, since the Hamiltonian is independent of p0

λ,

∂tλ0 = {λ0, H} = 0. (3.56)

The value of λ0 is set as a part of the initial value data on the
initial Cauchy surface, say Σ0 at t = 0. The momentum p0

λ

evolves monotonically, ∂t p0
λ = −N

√
h, and it is not involved

in the actual dynamics of the system. The physical degrees
of freedom consist of the two standard modes of gravity, plus

the nondynamical zero mode that provides the cosmological
constant.

Gauge fixing the diffeomorphism invariance is done
exactly as in GR by introducing appropriate gauge condi-
tions for the generators HT ,Hi , πN , π i .

3.3 Path integral

3.3.1 Canonical path integral and possible gauges

The canonical Hamiltonian for the gravitational part of the
action (2.13) is written as

Hc =
∫

Σt

d3x(NHT + NiHi ) + HBt , (3.57)

where the Hamiltonian and momentum constraints are
defined in (3.21) and (3.22), and the boundary term in (3.24).
The second class constraints are

pn ≈ 0, Cλ = pλ − √
hVn ≈ 0. (3.58)

The first class constraints are πN ≈ 0, πi ≈ 0, pi ≈ 0,Hi ≈
0, and

H ′
T = HT − pn + κ

2

hi jπ i j

√
h

Vn pn ≈ 0,

C̄ ′ = λ̄ −
(

pn√
h

)
≈ 0. (3.59)

We introduce gauge fixing conditions as

σ 0 = N − f ≈ 0, σ i = Ni − f i ≈ 0, V i ≈ 0,

χμ(hi j , π
i j ) ≈ 0, p̄λ ≈ 0, (3.60)

where f and f i are fixed functions (or constants), such that
f > 0, while the conditions χμ can depend on both hi j and
π i j , presuming that χμ depends on π i j linearly or not at
all. The four gauge conditions χμ have to be independent,
so that they fix four components of the variables hi j , pi j .
Furthermore, it is convenient to require that
{
χμ, χν

} = 0. (3.61)

The generator C̄ ′ exhibits a nonlocal linear dependence
over the spatial hypersurface, since the spatial integral of the
generator vanishes by definition. The corresponding gauge
condition ( p̄λ ≈ 0) has a similar nonlocal linear dependence.
Quantization of gauge theories with linearly dependent gen-
erators [28] is discussed in Appendix A (see also [29]). There
we show that the following path integral is obtained when
certain additional gauge conditions are imposed on the ghost
fields associated with the generator C̄ ′.

Since the first class constraints have vanishing Poisson
brackets with every constraint except the gauge conditions,
we use the Faddeev formula for the functional determinant of
constraints in the path integral. Furthermore, the determinant
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of the Poisson bracket between the gauge conditions and
the gauge generators has a block diagonal form, so that it
factorizes. Hence we obtain the integration measure as∏
xμ

DNDπNDNiDπiDVnD pnDV iD piDhi jDπ i j

×Dλ0D p0
λD λ̄D p̄λδ(pn)δ(Cλ)δ(πN )δ(πi )

×δ(σμ)δ(pi )δ(V
i )δ(H ′

μ)δ(χμ)δ(C̄ ′)δ( p̄λ)

×√
h

∣∣det
{
χμ,H ′

ν

}∣∣ , (3.62)

where we denote H ′
ν = (H ′

T ,Hi ). Integration over the
variables N , πN , Ni , πi , Vn, pn, V i , pi , λ̄, p̄λ can be per-
formed using the constraint δ-functions. The Hamiltonian
and momentum constraints reduce to (3.54) and (3.55),
respectively, and we denote them collectively as Hν =
(HT ,Hi ). In addition, we write δ(Hμ) as an integral over
auxiliary fields Nμ = (N , Ni ), essentially reintroducing the
lapse and shift functions. The auxiliary fields are displaced so
that the gauge fixing functions ( f, f i ) are canceled, N+ f →
N and Ni + f i → Ni . Then the path integral is written as

ZDUG = N −1
∫ ∏

xμ

DNDNiDhi jDπ i jDλ0D p0
λδ(χ

μ)

× ∣∣det
{
χμ,Hν

}∣∣ exp

[
i

h̄

∫
dt

(∫
Σt

(π i j∂t hi j

+p0
λ∂tλ0 − NHT − NiHi ) − HBt

)]
, (3.63)

where N is a normalization factor. Integration over p0
λ gives

a δ-function that imposes ∂tλ0 = 0. Therefore we decompose
λ0 to a constant component and an average free component
λ̄0 over time as

λ0(t) = 2

κ
Λ + λ̄0(t), (3.64)

where
∫

dt λ̄0 = 0. The integration over λ̄0 is performed,
which gives

ZDUG = N −1
∫ ∏

xμ

DNDNiDhi jDπ i jδ(χμ)

× ∣∣det
{
χμ,Hν

}∣∣ exp

[
i

h̄

∫
dt

(∫
Σt

(π i j∂t hi j

−NHT − NiHi ) − HBt

)]
, (3.65)

where we have redefined

HT = κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R + 2
√
h

κ
Λ. (3.66)

Unlike in [14], the path integral (3.65) does not include inte-
gration over the cosmological constant Λ, since we presume
that the boundary conditions of the path integral define the
(asymptotic) boundary values of all variables, including the
boundary value of λ. In particular, the value of λ is set to a

constant both on the initial Cauchy surface and on the spatial
boundary. An extension of the path integral with an integral
over Λ will be considered in Sect. 3.3.2.

Then we perform the integration over the momentum π i j .
Since the measure is at most linear in the momentum, the
integration is Gaussian, and hence the integration can be per-
formed in the standard way (see e.g. [30]). The integration
amounts to expressing the momentum as

π i j =
√
h

κ
G i jkl Kkl , (3.67)

and including the factor N−3h− 1
2 .3 This results in

ZDUG = N −1
∫ ∏

xμ

DNDNiDhi j N
−3h− 1

2 δ(χμ)

× ∣∣det
{
χμ,Hν

}∣∣ exp

[
i

h̄

(
1

κ

∫
dt

∫
Σt

N
√
h

× (Ki jG
i jkl Kkl + (3)R − 2Λ) + SB

)]
. (3.68)

Then we express the field differentials as

Dgμν = 2hNDNDNiDhi j , (3.69)

and write N−4h− 3
2 = Ng00(−g)− 3

2 , and we obtain the path
integral as

ZDUG = N −1
∫ ∏

xμ

Dgμνg
00(−g)−

3
2 Nδ(χμ)

× ∣∣det
{
χμ,Hν

}∣∣ exp

(
i

h̄
SEH[gμν,Λ]

)
, (3.70)

where SEH[gμν,Λ] is the Einstein–Hilbert (EH) action with
an unspecified cosmological constant Λ,

SEH[gμν,Λ] = 1

κ

∫
M

d4x
√−g(R − 2Λ)

+ 2

κ

∮
∂M

d3x
√|γ |K . (3.71)

In summary, the difference compared to GR is that the value
of the cosmological constant Λ is included in the initial and
boundary conditions, rather than being a coupling constant
of the Lagrangian.

