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Abstract We study the properties of the poles of the
resummed graviton propagator obtained by resumming bub-
ble matter diagrams which correct the classical graviton prop-
agator. These poles have been previously interpreted as black
holes precursors. Here, we show using the horizon wave-
function formalism that these poles indeed have properties
which make them compatible with being black hole precur-
sors. In particular, when modeled with a Breit–Wigner dis-
tribution, they have a well-defined gravitational radius. The
probability that the resonance is inside its own gravitational
radius, and thus that it is a black hole, is about one half. Our
results confirm the interpretation of these poles as black hole
precursors.

1 Introduction

The aim of this paper is to investigate further the properties
of the black holes precursors that have been identified in [1]
using an effective theory approach for gravity and resumma-
tion techniques. In particular, we shall study whether these
objects have an horizon and can thus truly be identified with
black holes.

Obviously, quantum black holes are quantum gravitational
objects, but while we are still far from having a theory of
quantum gravity, effective field theory techniques can be
reliably applied to general relativity coupled to matter at
energy scales below the energy scale at which quantum grav-
itational effects become of the same magnitude as quan-
tum effects generated by the other forces of nature [2–5].
The leading order terms of the effective field theory are
given by
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S =
∫

d4x
√−g

[
m2

p

16π
R(g) + c1 R(g)2

+ c2 Rμν(g)Rμν(g) + LSM + O(�c)

]
, (1.1)

where R(g) is the Ricci scalar, Rμν(g) is the Ricci tensor,
the metric gμν describes the graviton when the action is lin-
earized, and LSM stands for the Lagrangian of the standard
model of particle physics. The action contains two energy
scales, the Planck scale mp = 1.2209 × 1019 GeV which is
related to Newton’s constant by mp = 1/

√
GN and a scale

�c which is the energy scale at which we expect the effective
field theory to break down. The constants c1 and c2 are dimen-
sionless ones. We have suppressed the cosmological constant
and a potential non-minimal coupling of the Higgs boson to
the Ricci scalar which are not important for our considera-
tions. It is important to realize that the two scales mp and �c

need not to be identical. The Planck scale is the gravitational
coupling constant which appears in the vertices of Feynman
diagrams which involve gravitons. The other dimensionful
parameter of the model, the cut-off of the effective field the-
ory, �c is related to the Planck scale, but as we shall see
shortly, it has recently been shown to be dependent on the
number of fields in the matter sector [1].

Working in linearized general relativity and in a
Minkowski background, it is possible to resum loop dia-
grams involving matter fields which correct the graviton’s
propagator. This correction is calculated [6] in the large N
limit, where N = Ns + 3N f + 12NV (Ns , N f , and NV are,
respectively, the number of real scalar fields, fermions and
spin 1 fields in the model), while keeping N GN small. One
uses dimensional analysis to regulate the integrals and absorb
the divergent parts of the diagrams into the coefficients of
R2 and Rμν Rμν . Note that in the standard model Ns = 4,
N f = 45, and NV = 12, so N = 283. In other words there
are many more matter degrees of freedom than gravitational
ones (we assume that there is only one massless graviton).
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Loops involving the graviton are thus suppressed by factors
of 1/N compared to matter loops (at least as long as one
considers energies below the Planck scale) and perturbation
theory can be trusted.

This large N resummation leads to resummed graviton
propagator given by [6]

i Dαβ,μν(q2)

= i(LαμLβν + LανLβμ − LαβLμν)�(q2), (1.2)

with Lμν(q) = ημν − qμqν/q2 and

�(q2) = 1

2 q2

[
1 − N q2

120 π m2
p

log
(
− q2

μ2

)] (1.3)

where μ is the renormalization scale. This resummation was
first considered when studying the perturbative unitarity of
the effective action (1.1) [6–12].

In [1], it has been proposed to interpret the massive poles
of this propagator as Planck-size black hole precursors or
quantum black holes. The position of the poles determines
the mass and the width of the precursors: p2

0 = (MBH +
i 	BH/2)2. The poles of the resummed propagator (1.2) are
given by

q2
1 = 0

q2
2 = (q2

3 )∗ =
120 π
N m2

p

W

(
− 120 π

N
m2

p

μ2

) = (MBH + i 	BH/2)2 ,

(1.4)

where W (x) is the Lambert W-function. The pole at q2 = 0
corresponds to the usual massless graviton. The position of
the pole and hence the energy scale at which non-perturbative
effects are becoming important depends on the matter content
of the model, i.e. on N . As mentioned above, in the standard
model one has N = 283 and the complex pole at q2 = q2

2
corresponds to a particle with mass [1]

