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Abstract Weinvestigate inflation within f (R, ¢)-theories,
where a dynamical scalar field is coupled to gravity. A class
of models which can support early-time acceleration with
the emerging of an effective cosmological constant at high
curvature is studied. The dynamics of the field allow for exit
from inflation leading to the correct amount of inflation in
agreement with cosmological data. Furthermore, the spectral
index and tensor-to-scalar ratio of the models are carefully
analyzed. A generalization of the theory to incorporate dark
matter in the context of mimetic gravity, and further exten-
sions of the latter, are also discussed.

1 Introduction

Over the past years, interest in inflationary cosmology has
grown considerably, as a consequence of the great amount
of data from recent cosmological surveys [1—4]. The infla-
tionary paradigm was first introduced in 1981 by Guth [5]
and Sato [6,7] to explain the thermalization of the observ-
able Universe inferred from observations of the CMB. It also
allows one to address some of the problems associated to
the initial conditions of a Friedmann universe. Moreover,
quantum fluctuations during the inflationary epoch presum-
ably seeded the perturbations which grew under gravitational
instability into the structures we see today [8]. For reviews
on inflation, see e.g. [9,10,21-23].

An early-time period of acceleration should presumably
be supported by a repulsive gravitational force. At the same
time, a mechanism which allows one to quickly exit this stage
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and enter the radiation dominated era is necessary. The arena
of inflationary models is quite vast. In the scalar field formu-
lation or chaotic inflation [24], a scalar field (the inflaton)
is subject to a potential and drives accelerated expansion
when its magnitude is negative and very large: at the end
of inflation, it settles down in a minimum of the potential
and begins oscillating, giving rise to the reheating mecha-
nism responsible for particle production. Other implemen-
tations of inflation include for instance natural inflation (see
e.g. [11-14]), k-inflation [15], brane inflation [16], and many
others.! In the context of modified gravity (see Refs. [25-29]
for reviews), a modification to Einstein’s gravitational action
emerges at high curvature and supports the early-time accel-
eration (see Ref. [30]). This can be realized for instance in
the so-called Starobinsky model [31], which provides a cor-
rection quadratic in the Ricci scalar.

A model for inflation is viable only if it is able to repro-
duce the inferred spectral index and the tensor-to-scalar ratio
at the origin of cosmological perturbations in the Friedmann
universe. The evaluation of these indices depends on the the-
ory under investigation. In [32,33] an unified description
has been derived in the context of f(R, ¢)-gravity, where
a scalar field subject to a potential is coupled to gravity (a
non-minimal coupling in the kinetic part of the field is also
present). In this work, we will analyze f (R, ¢)-inflation by
working through some simple examples based on modified
gravity models which mimic the “false vacuum” of the pri-
mordial universe: in fact, we will study a class of models
(exponential models and power-law models) describing an
effective cosmological constant at high curvature and whose
exit from inflation is induced by the coupling of a scalar field

! Very recently, inflation has been implemented by means of a Blon
system; see [17-20].
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to gravity. We will show that the model can yield values for
the spectral index and the tensor-to-scalar ratio (the magni-
tude of the last one in f (R, ¢)-gravity is particularly small)
in agreement with those inferred from observations.

In the last part of the work we embed this model within the
framework of mimetic gravity, which additionally endows it
with a dark matter candidate. We then discuss extensions
which can address the controversies of cold dark matter
on small scales within the mimetic gravity scenario, such
extensions being theoretically driven by the correspondence
between mimetic gravity and the scalar formulation of the
Einstein-aether theories. We then speculate on possible fur-
ther extensions of the scenario depicted.

The paper is organized as follows. In Sect. 2 we will revisit
the form of the spectral indices and the tensor-to-scalar ratio
in f(R, ¢)-gravity by deriving some useful relations. In Sect.
3 we study inflation in two different f (R, ¢) models. Early-
time acceleration takes place at high curvature in agreement
with the latest Planck data and the field allows for a quick exit
from this stage recovering Friedmann evolution of Einstein’s
gravity. In Sect. 4 we formulate the model within the mimetic
gravity framework. Section 5 is devoted to our conclusions
and final remarks.