The next step is to express the gauge fixing factor of (3.70)
in a more useful form. For that purpose we consider specific
gauge conditions for the Hamiltonian and momentum con-
straints. The present theory has the advantage of enabling the
use of the same gauges for the diffeomorphism symmetry as
in GR.

3 The factor comes from | det Nκ√
h
Gi jkl |− 1

2 = 22κ−3N−3h− 1
2 , where

the de Witt metric Gi jkl is regarded as a symmetric 6 by 6 matrix with
indices (i j) and (kl) ranging over the six unique components.
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Dirac gauge First we consider the Dirac gauge [31]:

χ0
D = hi jπ

i j ≈ 0, χ i
D = ∂ j

(
h

1
3 hi j

)
≈ 0. (3.72)

We define an operator Qμ
D ν in terms of the gauge trans-

formation of the gauge conditions (3.72) as

Qμ
D νξ

ν =
{
χ

μ
D ,

∫
Σt

Hνξ
ν

}
, ξμ =

(
ξ, ξ i

)
. (3.73)

Evaluating the Poisson brackets, we obtain the components
of the operator as (up to the Hamiltonian constraint)

Q0
D 0 = − 2

κ

√
h(hi j Di D j − (3)R + 3Λ), (3.74)

Q0
D i = −χ0

D∂i − ∂iχ
0
D, (3.75)

Qi
D 0 = −2h

1
3

(
Ki j − 1

3
hi j K

)
∂ j

−2∂ j

[
h

1
3

(
Ki j − 1

3
hi j K

)]
, (3.76)

Qi
D j = −h

1
3

(
δij h

kl∂k∂l + 1

3
hik∂k∂ j

)
− δijχ

k
D∂k

+2

3
χ i

D∂ j + ∂ jχ
i
D, (3.77)

where the momentum π i j is written in terms of the metric
(3.67) and we denote Ki j = hikh jl Kkl . In order to obtain a
gauge-invariant form for the functional determinant [32], an
extra factor N is included into the components Q0

D μ. Hence
we replace (3.74) with

Q0
D 0 = − 2

κ

√−g(hi j Di D j − (3)R + 3Λ), (3.78)

and (3.75) with Q0
D i = −Nχ0

D∂i − N∂iχ
0
D. For practical

applications, the components of the operator Qμ
D ν could be

simplified by using the constraints, in particular the gauge
conditions (3.72), and even further using the quasiclassical
approximation (see [32]).

Finally, the path integral can be written as

ZDUG =N −1
∫ ∏

xμ

DgμνDηρDc∗DcDc∗
i Dci g00(−g)−

3
2

× exp

[
i

h̄

(
SEH[gμν,Λ] −

∫
M

d4x
(
ημχ

μ
D + c∗Q0

D 0c

+ c∗Q0
D i c

i + c∗
i Q

i
D 0c + c∗

i Q
i
D j c

j
))]

, (3.79)

where we have introduced pairs of anti-commuting fields
c, c∗, and ci , c∗

i , commonly referred to as Faddeev–Popov
ghosts (and anti-ghosts), and an auxiliary field ημ for each
gauge condition χ

μ
D . Evidently, the full expression for the

action is noncovariant in the Dirac gauge.

Transverse harmonic gauge:

χμ = ∂ν ĝ
μν ≈ 0; ĝμν = √−ggμν. (3.80)

Transforming to this covariant gauge is achieved via the
Faddeev–Popov trick in the same way as in GR. The operator
corresponding to this gauge is again obtained from the gauge
transformation of the gauge conditions (3.80) as

Qμ
νξ

ν = δξχ
μ = ∂ν(∂ρ(ĝμνξρ) − ĝμρ∂ρξν − ĝρν∂ρξμ).

(3.81)

Thanks to the gauge-invariant form of the integration mea-
sure [32], the path integral is obtained as

ZDUG = N −1
∫ ∏

xμ

DgμνDηρDc∗
σDcσ g00(−g)−

3
2

× exp

[
i

h̄

(
SEH[gμν,Λ] +

∫
M

d4x(−ημχμ + ∂μc
∗
ν

×(∂ρ(ĝμνcρ) − ĝμρ∂ρc
ν − ĝρν∂ρc

μ))

)]
, (3.82)

where cμ and c∗
μ are the Faddeev–Popov ghosts.

Matter can be included similarly as in GR. For simplicity
we assume that no extra gauge symmetries or constraints
are involved. Finally, we define the generating functional by
including external source Jμν and JΨ for the metric and the
matter fields Ψ , respectively,

ZDUG[J ] =
∫ ∏

xμ

DgμνDηρDc∗
σDcσDΨ g00(−g)−

3
2

× exp

[
i

h̄
(SEH[gμν,Λ]+Sm[gμν, Ψ ]+

∫
M

d4x(−ημχμ

+∂μc
∗
ν(∂ρ(ĝμνcρ) − ĝμρ∂ρc

ν − ĝρν∂ρc
μ)

+ gμν J
μν + Ψ JΨ ))

]
. (3.83)

We have shown that the path integral for the fully
diffeomorphism-invariant unimodular gravity (2.13) has the
same form as the path integral for GR with a cosmological
constant. The crucial difference from GR is that the value
of the cosmological constant is set as a part of the boundary
conditions for the path integral.

The quantum effective action for the DUG theory can be
defined in the exact same way as for GR, since there are no
extra conditions on the metric and the path integrals have the
same form.

3.3.2 Ng and van Dam form of the path integral

The path integral for unimodular gravity can be extended by
including an integration over the cosmological constant Λ.
Then the path integral takes the following form:

ZNvD =
∫

dμ(Λ)ZDUG(Λ), (3.84)

where dμ(Λ) is an integration measure for Λ, and the path
integral for unimodular gravity, ZDUG(Λ), is given in (3.82)
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with boundary conditions chosen to be consistent with a
given value Λ of the cosmological constant. This form of the
path integral for unimodular gravity was originally proposed
in [12,13]. It was also later derived from a canonical path
integral [14], although some manipulation of variables was
required, and the canonical measure was assumed to include
an integral over Λ. In [14], the integral over λ0 was assumed
to include integration over both Λ and λ̄0 due to the decom-
position (3.64). Here we show that the path integral (3.84)
follows straightforwardly from the canonical path integral of
the action (2.13), when we consider the vacuum state of the
universe to be a superposition of the states corresponding to
different values of Λ [5].

We emphasize that (3.84) is a quite different path integral
compared to the one we derived above (3.82). In the path
integral (3.82), the value of the cosmological constant is set
as a part of the physical boundary conditions, which (together
with a semiclassical matter distribution) define the vacuum
state of the system. Including an additional integration over
Λ means that we are integrating over different boundary con-
ditions, i.e., vacuums. Below we attempt to justify the inte-
gration of Λ properly.