MBH � 7.2 × 1018 GeV �
√

120 π

N

mp

2
, (1.5)

and width

	BH � 6.0 × 1018 GeV �
√

120 π

N

mp

2
. (1.6)

As explained in [1], the mass and the width of the light-
est of black holes depends on the parameter N . It is natu-
ral to interpret these poles as black hole precursors or non-
local extended objects since the resummed propagator leads
to non-local effects in gravity [13] and quantum field the-
ory [14]. This interpretation is also compatible with generic
arguments [15–18] based on quantum mechanics and general
relativity which lead to the notion of a minimal length and
thus some kind of non-locality. Obviously, these estimates

depend on the renormalization scale which is taken of the
order of the Planck mass. One can use the spectral decom-
position to write the propagator as

�(q2) = 1

q2 + R2

q2 − q2
2

+ R3

q2 − q2
3

+
∫ ∞

M2
BH

ds
ρ(s)

s − q2 ,

(1.7)

where R2/3 are the residues at the two non-trivial poles. The
second complex pole at q2 = q2

3 would lead to acausal
effects. Several mechanisms could eliminate this pole (see
e.g. [13,19–24], where the log-term is reinterpreted as a non-
local interpolating function which leads to causal effects).
However, we shall assume that this is the scale above which
we cannot trust perturbation theory in the standard model.

The effective field theory does not provide reliable infor-
mation about the spectral density function ρ(s). However,
we have some information as regards this function coming
from black hole physics. We expect the classical regime to
begin around 5–20 times the mass of the first black hole (see
e.g. [25]). At that scale, we expect to have a continuum since
semi-classical black holes are expected to have a continuous
mass spectrum. Between MBH and (5 − 20) × MBH, the sit-
uation is more difficult. In [26], it was argued that the mass
spectrum of quantum black holes needs to be quantized, oth-
erwise their virtual effects could lead to large effects in low
energy experiments such as measurements of the anomalous
magnetic moment of the muon. We will assume that ρ(s)
is discrete between MBH and the continuous, semi-classical
region. We assume that the resonances are sharply peaked
and do not overlap much. We shall require that the spacing
between the first quantum excitation which we identified as
a pole of the resummed propagator and the next excitation
is larger than the width of the black hole precursor. In that
case, we should be able to trust the model up to a scale

�c �
√

120 π

N
mp � 1.4 × 1019 GeV, (1.8)

which corresponds to twice the width of the black hole pre-
cursor. In other words, we model the mass spectrum between
MBH and the continuum and require that we can trust our
model up to the scale �c, which we take to be the cut-off for
our model of quantum black holes.

2 Horizon wave-function

Our knowledge of black holes in general relativity suggests
that these objects are states somewhat similar to hadrons in
QCD, except that gravity democratically confines all sorts of
particles above some critical scale, rather than just strongly
interacting ones. This should be particularly true for quantum
black holes [27,28]. It is therefore very likely that, although
their existence can be inferred within perturbation theory,
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like we have recalled in the previous section, a full descrip-
tion of their quantum properties requires a non-perturbative
approach, like the horizon wave-function (HWF) formalism
(for the details, see Refs. [29–33]; for a similar picture of the
black hole horizon, see Ref. [34]).

This approach assumes the validity of the Einstein equa-
tions in the non-perturbative regime, and it amounts to quan-
tizing the Misner–Sharp mass for spherically symmetric
sources, m(r, t) = 4 π

∫ r
0 ρ(r̄ , t) r̄2 dr̄ , which in turn defines

the gravitational radius of the system,

RH = 2 �p
m

mp
. (2.1)

The latter then identifies the location of a trapping surface
if RH(r, t) = r . If this relation holds in the vacuum out-
side the region where the source is located, RH becomes the
usual Schwarzschild radius, and the above argument gives a
mathematical foundation to Thorne’s hoop conjecture [35],
which roughly states that a black hole forms when the impact
parameter b of two colliding small objects is shorter than
RH = 2 �p E/mp, where E is the total energy in the center of
mass frame. This classical description becomes questionable
for sources of the Planck size or lighter, since quantum effects
may not be neglected. The Heisenberg principle of quantum
mechanics introduces an uncertainty in the spatial localiza-
tion of a particle of the order of the Compton–de Broglie
length, λm � �p mp/m. Since quantum physics is a more
refined description of reality, we could argue that RH only
makes sense if RH � λm or m � mp.