We use units where kg = ¢ = i = 1 and denote the
gravitational constant, G y, by 2 =81G N,suchthat Gy =
MP_IZ, Mp; = 1.2 x 10'° GeV being the Planck mass.

2 Inflation in f (R, ¢)-gravitational models

Let us consider the following Lagrangian for a scalar field
coupled to gravity,

_ SR, 9)  w(@)d"piug
-2 2

L

- V@), 2.1

where f (R, ¢) is a generic function depending on the Ricci
scalar R and the scalar field ¢ is subject to the potential
V(¢). In the above, w(¢) is in principle a function of ¢
which represents a non-minimal coupling of the kinetic term
of the field. In a flat Friedmann—Robertson—Walker universe,
with metric given by

ds? = —dr® + a(r)*dx>, (2.2)

where a = a(t) is the scale factor depending on the cosmo-
logical time ¢, the equations of motion of the theory read

12
3F(R,p)H* = “’(q;)‘p + V()
1 .
+5 (RF(R,¢) = f(R, ¢) = 3HF (R, $), (23)
—2F(R,)H = w($)p*> + F(R,$) — HF (R, ¢). (2.4)

@ Springer

Here, H = a/a is the Hubble parameter, the dot denoting
the time derivative. In the above, we have made use of the
following definition:

d
F(R,¢) = ﬁf(R,d)). 2.5

From (2.3), (2.4) we derive the continuity equation of the
field, which reads

. . 1 .
¢+3Hp+ —- (d)(¢)¢ -

df (R, ) +2dV(¢>) 0
20(9) '

do do
2.6)

Inflation is described by a (quasi) de Sitter solution where
the Hubble parameter is nearly constant. To proceed, one
introduces the “slow-roll” parameters [34-36],

_H ¢ _ F(R.9) _E
CTE T wy CT2HFR.9) T 2HE
2.7)
where
3F(R, ¢)?
E =F(R,$)w(p) + & (2.8)

202

During inflation, the magnitude of the slow-roll parameters is
presumed to be very small (in what is known as the slow-roll
approximation). In particular, given that

- B+ H (2.9)
a

one needs 0 < €; < 1 in order to have a strong accelerated
expansion with H < 0. Correspondingly, the inflation epoch
and the acceleration end at a time for which €; ~ 1. We
observe that

6 (s @@ —4Ho@)e) + 661 +663(1 — €2)]
4= : ;
w(9)¢?
2 [HF<R,¢) + 363]

(2.10)

where

o 1[df(R,¢)  dV(e)
a(p) = 2Hw(¢)(3+62)+¢.)|: ) 2 i }

@2.11)

Thus, under the slow-roll approximation we have
|(@)¢*/(H?F(R, $))| < 1 and, since | (¢)$*/F (R, ¢)
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H?|=2w()d’e3/(HF (R, )| < |o(#)¢*/(H>F(R, $))l,
combining Eq. (2.3) with Eq. (2.6) yields®

1
3F(R, $)H* = V() + 5 (RE(R,¢) = f(R.$)),

df(R.¢)  dV(@)\ _
do +2 P >_O.

. 1 . .
3H¢ + m <0)(¢)¢ -
(2.12)

As a measure of perturbations during inflation, one intro-
duces the spectral index n; and the tensor-to-scalar ratio r
defined as [32,33],

ng =1—4de; —2e) +2e3 — 2eq, r =483, (2.13)

where €1 2 3 4 must be evaluated during inflation, in the slow-
roll regime.

In the simple scalar field theory with F/(R, ¢) = 1/k?
and w(¢) = 1, one has

1 <dV(¢))2
CTE2vier \dae )

B 1 d?V (¢)
TN V) ( dg? )

€ =€ =0. (2.14)
Hence, we recover
ng =1 — 6€ + 2n, (2.15)
where €, 1 are given by
e 1 dv(e)\>

T2 Udg )

1 d*V ()
n = 7y ( 152 ) (2.16)
k“V(9) ¢

In this particular case, the tensor-to-scalar ratio can be rewrit-
ten as r = 16¢. In the modified gravity case instead, with
F(R,¢) = F(R)and w(¢) = V(¢p) = 0, given thate; = 0,
€1 ~ —e3(l — €4), and, in the slow-roll approximation,
€1 >~ —e3 and €4 >~ —3€| + €1 /(Hey), we obtain