Let |Λ〉 denote the vacuum state of the universe that is
consistent with a given value of the cosmological constant
Λ and with other relevant boundary conditions. The path
integral that we have obtained for the fully diffeomorphism-
invariant unimodular gravity (3.82) represents the vacuum
transition amplitude

〈Λ|Λ〉 = ZDUG(Λ). (3.85)

We assume that transitions between vacuums are prohibited
if the vacuums correspond to different values of Λ, i.e., the
states |Λ〉 are assumed to be orthogonal,

〈Λ|Λ′〉 = 0 if Λ �= Λ′. (3.86)

Furthermore we assume that the states are nondegenerate,
i.e., there exists one state |Λ〉 for each value ofΛ. The vacuum
state of the universe is written as a superposition of the states
corresponding to different values of Λ as

|Ω〉 =
∫

dΛω(Λ)|Λ〉. (3.87)

Choosing the weight function ω(Λ) defines which states |Λ〉
are included in the superposition. Now the vacuum transition
amplitude is obtained in the form (3.84) as

〈Ω|Ω〉=
∫

dΛ|ω(Λ)|2〈Λ|Λ〉=
∫

dμ(Λ)ZDUG(Λ), (3.88)

where the measure dμ(Λ) is defined by the weight function
as

dμ(Λ) = |ω(Λ)|2dΛ. (3.89)

Using the semiclassical approximation and then the sta-
tionary phase approximation, it was argued in [12] that the
path integral (3.84) for pure gravity is dominated by solutions
whose cosmological constant Λ = 0. In the presence of mat-
ter (3.83), the same argument was used in [14] to see that the
path integral (3.84) is dominated by the solutions of the Ein-
stein equation whose cosmological constant is approximately

Λ = 2πG

∫
M

√−gρ∫
M

√−g
, (3.90)

where ρ is the energy density of a perfect fluid. This result
was argued to imply that (3.90) is the most likely value of the
cosmological constant. It is intriguing that using the present
day energy density as an estimate for the average density [14],
one obtains a result that is surprisingly close to the observed
value of Λ (the observed Λ/G being about three times the
present average energy density).

The result (3.90) is based on a hidden assumption that
the given value of Λ is included in the vacuum state (3.87).
It was assumed that all states |Λ〉 are weighted equally,
|ω(Λ)|2 = constant. This corresponds to a total lack of phys-
ical boundary conditions regarding Λ, and then using the path
integral for finding the most likely value of Λ. This is an inter-
esting argument, but speculative and conceptually problem-
atic. We indeed need information on the boundary conditions
in order to estimate the average value of ρ over spacetime.
Even if we accept (3.90) as a valid estimate for the value of Λ

in our universe, estimating the average of matter energy den-
sity over the whole spacetime is challenging, to say the least.

4 Quantization of the unimodular gravity with a fixed
metric determinant

4.1 ADM decomposition of the action

The gravitational part of the action (2.6) is written in ADM
form as

SUG[N , Ni , hi j , λ, Ψ ]=
∫

dt
∫

Σt

d3x

[
N

√
h

κ
(Ki jG

i jkl Kkl

+(3)R) − λ(N
√
h − ε0)

]
+ SB + Sm[gμν, Ψ ]. (4.1)

A Hamiltonian formulation of an action of this form has been
considered in [27], and our following analysis is similar in
several ways.

4.2 Hamiltonian analysis

The momenta conjugate to N , Ni , and λ are the primary
constraints:
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πN ≈ 0, πi ≈ 0, pλ ≈ 0. (4.2)

The Hamiltonian is obtained as

H =
∫

Σt

d3x(NHT + NiHi − ε0λ + vNπN

+viNπi + vλ pλ) + HBt , (4.3)

where the super-Hamiltonian is defined as

HT = κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R + √
hλ, (4.4)

the supermomentum is defined as

Hi = −2hi j Dkπ
jk, (4.5)

vN , viN , vλ are Lagrange multipliers, and ε0 is the fixed scalar
density.

Preservation of the primary constraints implies the sec-
ondary constraints:

HT ≈ 0, Hi ≈ 0, U = N
√
h − ε0 ≈ 0. (4.6)

The momentum constraint (4.5) can again be extended with
terms that are proportional to the primary constraints πN and
pλ,

Hi = −2hi j Dkπ
jk + ∂i NπN + ∂iλpλ, (4.7)

since then it will generate spatial diffeomorphisms on Σt for
all the variables that are involved in the secondary constraints
(4.6). The smeared Hamiltonian and momentum constraints
(3.28) satisfy the following Poisson brackets:

{HT [ξ ],HT [η]} =
∫

Σt

d3x(ξ∂iη − η∂iξ)hi j

×(H j − ∂ j NπN − ∂ jλpλ),{
Φ[χ i ],HT [ξ ]

}
= HT [χ i∂iξ ],{

Φ[χ i ], Φ[ψ j ]
}

= Φ[χ j∂ jψ
i − ψ j∂ jχ

i ]. (4.8)

The Hamiltonian and momentum constraints have nonvan-
ishing Poisson brackets with U :

{U ,HT [ξ ]} = −κ

2
Nξhi jπ

i j ≈ −κ

2
ε0ξ

hi jπ i j

√
h

, (4.9)

{
U , Φ[χ i ]

}
= χ i∂i (N

√
h) + ∂iχ

i N
√
h ≈ ε0∂iχ

i . (4.10)

Hence the preservation of U ,

∂tU = {U , H} ≈ −N
κε0

2
√
h
hi jπ

i j

+ε0∂i N
i + √

hvN ≈ 0, (4.11)

is ensured by fixing the Lagrange multiplier vN as

vN = wN ≡ N
κε0

2h
hi jπ

i j − ε0√
h

∂i N
i . (4.12)

The preservation of HT ,

∂tHT = {HT , H} ≈ √
hvλ ≈ 0, (4.13)

fixes the Lagrange multiplier vλ as

vλ = 0. (4.14)

The preservation of Hi ≈ 0,

∂tHi = {Hi , H} ≈ ε0∂iλ ≈ 0, (4.15)

requires the introduction of the secondary constraint (3.30),
which was also present in the generally covariant formu-
lation. The constraint (3.30) is preserved in time since the
Lagrange multiplier of the primary constraint pλ ≈ 0 has
been fixed to zero (4.14). We do not need any further con-
straints, but we still need to analyze and classify the existing
constraints properly.

We again decompose the variables λ, pλ as in (3.40) and
replace the constraint (3.30) with (3.46). The second class
constraints λ̄ ≈ 0, p̄λ ≈ 0 can be used to eliminate the aver-
age free variables λ̄, p̄λ. Since the Hamiltonian constraint
HT contains the remaining zero mode λ0, and the zero mode
p0
λ of the primary constraint pλ ≈ 0 remains, we should also

decompose HT as

HT =
√
h∫

Σt
d3x

√
h
H0 + H̄T ,

H0 =
∫

Σt

d3xHT ,

∫
Σt

d3xH̄T = 0, (4.16)

where the zero mode and the average free component are,
respectively, defined as

H0 =
∫

Σt

d3x

(
κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R

)

+λ0

∫
Σt

d3x
√
h ≈ 0 (4.17)

and

H̄T = κ√
h

π i jGi jklπkl −
√
h

κ
(3)R

= κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R −
√
h∫

Σt
d3x

√
h

×
∫

Σt

d3x

(
κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R

)
≈ 0.