The HWF formalism starts from decomposing the parti-
cle’s state into energy eigenstates,

| ψS 〉 =
∑
E

C(E) | ψE 〉, (2.2)

where the sum represents the spectral decomposition in
Hamiltonian eigenmodes,

Ĥ | ψE 〉 = E | ψE 〉, (2.3)

and H should be specified depending on the system at hand.
The gravitational radius (2.1) is then quantized by expressing
the energy E = m in terms of the Schwarzschild radius rH

and define the corresponding wave-function1

ψH(rH) = NH C(rH(E)), (2.4)

whose normalization NH can be fixed by using the norm
defined by the scalar product

〈ψH | φH 〉 = 4 π

∫ ∞

0
ψ∗

H(rH) φH(rH) r2
H drH. (2.5)

Let us remark that this quantum description of the gravita-
tional radius assumes that, in the static case, the only relevant

1 Note we use the lower letter rH to distinguish this quantum variable
from the classical Schwarzschild radius RH.

degrees of freedom associated with the gravitational struc-
ture of space-time (which classically give rise to trapping
surfaces) are those turned on by the degrees of freedom of
the matter source. This implies that we can just consider
“on-shell” states, for which Eq. (2.1) holds as an operator
equation, and neglect gravitational fluctuations, which could
be studied by employing standard background field method
techniques.

The normalized wave-function ψH yields the probability
that the gravitational radius has size r = rH, but this radius
is “fuzzy”, like the energy. Moreover, having defined the ψH

associated with a given ψS, we can also define the condi-
tional probability density that the particle lies inside its own
gravitational radius as

P<(r < rH) = PS(r < rH)PH(rH), (2.6)

where

PS(r < rH) =
∫ rH

0
PS(r) dr = 4 π

∫ rH

0
|ψS(r)|2 r2 dr

(2.7)

is the usual probability that the system lies within the size
r = rH, and

PH(rH) = 4 π r2
H |ψH(rH)|2 (2.8)

is the probability density that the gravitational radius has size
r = rH. One can also view P<(r < rH) as the probability
density that the sphere r = rH is a trapping surface, so that
the probability that the system is a black hole (of any horizon
size), will be obtained by integrating (2.6) over all possible
values of rH, namely

PBH =
∫ ∞

0
P<(r < rH) drH. (2.9)

Note that the Planck massmp and length �p play a crucial role
in the above construction, since they explicitly appear in the
definition of the gravitational radius (2.1). In the following,
we shall assume their standard values. This is consistent with
our effective theory approach since we do not consider cor-
rections to the coefficient of the Ricci scalar in the effective
action.

2.1 Gravitational radius and uncertainty

We can now derive the HWF for the non-trivial pole corre-
sponding to a well-defined one-particle state (1.4). For sim-
plicity, we model the lightest black hole using a Breit–Wigner
distribution

ψ∗
S (E) ψS(E) ≡ ρ(E) = N

(E2 − M2
BH)2 + M2

BH 	2
BH

,

(2.10)
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Fig. 1 Left panel probability density PH in Eq. (2.12) for the hori-
zon size (solid line) compared with the probability density PS of the
resonance size (dashed line). Right panel probability density P< in

Eq. (2.6) the resonance is located within its gravitational radius of size
r . All lengths are in units of �p

where N is a normalization factor, and E < Ec, with Ec

a cut-off corresponding to the beginning of the continuum
spectrum in Eq. (1.7). In the following we shall assume for
simplicity, and in agreement with (1.7), that there is no other
discrete resonance in the spectrum below the cut-off for our
model, so that

Ec � 2 MBH � �c. (2.11)

The corresponding HWF is then obtained by assuming
the unnormalized HWF |ψ̃H|2 � ρ, and the corresponding
probability density (2.8) then reads

PH drH = m3
p MBH

4 �3
p F0(γBH,�)

⎡
⎢⎢⎢⎣

r2
H drH(

m2
p r

2
H

4 �2
p

−M2
BH

)2

+M2
BH 	2

BH

⎤
⎥⎥⎥⎦

= (x + 1)
1
2

x2 + γ 2
BH

dx

F0(γBH,�)
. (2.12)

where F0(γBH,�) � F0(0.83, 3) is a number of order one
(see Appendix A). We can now compute expectation values
of powers of the gravitational radius,

〈 r̂ nH 〉 �
(

2 �p
MBH

mp

)n Fn(0.83, 3)

F0(0.83, 3)
, (2.13)

from which, in particular, one finds

〈 r̂H 〉 � 1.4 �p, (2.14)

and

〈 r̂2
H 〉 � 2.2 �2

p, (2.15)

so that the relative uncertainty in the gravitational radius is
given by
√√√√

∣∣∣∣∣
〈 r̂2

H 〉 − 〈 r̂H 〉2

〈 r̂H 〉2

∣∣∣∣∣ � 0.3, (2.16)

which means that the gravitational radius is well defined for
such a quantum object.