2é
n521—661—2€4=1—H—1,

r=48¢}.
€1

(2.17)

Finally, if @(¢) = 0 (non-coupling of the field with kinetic
energy) and w(¢) = w, the following relation holds true:
wd?
€1 = —63+ —————— (€4 +2€3) + €3(e2 + €
i 3 3HF(R,¢)(4 3) +€3(€2 + €4)
P2

= —€3

(e4 + 2€3) , (2.18)

w
+—
3HE(R, $)

2 If w(¢) = 0, we obtain directly |w(¢)$2/F(R, ¢p)H?| < 1 from
leal < 1.

where we have taken into account the slow-roll approxima-
tion.> As a consequence, the spectral index and tensor-to-
scalar ratio read

(3HF(R,¢)+2wq’>2>
ng >~ 1—2¢ :
w?
HF(R, ¢) — wd?
_262—663< ( w(i;)z wf )
_ ., 2 (BHER,$) +20¢
- *ﬁ( wf? )
.. ) ) o
—i.— 3F(R, $) (HF(R,@ wd > 2.19)
H¢ HF(R,¢) w$?
a2 12F(R.¢)?
r=48¢f = FR o2 (2.20)

The latest cosmological data from Planck satellite [4] con-
strain these two quantities as ng = 0.968 = 0.006 (68 % CL)
andr < 0.11 (95 % CL).

3 Viable inflation in f (R, ¢)-gravity describing
an effective cosmological constant

In order to reproduce the “false vacuum” of inflation, one pos-
sibility is to introduce a large effective cosmological constant
(whose value is close to the Planck scale) within Einstein’s
framework. In this way, it is easy to obtain the repulsive grav-
ity required to support the early-time acceleration. However,
one of the main problems faced by the inflationary paradigm
is the realization of a mechanism to gracefully exit this stage.

Over the past years, a class of viable exponential models
of f(R)-modified gravity which can successfully realize the
current acceleration of our universe have been investigated.
These models feature what can be viewed as a “switching on”
cosmological constant and assume the following form [37-
42]:

R 2A — R
f(R)=/<_2_7<1_e 0>,

where A is the cosmological constant and R the curvature
scale at which such a constant is expected to appear. It is
easy to see that for Ry < R the model behaves as one where
f(R) =~ R —2A. Furthermore, by setting A /x> to being the
current amount of dark energy in our universe, one recovers
the ACDM model. In particular, the dark energy epoch is
realized by a stable de Sitter solution, with the model passing
all cosmological tests.

It is our intention to extend the model examined in (3.1) to
include inflation. In order to exit from the early-time acceler-
ation period (namely, in order to “swith off”’ the cosmological

3.1

3 If @(¢p) # 0, one has €] =~ —e3 — @ (p)$2/(6H2F(R, $)).

@ Springer
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constant), we will introduce a dynamical field ¢ by making
the following substitution:

1
— = —bK3¢.

R (3.2)

Here, ¢ is assumed to be negative and dependent on the cos-
mological time, 3 has been introduced for dimensional rea-
sons and b is a dimensionless number of order unity. In this
way, the scale at which the cosmological constant appears is
a sort of “running scale”, which varies as the field does. We
consider the Lagrangian

R —2A (1 - eb¢K3R> 2

L= 53 + (3.3)
which corresponds to (2.1) with
R—2A (1 - eh¢K3R)
f(R,¢) =
K2 w@) =1 V() =0. (3.4)

At the onset of inflation, the field ¢ = ¢y is negative and
very large,

< ¢o. (3.5

bi3R
Given that the curvature during inflation is close to the Planck
scale, one may argue that in general

Mp) < —¢y. (3.6)

The fact that the field is super-Planckian does not pose a
problem, provided it is understood that its kinetic energy be
$*/2 < M3, in order to avoid quantum effects in the theory.