(4.18)
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Note that (4.18) does not involve the cosmological variable
λ0. The componentsH0 and H̄T satisfy the Poisson brackets

{H0,H0} = 0,

{
H0, H̄T [ξ̄ ]} =

∫
Σt

d3x∂i ξ̄h
i j (H j −∂ j NπN −∂ jλpλ),

{
H̄T [ξ̄ ], H̄T [η̄]} =

∫
Σt

d3x(ξ̄∂i η̄ − η̄∂i ξ̄ )hi j

×(H j − ∂ j NπN − ∂ jλpλ), (4.19)

where the smeared constraint H̄T [ξ̄ ] is defined so that

HT [ξ ]=ξ0H0 + H̄T [ξ̄ ], H̄T [ξ̄ ] =
∫

Σt

d3x ξ̄H̄T , (4.20)

and where ξ is decomposed as any scalar, ξ = ξ0 + ξ̄ , and

ξ0 = 1∫
Σt

d3x
√
h

∫
Σt

d3x
√
hξ,

∫
Σt

d3x
√
hξ̄ = 0. (4.21)

In the Hamiltonian (4.3), we obtain∫
Σt

d3x(NHT + NiHi + wNπN )

=
∫

Σt

d3x(NH ′
T + NiH ′

i ), (4.22)

where we have extended the Hamiltonian and momentum
constraints as

H ′
T = HT + κ

2
ε0

hi jπ i j

√
h

πN√
h

≈ 0,

H ′
i = Hi + ε0∂i

(
πN√
h

)
≈ 0, (4.23)

and furthermore∫
Σt

d3xNH ′
T = N0H

′
0 +

∫
Σt

d3x N̄H̄ ′
T , (4.24)

where the zero mode and average free component of H ′
T are

defined in the same way as for HT in (4.16)–(4.18). The first
class constraints are the average free Hamiltonian constraint
H̄ ′

T and the constraints H ′
i , πi . These constraints are asso-

ciated with the invariance of the action (2.6) under the metric
determinant-preserving diffeomorphism (2.1)–(2.5). Since
the lapse N is not an unspecified multiplier in the Hamil-
tonian, we should add the term v̄T H̄

′
T into the Hamiltonian

density, where v̄T is an unspecified Lagrange multiplier. The
Hamiltonian (4.3) is rewritten as

H =
∫

Σt

d3x
(
NH ′

T − ε0λ0 + v̄T H̄
′
T + NiH ′

i + viNπi

)

+HBt . (4.25)

The local constraints πN ≈ 0,U ≈ 0, and the zero mode
constraints p0

λ ≈ 0,H0 ≈ 0 are the second class constraints.
The second class constraints πN ≈ 0,U ≈ 0 can be used to
eliminate the variables N , πN as

N = ε0√
h

, πN = 0. (4.26)

The zero mode constraints p0
λ ≈ 0,H0 ≈ 0 can be used to

eliminate the variables λ0, p0
λ as

λ0 = − 1∫
Σt

d3x
√
h

∫
Σt

d3x

(
κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R

)
,

p0
λ = 0. (4.27)

The Dirac bracket that corresponds to the second class con-
straints (πN ≈ 0,U ≈ 0, p0

λ ≈ 0,H0 ≈ 0) can be shown
to be equal to Poisson bracket for all the remaining variables.

When the second class constraints are set to zero strongly
and the auxiliary variables are eliminated as (4.26) and (4.27),
we obtain the Hamiltonian as

H =
∫
Σt

d3xε0∫
Σt

d3x
√
h

∫
Σt

d3x

(
κ√
h

π i jGi jklπ
kl −

√
h

κ

(3)R

)

+
∫

Σt

d3x

[(
ε0√
h

+ v̄T

)
H̄T + NiHi + viNπi

]

+HBt . (4.28)

4.3 Path integral

The canonical Hamiltonian for the action (2.6) is written as

Hc =
∫

Σt

d3x(NHT + NiHi − ε0λ) + HBt , (4.29)

where the Hamiltonian and momentum constraints are
defined in (4.4) and (4.5). The second class constraints are

U = N
√
h − ε0 ≈ 0, πN ≈ 0,

λ̄ ≈ 0, p̄λ ≈ 0,

H0 ≈ 0, p0
λ ≈ 0. (4.30)

The first class constraints are πi ≈ 0 and

H̄ ′
T = H̄T + κ

2
ε0

hi jπ i j
√
h

πN√
h

≈ 0,

H ′
i = Hi + ε0∂i

(
πN√
h

)
≈ 0. (4.31)

We denote the latter two constraints collectively as H̃ ′
μ =

(H̄ ′
T ,H ′

i ).
The gauge fixing condition for Ni is defined as in (3.60),

but there is no gauge condition for N due to the first pair of
second class constraints in (4.30). The gauge conditions read

σ i = Ni − f i ≈ 0, χ̃μ[hi j , π i j ] ≈ 0, (4.32)

where one of the conditions χ̃μ has to be average free, so
that the number of gauge conditions matches the number of
generators exactly. We choose it to be the zero-component,
since the zero mode of the super-Hamiltonian is a second
class constraint, and hence we denote χ̃μ = (χ̄0, χ i ).
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The generator H̄ ′
T and the gauge condition χ̄0 both suffer

from a nonlocal linear dependence over the spatial hyper-
surface, since their spatial integrals vanish by definition. The
proper treatment of linearly dependent generators [28] is dis-
cussed in Appendix A.

The canonical integration measure for the path integral is
written as

∏
xμ

DNDπNDNiDπiDhi jDπ i jDλ0D p0
λD λ̄D p̄λδ(U )

×δ(πN )δ(λ̄)δ( p̄λ)δ(πi )δ(σ
j )δ(H0)δ(p

0
λ)δ(H̃

′
μ)δ(χ̃μ)

×
(√

h
∫

Σt

√
h

) ∣∣∣det
{
χ̃μ, H̃ ′

ν

}∣∣∣ . (4.33)

The initial and boundary conditions on the cosmological vari-
able are similar to DUG, i.e., the value of λ is set to a constant
on the initial Cauchy surface and on the spatial boundary.
When integration over the variables N , πN , Ni , πi , λ̄, p̄λ,
and p0

λ is performed using the constraints, we obtain

ZUG = N −1
∫ ∏

xμ

Dhi jDπ i jDλ0 δ(H0)δ(H̃μ)δ(χ̃μ)