2.2 Black hole probability

We cannot yet claim the resonance is a black hole. For that,
we need to show that the quantum state of this resonance is
located mostly inside the gravitational radius.

First of all, we obtain the resonance wave-function in posi-
tion space by projecting ψS in Eq. (2.10) on the spherical
Bessel function

j0(E, r) = sin(E r)

E r
, (2.17)

that is,

ψS(r) =
∫ ∞

0
ψS(E) j0(E, r) dE

�
∫ ∞

0

E2 dE

E2 − M2
BH + i MBH 	BH

sin(E r)

E r

� 1

r
exp

[
−i

MBH

mp

√
1 − i

	BH

MBH

r

�p

]
, (2.18)

where we omitted a normalization factor for simplicity. We
can then compute the probability density in Eq. (2.7) for the
resonance size, the probability (2.6) that the resonance is
inside its own gravitational radius, and the probability (2.9)
that it is a black hole

PBH(MBH, 	BH) � 0.48. (2.19)

See also Fig. 1 for plots of the above quantities. This result
is interesting as it is compatible with the interpretation of the
poles in the resummed graviton propagators as black holes
precursors. If the probability had been much smaller than
one, the interpretation as black hole would have been chal-
lenged. If it had been close to one, we would expect the black
hole to be semi-classical but this would be inconsistent with
our expectation and model for the mass spectrum described
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above. A probability around one half is precisely what one
would expect from a black hole precursor.

2.3 Decay time

The decay time τ of a common resonance can be estimated
from the uncertainty relation

τ �E � �p mp, (2.20)

and would be extremely short for our lightest black hole,
namely

τBH � �p mp

	BH
� �p = τp. (2.21)

However, if the probability PBH is significantly close to one,
the resonance should decay more slowly. Given the non-local
nature of PBH, a precise estimate would require a numerical
analysis [29], but we can obtain a rough estimate by simply
considering that the (initial) decay probability is reduced by
(1 − PBH), so that

τBH � �p mp

	BH (1 − PBH)
� 2 τp. (2.22)

Again this result confirms the interpretation of the poles as
black hole precursors, since their lifetime is close to the
Planck time.

We emphasize that all estimates in this section were
obtained by assuming that the proper mass and length scales
in the definition of the gravitational radius (2.1) have their tra-
ditional values (i.e.mp ∼ 1019 GeV). This is consistent, since
the coefficient of the Ricci scalar in the effective action is
not affected by the quantum corrections we have considered.
Here, we have not considered the running of the Planck mass,
since there are not many particles in the standard model, this
would be a small effects [36–38]. There are, however, well-
known models which can affect significantly the value of
the coefficient of the Ricci scalar. For example, models with
a large extra-dimensional volume [39–41]. Note that these
models would not only affect the value of the coefficient of
the Ricci scalar, but they also affect the effective theory itself
and thus the resummed propagator calculation as well. This
effect would have to be carefully studied in these models.

3 Conclusions

In this paper, we have studied the properties of the poles of the
resummed graviton propagator obtained by resumming bub-
ble matter diagrams which correct the classical graviton prop-
agator. These poles had been interpreted as black holes pre-
cursors previously. Here, we have shown using the HWF for-
malism that these poles indeed have properties which make

them compatible with being black hole precursors. In partic-
ular, when modeled with a Breit–Wigner distribution, they
have a well-defined gravitational radius. The probability that
the resonance is inside its own gravitational radius, and thus
that it is a black hole is roughly 50 %. The mass, width, and
gravitational radius as well as the existence of an horizon
depends on the matter content of the theory. Here we have
assumed that the particle content is that of the standard model
of particle physics. Our results confirm the previously pro-
posed interpretation of these poles as black hole precursors.
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A Useful integrals

In order to compute integral of functions such as the one in
Eq. (2.12), it is useful to define the dimensionless variables

x + 1 = m2
p r

2
H

4 �2
p M

2
BH

γBH = 	BH

MBH
� 0.83, (A.1)

and

� = m2
p R2

c

4 �2
p M

2
BH

− 1 =
(

Ec

MBH

)2

− 1 � 3. (A.2)

We can then write

Fn(γBH,�) =
∫ �

−1

(x + 1)
n+1

2

x2 + γ 2
BH

dx, (A.3)

and obtain, in particular,

F0(6/7, 3) � 2.8 (A.4)

F1(6/7, 3) � 3.5 (A.5)

F2(6/7, 3) � 4.6. (A.6)
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