Under the condition set by (3.5) and by assuming the slow
roll approximation |€123,4| < 1in (2.7), (2.12) allows one
to get

H~ ,/é ¢ ~ AN Hbice!2H? b0
3 b 9

where we have used the fact that R = 12H% + H ~ 12H?
and R = 4A becomes the curvature scale at which inflation
appears. We observe that the field changes faster than the
Hubble parameter, as can be noted from (2.4), where H / k2~
$?. Thus, inflation ends when

(3.7)

¢ (3.8)

R
— R, $) ~ —
< i JRO=7.

and one recovers the Friedmann universe with Einstein’s
gravity. In what follows, we will take into account the fol-
lowing relation:

|Ho/(GH)| ~ 12H2bic3 exp [12H2b¢fc3] <1. (39

@ Springer

Thus, under the slow-roll approximation and by using con-
dition (3.5) and (3.9) we get
F(R, §) ~ 24N H b A pgpe ! 2H O
F(R, ¢) ~ 24A H*b*ic* [¢><'i5 + 12b¢>K3H2¢32] eI 2H%b
(3.10)

where

b =~ 48 A H3b icH e 2H b9 (3.11)

By combining the expressions in (3.10) with (3.7) and (3.11)
we obtain

F(R,$) ~ 6Hbi> p¢°,

F(R, ¢) ~ 144H>b*k5p¢>,

é ~ 12H?bi3§>. (3.12)

Thus, we find that the slow-roll parameters in (2.7) are given
by

e1 = —4A2%c (40bic gy ) AP0,
€2 = 162D et

&3 ~ 16A303 k7 poedhboon’ (3.13)

where we have used (2.4) to evaluate H,andhaveset R = 4A
and ¢ = ¢o. We also obtain

HF(R, 4Abic3
(R, ¢) _ 3AbK7o (3.14)
¢? 2
As a result, the spectral index and the tensor-to-scalar ratio
in (2.19), (2.20) with (3.9) read

ng ~ 1 —2¢y = 1 — 32A2p2xc4etAbdoc’

2
o~ 48 (16A3b3/<7¢>0) ¢0Abgoc” (3.15)
An important parameter which measures the amount of infla-

tion is the number of e-folds A/, which is defined by

o f(ac)\ ([T
N:m(ai(ti)) _/ri H(t)dt,

where ai(t;) and a¢(tr) are the scale factor at the onset and
at the end of inflation, respectively, and ¢ r are the respective
times. According to the latest data, the number of e-folds
must be 55 < N < 65 in order for the observable universe
to thermalize. Accounting for the fact that the Ricci scalar
changes considerably slower than the field itself, we can write
in our case that

(3.16)

ef4Ab¢oK3

T 16A2b%%

N = do

o g or e*4AbK3¢
/ (3.17)
@

@0 4Abk

0
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Here, ¢; is the value of the field at the end of inflation such
that |¢i| < |¢o|. Thus,

2 3¢2 1

N Tean N G19

1 —ng =
in accordance with the latest Planck data. Since the tensor-to-
scalar ratio r is required to be very small but not vanishing,
by taking into account that the most likely value for r is
r ~ 0.06, we require that A% ~ 1076 x ¢8/K2.

The same analysis may be applied to another well-known
f (R) model which mimics the behavior of (3.1), namely the
Hu-Sawicki model [43],

R 2A 1
f(R):E_F[]_m] 0<n. (3.19
Here, n is a positive fixed parameter and the cosmological
constantemerges when 1 << (R/Rg)". To exit from the accel-
erated phase, one can make the substitution (3.2) in the above
expression to obtain

S(R,¢) = R _2A 1 ! (3.20)
T2 k2 14+ (=bpx3R)" |’ '
with the Lagrangian given by
L= R A 1 ! + ? (3.21)
T2 k2 1 + (—bpi3R)" 2 '

Inflation is realized under the condition given by (3.5),
namely that the field be negative and its magnitude be larger
than the Planck scale. Under the slow-roll approximation,
Egs. (2.12) can be solved by

H ~ A N 4ANHbkn (3.22)
TV 3T T T (—12H2bgi 3yt '

We find

. 2Abdin h2

F(R,¢) ~ — pon__ = 2
(—12H2bgic3) 2H

.. 2Abkn 12(n+1)H?bg?k>

F(R, ¢) ~ — pral K bl
(—12H2b¢lc3) (—12H bok )