×
(∫

Σt

√
h

) ∣∣∣det
{
χ̃μ, H̃ν

}∣∣∣

× exp

[
i

h̄

∫
dt

(∫
Σt

(
π i j∂t hi j − ε0√

h
HT

− f iHi + ε0λ0

)
− HBt

)]
, (4.34)

where we denote H̃ν = (H̄T ,Hi ) and the Hamiltonian con-
straint is given in (3.54). Expressing the δ-functions δ(H0)

and δ(H̃μ) in terms of integrals over the auxiliary vari-
ables N = (N0, N̄ ) and Ni , and shifting the variables as
N → N − ε0√

h
and Ni → Ni − f i ,4 we obtain

ZUG = N −1
∫ ∏

xμ

DNDNiDhi jDπ i jDλ0

(∫
Σt

√
h

)

×δ(χ̃μ)

∣∣∣det
{
χ̃μ, H̃ν

}∣∣∣
exp

[
i

h̄

∫
dt

(∫
Σt

(π i j∂t hi j − NHT

− NiHi + ε0λ0) − HBt

)]
. (4.35)

Integration over the momentum π i j gives

4 Note that the change of variable N → N ′ = N + ε0√
h

has a unit

Jacobian, despite the fact that the transformation involves
√
h.

ZUG = N −1
∫ ∏

xμ

DgμνDλ0g
00(−g)−

3
2

(
N

∫
Σt

√
h

)

×δ(χ̃μ)

∣∣∣det
{
χ̃μ, H̃ν

}∣∣∣ exp

[
i

h̄

(
SEH[gμν]

−
∫

dt
∫

Σt

λ0
(√−g − ε0

))]
. (4.36)

where SEH[gμν] is the Einstein–Hilbert action without a cos-
mological constant. Since the zero mode λ0 depends only
on time, integration over this variable gives a δ-function that
imposes the unimodular condition (1.2) to hold on each slice
Σt of spacetime in average,

ZUG =N −1
∫ ∏

xμ

Dgμνg
00(−g)−

3
2 δ

(∫
Σt

(√−g − ε0
)

N
∫
Σt

√
h

)

×δ(χ̃μ)

∣∣∣det
{
χ̃μ, H̃ν

}∣∣∣ exp

(
i

h̄
SEH[gμν]

)
. (4.37)

The integrated unimodular condition in the above path inte-
gral,∫

Σt

(√−g − ε0
) = 0, (4.38)

does not constrain local deviations from the unimodular con-
dition (1.2) as long as the average value of

√−g over Σt

remains fixed to that of ε0. This is a quite surprising result,
since we expected to see the unimodular condition to be
imposed locally, like in the path integral for the HT action
[14]. On the other hand, it makes some sense that quantum
fluctuations around the classical field equation (1.2) are per-
mitted. The physical purpose of the condition (4.38) is to
ensure that the number of physical degrees of freedom in
the path integral (4.37) matches that of DUG and GR, since
together the gauge conditions χ̃μ and the condition (4.38)
impose four conditions per point in space.

In this theory, the quantum effective action is a function
of the perturbative gravitational field fμν which satisfies an
integrated condition. Namely the trace of the perturbative
field must have zero integral over Σt at all times,∫

Σt

f μ
μ = 0. (4.39)

In other words, the quantum effective action is built in the
same way as in the HT theory [14], except that the condition
on the perturbative gravitational field ( f μ

μ = 0) is replaced
with the integrated condition (4.39). The gravitational field
is further constrained by the gauge conditions χ̃μ.

Counting of physical degrees of freedom

In both cases, DUG and UG, Dirac’s counting of physical
degrees of freedom gives the same result: two propagating
modes plus one zero/single mode. In DUG, the extra zero
mode is the cosmological variable λ, which is a constant
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spatially and does not evolve. Thus the extra zero mode is
not a true physical degrees of freedom. It is just a cosmolog-
ical constant. Hence the physical degrees of freedom are the
same as in GR.

In the UG theory with fixed metric determinant, the canon-
ical structure is partially different from DUG. In particular
the integral of the Hamiltonian constraint is a second class
constraint, and hence the gauge/coordinate conditions must
contain one zero mode less than in DUG and GR. This may
appear to imply that the extra zero mode would be a physical
degree of freedom, but our analysis shows otherwise. This is
evident in the path integral (4.37), where the single δ-function
eliminates one zero mode by imposing the integrated uni-
modular condition (4.38). In other words it acts like an extra
gauge/coordinate condition, so that the total number of condi-
tions matches DUG and GR. Thus the actual number of phys-
ical degrees of freedom in UG is the same as in DUG and GR.

Gauge fixing example

We can choose the gauge conditions, for example, as

χ̄0
U = √

h(ln h − Φ)

= √
h

(
ln h − Φ − 1∫

Σt

√
h

∫
Σt

√
h(ln h − Φ)

)
≈ 0,

χ i
U = ∂ j

(√
hhi j

)
≈ 0, (4.40)

where Φ is a fixed function, and we denote the conditions
collectively as χ̃

μ
U = (χ̄0

U, χ i
U). The first gauge condition χ̄0

U
fixes the average free component of ln h. That is the average
free component of the first condition of the Faddeev–Popov
gauge [33]. The gauge conditions χ i

U are the harmonic con-
ditions on the spatial hypersurface.

We define an operator Qμ
U ν in terms of the gauge trans-

formation of the gauge conditions (4.40) as

Qμ
U ν ξ̃

ν =
{
χ̃

μ
U ,

∫
Σt

H̃ν ξ̃
ν

}
, ξ̃ ν = (ξ̄ , ξ i ). (4.41)

We obtain the components of the operator as

Q0
U 0 = 2

√
hK + χ̄0

UK , (4.42)

Q0
U i = 2

√
hDi + χ̄0

UDi , (4.43)

Qi
U 0 = −2

√
h

(
Ki j − 1

2
hi j K

)
∂ j

−2∂ j

[√
h

(
Ki j − 1

2

√
hhi j K

)]
, (4.44)

Qi
U j = −√

hδij h
kl∂k∂l − δijχ

k
U∂k + χ i

U∂ j + ∂ jχ
i
U. (4.45)

The components (4.42)–(4.45) of the operator could be sim-
plified by using the constraints and in particular the gauge
conditions. Finally, the path integral is written as

ZUG = N −1
∫ ∏

xμ

DgμνD η̄DηiD c̄∗D c̄Dc∗
i Dci g00(−g)−

3
2

×δ

(∫
Σt

(√−g − ε0
)

N
∫
Σt

√
h

)
exp

[
i

h̄

(
SEH[gμν]

−
∫
M

d4x(η̄χ̄0
U + ηiχ

i
U + c̄∗Q0

U 0c̄ + c̄∗Q0
U i c

i

+c∗
i Q

i
U 0c̄ + c∗

i Q
i
U j c

j )

)]
, (4.46)

where we have introduced pairs of anti-commuting ghosts
c̄, c̄∗ and ci , c∗

j , and auxiliary fields η̄, ηi for each gauge
condition. The fields c̄, c̄∗, η̄ have vanishing average over
space, since they are associated with the generator H̄T and
the gauge condition χ̄0

U. Including matter fields and defining
the generating functional can be done similarly as in (3.83).
Evidently, the above expression for the path integral is not
covariant. The presence of integration over space in both the
averaged unimodular condition and the definition of average
free fields renders the expression noncovariant.