_ 12(n+1)Hbd3ic? 3.23)
(—12H?b¢ic3) '

where we considered the fact that the field varies faster than
the Ricci scalar and have made use of

. 48n(n+ DAHbD 4G 12(n + 1) H?*b?ic?
- (—12H2b¢K3)n+2 (—12H2b¢K3)

(3.24)

Thus, the slow-roll parameters in (2.7) read
12n2 A2b%kc*
(—4Ab¢()l(3)2(n+l) s
16n(n + 1)A2b*c*
€= n+2 °’
(—4Abgor3)
AAIR2p2 it
(—4Abgoi3)2n+1) ’

where ¢ is, as usual, the value of the field at the onset of
inflation. We also have

€] =

€~ (3.25)

HF(R,¢) 1

The spectral index and the tensor-to-scalar ratio in (2.19)—
(2.20) are found to be

32n(n + 1)A2b%k*
(—4Abor3)" >
48 (4A2n2b2kc4)’

ng~1—2e>~1-—

r = Cahbgor i (3.27)
Moreover, the number of e-folds can be written as
¢ H bt (—4Abdic3)t!
N= [ Pag~ / CARDOTTT 4
®o @0 4Abl(l’l
—4Ab 3\n+2
( dok) (3.28)

T 16(n + 2)A2b2k4n’
where ¢; is the value of the field at the end of inflation, and
we have made use of the fact that the Ricci scalar is nearly

constant during inflation and changes slower than the field.
Thus,

2(n+1)

(n+2)N’

B 48 (40202024’ (329
T [NV (16(n + 2) A2b2ic4n) [ HD/ 042

In order to satisfy the data from Planck, n must be large. In
the limit of 1 < n one has

(I —-ny) =

2 3
(I —=ny) = —,

= b 1 b
N T entriSn Nt - S

(3.30)

and hence one must require A* ~ 107/« in order to have
a non-vanishing r.

4 Mimetic gravity

Motivated by the recent interest in mimetic gravity, in the
present section we aim to contextualize f(R, ¢)-gravity

@ Springer
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within such a framework. In Refs. [44,45], an approach for
expressing the metric in terms of new degrees of freedom
which isolates the conformal degree of freedom in a covari-
ant way has been proposed (see [46-54] for further discus-
sions). The physical metric which describes the gravitational
systems reads

guv = —&u & 9 pdpo, @.1)
where g, is an auxiliary metric and ¢ is a scalar field
introduced by means of its first derivative. In this way, the
metric and therefore the action of the theory are invariant
under conformal transformations of g,,,,, which take the form
g;w = Q(t, x)zg,w, Q (¢, x) being a generic function of the
coordinates. As a direct consequence of (4.1) one has

g"0pdvp = —1. (4.2)
Such a property can be imposed on the theory by adding
a Lagrange multiplier term to the action. Let us consider

mimetic f (R, ¢)-gravity in (3.1), with the general action
being given in the following form (see also [55-64]):

1_/ [f(R,¢>)_w(¢)8“¢8M¢
Y 2 2

- V(¢>)]

—8 (8w, 9)dx*. (4.3)

In the above, M is the space-time manifold, while the metric
8uv = &uv(8uv, ¢) and its determinant g = g(g,, @) are
functions of the auxiliary metric g, and the field ¢. It should
be noted that the auxiliary metric never appears explicitly.
Here, it is understood that the Ricci scalar is defined with
respect to the physical metric g,, and therefore is also a
function of the auxiliary metric and the scalar field ¢.
Varying with respect to g,,, and ¢ yields

1
= TR

MG ‘A
(T/‘fv +TMS 4 T,w) , (4.4)
where G, is the Einstein tensor, given by G, = Ry —
guvR/2 with R, the Riemann tensor, and F'(R, ¢) is given
by (2.5). T,‘fv is the stress-energy tensor of the scalar field

¢ and modifications to Einstein’s gravity are encoded in the
tensor TI%G

1
T, = (@) [3M¢3u¢ - Eguvaa¢aa¢:| —&wV(9), (45)

T = (822 (R.9) — FR. )R

+VuVuF (R, §) — gwOF (R, ¢)) . (4.6)

Here, V, and O are the covariant derivative and the

d’ Alembertian associated with the metric g,,» = g0 (800> @)-

@ Springer

Furthermore, the tensor T,w reads

Tuw = = (FR, )G = T% = TY6) 3,90,, (@.7)

where G, T?, and TMO are the traces of the Einstein’s tensor,

the stress-energy tensor of ¢ and of TI%G, respectively,
G = —R,
T = —w()d" ¢, — 4V (¢),

1
™G = 3G [2(f(R.¢) — F(R,$)R) — 3LF(R, 9)].
JTGN
(4.8)

By taking the covariant derivative of (4.4), and recalling that
VHG,y =0and V# T/f‘, = 0, we further obtain that

vH [(F(R, $)G —T® — TMG) BM(p]

[V=8 (F(R.)G =T = TM9) g7,
4.9)

1
=9
/_g K
=0.

Note that the trace of the field equations (4.4) leads to

(F(R,$)G —T? — TMO)(1 + g""0,00,9) =0,  (4.10)
which is automatically satisfied when (4.2) holds true, even
when (F(R, $)G — T® — TMG) £ 0.

Here, we stress thatit mustbe 0 < F (R, ¢) to have a pos-
itive defined effective Newton constant in k2 = 87 G N, such
that G = Gy /F (R, ¢). In this respect, the f(R, ¢) mod-
els (3.4) and (3.20) avoid the “antigravity” in the correspond-
ing f(R) models (3.1) and (3.19) at small curvatures after
the end of inflation* when ¢ — 0~ and F(R, ¢) ~ 1/«>.

In the context of mimetic gravity, being the field ¢ not
fixed a priori, one is faced with a wider class of solu-
tions, as opposed to the simpler case where F (R, $)G ) =
(T,f,, + T%G). A particularly interesting case arises when
one considers a Friedmann—-Robertson—Walker metric (2.2),

which combined with (4.2) yields:
0 =141, @.11)

In the above, #j is an integration constant which can be
safely set equal to 0. Hence, Eq. (IV.9) reads

— 5 (a3 (F(R, )G —T* — TMG>> =0 (4.12)
From the above we obtain
(F(R, $)G —T? — TMG) -9 (4.13)
a

4 Such a problem is not present in the original formulation of these
models for the dark energy issue, where the history of the universe
belongs to Ry < R.
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where ¢ is an integration constant. f",w can then be viewed
as the stress-energy tensor for an additional component:

Tyw = (0 + Pttty + g (4.14)
The energy density, pressure, and four-velocity of this new
component are given, respectively, by

p=— (F(R, $)G —T? — TMG) ,

p=0, wu,=0,0. (4.15)

One can then see that TW effectively describes a pres-
sureless component, whose energy density decreases as 1/a>.
The additional degree of freedom provided by the scalar field
¢, which encodes the conformal mode of gravity, can thus
mimic cold dark matter. It is dynamical even in the absence
of matter (i.e. £,, = 0, as in the case we considered). The
amount of dark matter is set by the integration constant cg.

The mimetic gravity framework offers an alternative
approach to solving some of the outstanding problems in
modern cosmology. On cosmological scales, mimetic dark
matter behaves precisely as collisionless cold dark matter,
and as such is affected by gravitational instability [44]. On the
other hand, it is known that the collisionless cold dark matter
paradigm suffers from a number of shortcomings on small
scales: the core-cusp problem [65-68], the missing satellite
problem [69,70], and the “too-big-to-fail” problem [71-74],
just to mention a few (see e.g. [75] for a recent review on
the subject and more references). While in the particle dark
matter framework these issues might be addressed by posit-
ing that dark matter is self-interacting and collisional (see
e.g. [76-81] and references therein for further discussions),
in the mimetic dark matter framework a possible solution
is instead the addition of higher derivative (HD) terms for
the scalar field ¢ to the action. The HD terms (which are
encoding UV physics) provide mimetic dark matter with a
non-vanishing sound speed, and they are effectively dissi-
pation terms> [82-84]. In fact, these HD terms might be
crucial to avoid caustic singularities, from which the original
mimetic dark matter framework suffers [82]. More impor-
tantly, they have the effect of suppressing power on small
scales, which has the potential to address the shortcomings
of the collisionless cold dark matter framework on galactic
and subgalactic scales [82,84].