It indeed appears to be impossible to cast the path integral
(4.37) into a fully covariant form. The underlying reason is
the fact that the zero mode of the super-Hamiltonian is a sec-
ond class constraint, and hence one of the gauge conditions
must be average free over space. In order to achieve a covari-
ant description, we have to enlarge the gauge symmetry so
that the total super-Hamiltonian becomes a gauge generator.
This was achieved in Sect. 3, where a generally covariant
form of unimodular gravity is considered.

5 The canonical relation of the two theories

In the case with a fixed metric determinant, it is crucial to
notice that the Hamiltonian (4.3) is not a constraint, since it
contains the term − ∫

Σt
d3xε0λ. Therefore the bulk part of

the Hamiltonian does not vanish on the constraint surface.
This is a striking difference compared to Hamiltonian of the
fully diffeomorphism-invariant theory (3.20), which is a sum
of first class constraints. However, there exists a clear relation
between these Hamiltonians, since the nonvanishing term can
be eliminated (or introduced) via a simple time-dependent
canonical transformation.

Consider the following two canonical transformations of
the variable pλ → p′

λ:

pλ = p′
λ ± ε0t, (5.1)

with all other variables remaining unchanged. These two
transformations are generated by the functionals

F± =
∫

Σt

d3x(λp′
λ ± ε0λt), (5.2)
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respectively. The Hamiltonian transforms to

H ′ = H + ∂F±
∂t

= H ±
∫

Σt

d3xε0λ. (5.3)

We can see that the transformation generated by F+ elim-
inates the nonvanishing term from the Hamiltonian (4.3),
while the transformation generated by F− introduces the non-
vanishing term into the Hamiltonian (3.20). Notice that the
variable pλ appears only in the primary constraints Cλ ≈ 0
and pλ ≈ 0 of the two theories, and these constraints drop
out of the Hamiltonian due to the consistency conditions for
their Lagrange multipliers (3.35) and (4.14), respectively.

The theory with fixed metric determinant can be shown
to be a (partially) gauge fixed version of the fully diffeomor-
phism-invariant theory. When we introduce the following
gauge fixing conditions into the Hamiltonian (3.48):5

U = N
√
h − ε0 ≈ 0, p0

λ ≈ 0, p̄λ ≈ 0, V i ≈ 0, (5.4)

and together with the second class constraints Cλ ≈ 0 and
pn ≈ 0, we obtain a Hamiltonian that has the same form
as (4.28), except for the extra nonvanishing term in (4.28),
− ∫

Σt
d3xε0λ0 with λ0 given in (4.27). That extra term can

be introduced with the canonical transformation (5.1) of
the variable pλ. Thus the theory (2.6) is a (partially) gauge
fixed version of the theory (2.13). In other words, the fully
diffeomorphism-invariant theory defined in (2.13) (and ana-
lyzed in Sect. 3) is a generalization of the unimodular theory
of gravity with an enlarged gauge symmetry.

6 Conclusions

We have studied path integral quantization of two versions
of unimodular gravity. In the fully diffeomorphism-invariant
theory defined by the action (2.13), the path integral has the
same form as the one of GR with a cosmological constant
Λ (3.82), except that the value of Λ is not set by the action.
The cosmological constant Λ is an unspecified value of the
variable λ. There exist two approaches regarding the inter-
pretation of Λ in this theory:

(i) The value of Λ can be set in the boundary conditions of
the path integral, since it is a boundary value of the vari-
able λ. In this case, the value of Λ is completely unspec-
ified by the theory, and hence it needs to be set to the
desired value by hand. One can use anthropic arguments
for limiting the range of possible values of Λ (see [5–9]
for reviews), but we do not consider such arguments here.
Physically, it makes no difference whether the observed

5 The first two gauge conditions are associated with the first class con-
straints πN ≈ 0 and H0 ≈ 0 (the zero mode of HT ≈ 0), respectively.

value of Λ is fixed by the boundary conditions or by set-
ting the value of a coupling constant in the Lagrangian.
Thus this approach is physically equivalent to GR.

(ii) Since the value of Λ is unspecified, the vacuum state of
the universe can be defined as a superposition of vacuum
states corresponding to different values of Λ [5]. Such
an approach was used in [12,13] where the path integral
of the form (3.84) was conjectured. A similar path inte-
gral was later obtained in [14]. Starting from the action
(2.13), we have derived the path integral (3.84) without
any addition or manipulation of variables. The integra-
tion over Λ arises due to the definition of the vacuum
state (3.87). The given theory shows that it is unneces-
sary to impose the unimodular condition on the metric
determinant in order to obtain the path integral (3.84).
Using the semiclassical approximation and the station-
ary phase approximation one can argue [14] that the path
integral (3.84) is dominated by the values of Λ around the
average energy density of matter over spacetime (3.90).
It is presumed that the given values of Λ were included
in the vacuum state (3.87). This result is interesting but
problematic. In order to estimate the average energy
density of matter over spacetime, we need information
on both the matter and the gravitational (background)
fields, which depend on the assumed value of Λ. It could
be interesting to search for alternative mechanisms that
would single out the most likely values of Λ within the
fully diffeomorphism-invariant theory.

In the more conventional case defined by the action (2.6),
the path integral (4.37) differs from the path integral of GR in
two ways: (i) since the zero mode of the super-Hamiltonian
(4.17) is a second class constraint, the first class Hamiltonian
constraint (4.18) and an associated gauge condition have zero
average over space, and (ii) the metric in the path integral
must satisfy the integrated unimodular condition (4.38). The
condition (4.38) imposes the unimodular condition (1.2) to
hold in average over space at each moment in time. The path
integral has a generally noncovariant form due to the given
differences. The perturbative gravitational field in the (semi-
classical) quantum effective action must satisfy the integrated
condition (4.39).

At quantum level the unimodular condition can manifest
itself in three ways. In the HT theory [3], the unimodular
condition is imposed locally in the path integral and in the
quantum effective action [14]. In the path integral and the
quantum effective action of the UG theory (2.6), the uni-
modular condition is averaged over space (4.38). Lastly, the
DUG theory (2.13) does not involve a unimodular condition.

In Sect. 5, we established the canonical relation of the two
considered versions of unimodular gravity. While the actions
(2.6) and (2.13) are shown to be equivalent classically, the
time-dependent canonical transformation (5.1) involved in
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the relation of their Hamiltonian structures has an interesting
effect to the quantum theory. That is the appearance of the
averaged unimodular condition (4.38) in the path integral of
UG (4.46). Furthermore, the gauge symmetry is restricted,
since the integral of the super-Hamiltonian over space (4.17)
becomes a second class constraint. This implies that the path
integral involves a pair of ghost fields and a Lagrange multi-
plier field whose average values over space must vanish.