Another important observation is that mimetic gravity is
equivalent to a class of Lorentz-violating generally covari-
ant extensions of Einstein’s General Relativity, known as
Einstein-aether theories (EA hereafter; see [103] for the
original formulation of the theory and [104—124] for more

5 Dark matter with significant dissipation has been studied recently
in contexts other than mimetic gravity, both in particle [85-100] and
non-particle frameworks [101,102], respectively.

recent extensive discussions on this class of theories). In EA,
Lorentz invariance is broken by a dynamical unit timelike
vector ut* (the “aether”), which fixes a preferred rest frame
at each space-time point. In particular, mimetic gravity corre-
sponds to the scalar formulation of the EA theory [125,126]
(see [127] for further discussions), where the aether vector is
identified with the gradient of a scalar function, u, = 9,¢.
This scalar function corresponds to the scalar field encoding
the conformal mode in mimetic gravity. The most general
action for the scalar field, through the inclusion of the afore-
mentioned HD terms, is constructed in [125]. Recently it was
also noted that mimetic gravity can be identified and incorpo-
rated into the framework of covariant renormalizable gravity
[128].

Another small-scale open question in mimetic gravity is
whether this framework is able to account for the inferred flat
rotation curves of spiral galaxies [129,130]. The symmetries
of the theory allow for the addition of a non-minimal coupling
between matter and gravity, in the form of a coupling between
the aether vector and a matter hydrodynamic flux. In the
Newtonian limit such a term yields the phenomenology of
MOND (see e.g. [131-136] for comprehensive reviews), and
hence reproduces flat rotation curves and the Tully—Fisher
relation [137,138], among others. The phenomenology and
constraints on such a coupling remain to be explored.

The mimetic gravity scenario can be successfully inte-
grated with f(R) gravity, and also with f(R, ¢). Provided
that the f (R, ¢) (non-mimetic) theory is ghost-free, the cor-
responding mimetic formulation should also presumably be
ghost-free, since the addition of a Lagrange multiplier term
to the action is not expected to spoil such property (although
it should be remarked that such a statement remains to be
checked) [55-57]. One can then see how f (R, ¢)-gravity can
successfully be incorporated in the mimetic gravity frame-
work to additionally introduce a dark matter component to
the theory, a crucial element in our current understanding of
cosmology. Furthermore, it is possible to extend this picture
by including a potential for the mimetic scalar field ¢. Given
that in a Friedmann—Robertson—Walker universe ¢ can be
identified with time, such an addition effectively introduces
a time-dependent energy density, allowing one to realize any
given evolutionary history of the Universe. Any potential
V (¢) can be used to reconstruct a function f (R, ¢) which
gives the corresponding evolution, as shown in [55-57]. In
particular, by suitably choosing the form of the potential it
is possible to construct an unified and consistent description
of inflation with graceful exit, the current epoch of acceler-
ation presumably sourced by dark energy, and a bouncing
non-singular universe.

In the context of mimetic gravity, our inflationary models
(3.4) and (3.20) acquire a dark matter term when f,w #0,
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A cok?
=3
3 3a’

, (4.16)

where ¢ is fixed by (4.13). The problem with this formula-
tion is that, since the dark matter at the beginning of inflation
is bounded above by the Planck mass, following inflation its
contribution will be completely shifted away from the cos-
mological scenario. Various possible solutions can be envi-
sioned, and here we will briefly discuss two possible ones.

In a first solution, note that when T;w =0, f(R, 9)-
mimetic gravity leads to Egs. (2.3)—(2.4) and we recover
the same results illustrated in the preceding section. Infla-
tion ends when ¢ — 07~ and the models (3.4) and (3.20)
feature a “phase transition” from a high curvature regime
(f(R, ¢) ~ R—2A)toalow curvature one (f (R, ¢) =~ R).
One may assume that while inflation is realized at 7,,, = 0,
the Friedmann universe belongs to the sector 7;,,, # 0 of the
theory, and dark matter emerges only at the end of inflation.
Another possible way of protecting dark matter from decay
during inflation is to couple the two scalar fields ¢ and ¢
through a term of the form ¢ F'(¢), as discussed in [44].