In practice, both of these implications are inconvenient
to work with. Thus the fully diffeomorphism-invariant the-
ory considered in Sect. 3, or the previously worked out HT
theory, are the preferable versions of unimodular gravity for
quantization.

The differences in the path integrals of different versions
of unimodular gravity do not necessarily imply that the phys-
ical predictions of the theories are different. The DUG and
HT theories can indeed be expected to be physically equiv-
alent, since the theories are related by a simple change of
an auxiliary variable (see below (2.13)). However, in addi-
tion to gauge fixing, the canonical relation between DUG
and UG involves the time-dependent canonical transforma-
tion (5.1), which leads to the aforementioned complications.
Therefore it is still unclear whether the path integrals (3.82)
and (4.46) produce equivalent predictions. Confirming this
would require the formulation of Feynman rules and the cal-
culation of the scattering matrices. This is a very demanding
task in itself, which we wish to investigate in further work.

Proper quantization of gravity requires more advanced
methods. Two known approaches are the spin foam models
and the dynamical triangulations. Some steps toward loop
quantization of unimodular gravity have already been taken
in [26], and more recently in [20].
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Appendix A: Quantization of gauge theories with
linearly dependent generators

The unimodular theories of gravity involve certain local
gauge generators whose integrals over the spatial hypersur-
face vanish by definition. This type of a spatially nonlocal
linear dependence of generators is an inherent feature of the

unimodular gravity theories, where the cosmological con-
stant appears as a (constant) value of a scalar variable. Quan-
tization of gauge theories with linearly dependent genera-
tors was achieved in [28]. The Batalin–Vilkovisky formalism
[28] is suitable for the description of the nonlocally linearly
dependent generators of unimodular gravity. In particular,
the average free nature of the Faddeev–Popov ghosts and
auxiliary fields associated with the average free generators is
explained naturally within the given formalism.

First we review the Batalin–Vilkovisky formalism. The
formalism was applied to the minisuperspace formulation
of Friedman–Robertson–Walker cosmology models in [29],
where a review of the formalism for theories with only
bosonic gauge fields is also presented. Since the gravita-
tional sectors of the unimodular gravity theories involve only
bosonic fields, our presentation follows [29] with a few con-
ventional differences due to the following application to the
unimodular gravity theories considered in Sects. 3 and 4.

When the generatorsGα are linearly dependent, there exist
right zero eigenvectors Zα

a ,

GαZ
α
a = 0. (A.1)

Here the condensed index α labels each local generator at
every point in the spatial hypersurfaces. Hence summing over
such an index involves an integration over space in addition to
a sum over the components.6 The Latin index labels the zero
eigenvectors a = 1, . . . , A. Here the vectors Zα

a are linearly
independent, i.e., we consider a first-stage reducible theory.
The gauge conditions χα have to be similarly redundant as
the generators, so that there exist left zero eigenvectors Ẑ a

α ,

Ẑ a
αχα = 0. (A.2)

The eigenvectors Zα
a and Ẑ a

α are the right and left zero vectors
of the degenerate Faddeev–Popov operator,

Qα
β = {

χα,Gβ

}
, (A.3)

respectively. Thus, within this formalism, the Faddeev–
Popov ghosts cα , c∗

α become gauge fields that require addi-
tional gauge fixing. For that purpose the set of Lagrange
multipliers and ghosts (cα , c∗

α , ηα) is extended to [28]

Φg = (cα, c∗
α, ηα,Ca,C∗

a , E
a, θa, ϑ

a), (A.4)

where cα , c∗
α , θa , ϑa are Grassmann anti-commuting vari-

ables and the rest are commuting variables. The path integral
and the corresponding effective gauge fixed action are written
as

6 Unlike in [29] the sum over a condensed index does not involve inte-
gration over time. Furthermore we do not consider Euclidean quantum
gravity, i.e., Wick rotation of time is not performed.
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Z =
∫

DφiDπiDΦg exp

(
i

h̄
Seff

)
,

Seff = S −
∫

dt[c∗
αQ

α
βc

β + C∗
a (ω

a
αZ

α
b )Cb

+ηα(χα + σα
a E

a) + θaω
a
αc

α + c∗
ασα

a ϑa], (A.5)

where φi and πi are the gauge fields and their canonically
conjugated momenta, and S is the action without gauge fix-
ing. The extra Lagrange multipliers (θa , ϑa) impose the
gauge conditions ωa

αc
α and c∗

ασα
a on the Faddeev–Popov

ghosts, where the gauge parameters (ωa
α , σα

a ) are arbitrary.
The variables C∗

a and Ca are the ghosts for the Faddeev–
Popov ghost fields. The so-called extra ghosts Ea regulate
divergent factors δ(0) that appear in the original gauge fixing
δ(χα) with a redundant set of gauge conditions (A.2).

Integration over the ghost sector gives the path integral as

Z =
∫

DφiDπi
det F α

β

det qab det q̂ab

∫
DEaδ(χα + σα

a E
a)

×(det q̂ab ) exp

(
i

h̄
S

)
, (A.6)

where the gauge fixed Faddeev–Popov operator is defined as

F α
β = Qα

β + σα
a ωa

β, (A.7)

and the following matrices are introduced:

qab = ωa
αZ

α
b , q̂ab = Ẑ a

ασα
b . (A.8)

The path integral (A.6) is independent of the chosen gauge
parameters (ωa

α , σα
a ), since both the ratio of determinants

(det F α
β/ det qab det q̂ab ) and the regulated gauge fixing factor

are invariant under a change of the gauge parameters (see [29]
for a proof).

Next we apply this formalism to the quantization of the
two unimodular gravity theories (DUG and UG).

A.1 Fully diffeomorphism-invariant unimodular gravity

Let us consider the quantization of DUG presented in Sect. 3.
The second class constraints are given in (3.58). The gener-
ators are

Gα = [πN , πi , pi ,H
′
T ,Hi , C̄

′] (A.9)

with (3.59). Gauge fixing conditions are chosen as in (3.60),

χα = [σ 0, σ i , V i , χ0, χ i , p̄λ]. (A.10)

The generator C̄ ′ and the corresponding gauge condition p̄λ

exhibit a nonlocal linear dependence, since their integrals
over space vanish by definition. Hence there exist a single
right zero vector,

Zα =
[

0, 0, 0, 0, 0,

√
h∫

Σt
d3x

√
h

]
,

GαZ
α = 1∫

Σt
d3x

√
h

∫
Σt

d3x
√
hC̄ ′ = 0, (A.11)

and a single left zero vector,

Ẑα = [0, 0, 0, 0, 0, 1],
Ẑαχα =

∫
Σt

d3x p̄λ = 0. (A.12)

Since only one pair of zero vectors exist, we have dropped
the label a from the zero vectors and also from the other
variables of the path integral (A.5).

We choose the gauge fixing parameters for the ghosts as

ωα = [0, 0, 0, 0, 0,−1],
σα =

[
0, 0, 0, 0, 0,

√
h∫

Σt
d3x

√
h

]
. (A.13)

Thus the ghost fields (c̄, c̄∗) associated with the generator C̄ ′
are imposed to satisfy the gauge conditions

ωαc
α = −

∫
Σt

d3xc̄ = 0,

c∗
ασα = 1∫

Σt
d3x

√
h

∫
Σt

d3x
√
hc̄∗ = 0. (A.14)

We obtain the (now one-dimensional) matrices (A.8) as

q = ωαZ
α = −1, q̂ = Ẑασα = 1. (A.15)

In the amended Faddeev–Popov operator (A.7), the gauge
fixing term with (A.13) contributes to the part of c∗

αF
α
βc

β

that involves the ghosts c̄, c̄∗ as
∫

Σt

d3xd3y c̄∗(x)
{
p̄λ(x), C̄

′(y)
}
c̄(y) + c∗

ασαωβc
β

= −
∫

Σt

d3xc̄∗c̄. (A.16)

This implies a unit contribution to the canonical measure of
the path integral.

The gauge condition p̄λ = 0 imposes pλ to become pro-
portional to a spatial constant p0

λ (3.40), which is the inte-
grated value of pλ over space (3.41). The extra ghost E intro-
duces an independent term into this gauge condition, so that
the integral of the condition over space no longer vanishes,

Ẑα(χα + σαE) = E, (A.17)

which serves as a regulator for the corresponding δ-function
in the path integral. The functional integral over E forces
the Lagrange multiplier of the gauge condition p̄λ to have
vanishing average value over space,
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∫
DηDE exp

[
i

h̄

∫
M

d4xη

(
p̄λ +

√
h∫

Σt
d3x

√
h
E

)]

∝
∫

Dηδ

(∫
Σt

d3x
√
hη∫

Σt
d3x

√
h

)
exp

(
i

h̄

∫
M

d4xη p̄λ

)
,

(A.18)

which prevents the appearance of divergent factors δ(0).
In Sects. 3.3 and 4.3, every δ-function for an average free
constraint is regulated in this way, and we denote such δ-
functions simply as

∫
D η̄ exp

(
i

h̄

∫
M

d4x η̄ p̄λ

)
= δ( p̄λ), (A.19)

where the auxiliary field η̄ is now assumed to have vanishing
average over space.

Once the additional gauge fixing (A.14) on the ghosts
associated with the linearly dependent generators and gauge
conditions is performed, and the δ-functions of the average
free constraints are regulated, it is easy see how the canon-
ical path integral is obtained as (3.63) after the nonphysical
variables in the canonical integration measure (3.62) have
been integrated out (except for those variables deleted by the
gauge conditions χμ that are unspecified). In summary, the
path integral obtained in Sect. 3.3 corresponds to the specific
choice of the gauge parameters (A.13), which are responsi-
ble for the additional gauge fixing required by the linearly
dependent generators.

A.2 Unimodular gravity with a fixed metric determinant

Here we consider the quantization of UG presented in Sect. 4.
The generators are

Gα = [πi , H̄
′
T ,H ′

i ] (A.20)

with (4.31). Gauge conditions are chosen as in (4.32),

χα = [σ i , χ̄0, χ i ]. (A.21)

We again have a nonlocal linear dependence, since the inte-
grals of H̄ ′

T and χ̄0 over the spatial hypersurface vanish. A
single pair of zero vectors is obtained as

Zα = [0, 1, 0], ZαGα =
∫

Σt

d3xH̄ ′
T = 0,

Ẑα = [0, 1, 0], Ẑαχα =
∫

Σt

d3xχ̄0 = 0. (A.22)

The gauge fixing parameters ωα and σα can be chosen
so that the ghosts (c̄, c̄∗) associated with the generator H̄ ′

T
satisfy the condition of vanishing average value over space.
The parameters are chosen as

ωα =
[

0,

√
h∫

Σt
d3x

√
h

, 0

]
,

σα =
[

0,

√
h∫

Σt
d3x

√
h

, 0

]
, (A.23)

and the gauge conditions on the ghosts read

ωαc
α = 1∫

Σt
d3x

√
h

∫
Σt

d3x
√
hc̄ = 0,

c∗
ασα = 1∫

Σt
d3x

√
h

∫
Σt

d3x
√
hc̄∗ = 0. (A.24)

The determinants of the matrices (A.8) have unit values

q = ωαZ
α = 1, q̂ = Ẑασα = 1. (A.25)

The second class constraints (4.30) contain a pair of aver-
age free constraints (λ̄ ≈ 0, p̄λ ≈ 0), which have to be
treated in a similar way as a nonlocally linearly dependent
generator and a gauge condition. In the path integral, the
contribution of these constraints is just a unit factor to the
Faddeev–Popov determinant, which is quite similar to the
case of the constraints C̄ ′ and p̄λ in DUG. Hence we shall
omit the analysis of these constraints here.

Lastly, we explain how the path integral in Sect. 4.3
is obtained from the present formalism. As was discussed
above, all the δ-functions for average free constraints has to
be regulated in order to avoid divergent δ(0) factors. Inte-
gration over the extra ghost E and the additional Lagrange
multipliers (θ, ϑ) produces the δ-functions that impose the
Lagrange multiplier of the gauge condition χ̄0 and the ghosts
(c̄, c̄∗) associated with the linearly dependent generators to
become average free over the spatial hypersurface,

δ(ηασα)δ(ωαc
α)δ(c∗

ασα), (A.26)

where the conditions for the ghosts are (A.24) and the con-
dition for the Lagrange multiplier η̄ is

ηασα = 1∫
Σt

d3x
√
h

∫
Σt

d3x
√
hη̄ = 0. (A.27)

In Sect. 4.3, the δ-functions (A.26) are omitted in the path
integral (4.46), since the fields χ̄0, c̄, c̄∗ are assumed to satisfy
the conditions (A.24) and (A.27) from the beginning. The
Faddeev–Popov determinant in the path integral is defined
in terms of ghost fields that satisfy the conditions (A.24),
so that no zero modes are present in the ghost sector that
generates the determinant. In particular, the nontrivial part
of the determinant in the path integral (4.34) (and thereafter)
is written as7

7 Note that here the sums over the repeated indices μ, ν include inte-
gration over the spatial hypersurface.
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∣∣∣det
{
χ̃μ, H̃ν

}∣∣∣ =
∫

D c̃∗
μD c̃μ

× exp

(
− i

h̄

∫
dt c̃∗

μ

{
χ̃μ, H̃μ

}
c̃ν

)
,

(A.28)

where the first components of the ghost fields c̃μ = (c̄, ci )
and c̃∗

μ = (c̄∗, c∗
i ) are assumed to be average free over space.

Finally, we can see that the path integral obtained in Sect. 4.3
corresponds to the specific choice of the gauge parameters
(A.23), which are responsible for imposing the necessary
conditions on the ghosts (A.24) and on the Lagrange multi-
pliers (A.27).
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