Another open question concerns generating the observed
radiation and baryonic content in the universe, including the
observed baryon-antibaryon asymmetry. This can presum-
ably be generated by gravitational particle production fol-
lowing the end of inflation, through direct coupling of other
fields to the scalar field ¢, or through fluctuation—dissipation
dynamics inherent to the scalar fields ¢ and ¢ (see [139,140]
for further discussions on the topic and the implementation
of a model of dissipative leptogenesis). We plan to explore
these and other ideas in a forthcoming paper.

5 Conclusions

In the present paper, we have studied inflation in the con-
text of f(R, ¢)-theories of gravity, where a scalar field is
coupled to gravity. This class of theories is very interest-
ing, given that one can use the f(R)-gravity sector to repro-
duce a variety of cosmological scenarios (in our specific
case, accelerated cosmology at high curvatures and Einsteins
gravity at low curvatures), while a dynamical scalar field
allows for one to move between one scenario and another.
We note that the f(R)-formulations of the models under
investigation (namely, exponential gravity and the so called
Hu-Sawiki model with power-law corrections to Einstein’s
gravity) belong to a class of viable models for the dark energy
epoch which the universe undergoes today, where the appear-
ance of an effective cosmological constant easily supports
an (eternal) accelerated de Sitter expansion. Within the same
models (perhaps in the attempt to unify the inflationary sce-
nario with the dark energy epoch), one may reproduce the

@ Springer

false vacuum of inflation by an effective cosmological con-
stant, but a mechanism to make inflation unstable is neces-
sary. In this respect, the introduction of a dynamical field
induces a phase transition in the models and inflation ends
when the effective cosmological constant disappears.

We have explicitly calculated the spectral indices and
tensor-to-scalar ratio in the given models, starting from their
first principle formulation in these kind of theories. We find
that for the theory to give the correct amount of inflation
(namely, a number of e-folds sufficiently large to allow for
thermalization of the entire observable universe) and at the
same time generate a spectral index in agreement with cos-
mological data, the magnitude of the tensor-to-scalar ratio
(which is quadratic in one of the slow-roll parameter) is
particularly small (note that the same occurs in pure mod-
ified gravity but not in scalar field inflation within Einstein’s
framework) but non-vanishing: this occurs by virtue of the
fact that the energy scale of inflation is sub-Planckian, while
the magnitude of the scalar field can exceed the Planck scale.
For recent work on f (R, ¢)-inflation see also [141-145].

The minimal formulation we have considered does not
contain a dark matter candidate. To address this point, we
have then considered extensions of such a model within the
mimetic gravity framework, where dark matter appears as
an integration constant of the equations of motion. In the
minimal mimetic gravity formulation, mimetic dark matter
behaves precisely as collisionless cold dark matter. In the
light of the issues which collisionless cold dark matter faces
on small scales, we have discussed possible extensions of
the mimetic gravity framework which allow one to deal with
these shortcomings, and at the same time explain a number
of observations, the origin of which is usually attributed to
particle dark matter (for instance, the inferred flat rotation
curves and the Tully—Fisher relation). The extensions we
have discussed were theoretically motivated by the equiv-
alence between the original formulation of mimetic gravity
and the Einstein-aether class of Lorentz-violating theories
of gravity. We have further expounded how the extension
of f(R, ¢) inflation within the non-minimal mimetic grav-
ity framework allows one to realize basically any evolution-
ary history of the Universe. Finally, we have commented on
possible ways of protecting dark matter from decay during
inflation, and generating the observed baryonic and radiation
content of the Universe.

To conclude, the model we have explored introduces two
additional scalar degrees of freedom to the framework of
S (R) gravity. A first one allows one to move between two
different cosmological scenarios (accelerated expansion and
Einstein gravity at high and low curvature, respectively),
while the second one endows the model with a natural dark
matter candidate (which can address some of the small-scale
tensions with collisionless cold dark matter), and can be used
to reproduce any desired background cosmological expan-
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sion. While introducing extra degrees of freedom might seem
a high price to pay, we have shown that if used appropriately
such degrees of freedom allow a more natural implementa-
tion of a unified expansion history, while at the same time
providing a candidate for the missing dark matter in the Uni-
verse.
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