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Abstract The H → gg amplitude relevant for Higgs pro-
duction via gluon fusion is computed in the four-dimensional
helicity scheme (fdh) and in dimensional reduction (dred)
at the two-loop level in the limit of heavy top quarks.
The required renormalization is developed and described in
detail, including the treatment of evanescent ε-scalar contri-
butions. In fdh and dred there are additional dimension-5
operators generating the Hgg vertices, where g can either
be a gluon or an ε-scalar. An appropriate operator basis is
given and the operator mixing through renormalization is
described. The results of the present paper provide build-
ing blocks for further computations, and they allow one to
complete the study of the infrared divergence structure of
two-loop amplitudes in fdh and dred.
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1 Introduction

Higgs production via gluon fusion is one of the most impor-
tant LHC processes. Its computation at higher orders requires
renormalization and factorization to cancel UV and IR diver-
gences. Working in the limit of heavy top quarks, the
required renormalization is less trivial than the one of stan-
dard QCD processes due to the required renormalization of
non-renormalizable operators. The virtual corrections have
been computed in conventional dimensional regularization
(cdr) [1–5]; the required theory of operator renormalization
in cdr has been developed in Ref. [6], based on general work
in Refs. [7,8].

In the past years, several alternative regularization sche-
mes have been developed. Purely four-dimensional schemes
such as implicit regularization [9,10] and FDR [11] have been
proposed and used to compute processes of practical interest
such as H → γ γ [12,13] and H → gg [14]. The present
paper is devoted to regularization by dimensional reduction
(dred) [15] and the related four-dimensional helicity (fdh)
scheme [16]. Both schemes are actually the same regarding
UV renormalization, but they differ in the treatment of exter-
nal partons related to IR divergences.1 There has been sig-
nificant progress in the understanding of fdh and dred: the
equivalence to cdr [20,21], mathematical consistency and
the quantum action principle [22], and infrared factorization
[23,24] have been established—these results solved several
problems that had been reported earlier, related to violation
of unitarity [25], Siegel’s inconsistency [26], and the factor-

1 Parts of the literature, e.g. Refs. [17–19], used the term DR/dimen
sional reduction for what is called fdh here.
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ization problem of [27,28]. In addition, explicit multi-loop
calculations have been carried out [29–34].

More recently, the multi-loop IR divergence structure of
fdh and dred amplitudes has been studied in Ref. [35].
It has been shown that IR divergences in fdh and dred
can be described by a generalization of the cdr formulas
given in Refs. [36–41]. The description involves IR anoma-
lous dimensions γ i for each parton type i . In Ref. [35] they
have been computed for the cases of quarks and gluons by
comparing the general IR factorization formulas with explicit
results for the quark and gluon form factor. In fdh and dred,
however, the gluon can be decomposed into a D-dimensional
gluon ĝ and (4−D) additional degrees of freedom, so-called
ε-scalars g̃. In dred, ε-scalars also appear as external states.

The present paper is devoted to a detailed two-loop compu-
tation of the amplitude H → gg in fdh and dred. In dred,
this involves the computations of H → ĝĝ and H → g̃g̃,
since the external gluons can either be gauge fields or ε-
scalars. The fdh result is identical to the one for H → ĝĝ
and has already been given in Ref. [35], but we will provide
further details here.

This detailed computation is of interest for two reasons:
First, it provides the basis for obtaining the remaining IR
anomalous dimension for ε-scalars at the two-loop level. Sec-
ond, it provides an example of the required renormalization in
fdh and dred, including operator renormalization and oper-
ator mixing. The difficulty of renormalization in fdh and
dred, particularly in connection with H → gg, has been
pointed out e.g. in Refs. [34,42].

The outline of the paper is as follows: Sect. 2 gives a brief
description of the regularization schemes and of the relevant
Lagrangian and operators. It ends with a detailed list of the
required ingredients of the calculation.

Apart from the actual two-loop computation and ordi-
nary parameter and field renormalization that are described
in Sects. 3 and 4, respectively, the main difficulty lies in
the renormalization and mixing of the operators generating
H → gg. This is discussed in general in Sect. 5, and specific
two-loop results are presented in Sect. 6. Section 7 then pro-
vides the final results for the on-shell amplitudes for H → ĝĝ
and H → g̃g̃. The appendix contains details on our pro-
jection operators and gives Feynman rules for the different
operator insertions.

2 Regularization schemes and H → gg

It is useful to distinguish the following regularization
schemes [24]: conventional dimensional regularization
(cdr), the ’t Hooft–Veltman (hv) scheme, the four-
dimensional helicity (fdh) scheme, and dimensional reduc-
tion (dred). In all these schemes, momenta are treated in
D = 4 − 2ε dimensions (the associated space is denoted

Table 1 Treatment of internal and external gluons in the four different
regularization schemes, i.e. prescriptions for which metric tensor has to
be used in propagator numerators and polarization sums

cdr hv fdh dred

Internal gluon ĝμν ĝμν gμν gμν

External gluon ĝμν ḡμν ḡμν gμν

by QDS with metric tensor ĝμν). In order to define the
schemes, one also needs an additional quasi-4-dimensional
space (Q4S, metric gμν) and the original 4-dimensional
space (4S, metric ḡμν). The treatment of gluons in the four
schemes is given in Table 1. In the table, “internal” gluons are
defined as either virtual gluons that are part of a one-particle
irreducible loop diagram or, for real correction diagrams,
gluons in the initial or final state that are collinear or soft.
“External gluons” are defined as all other gluons. For more
details regarding this distinction, see e.g. Ref. [24].

Mathematical consistency and D-dimensional gauge inv-
ariance require that Q4S ⊃ QDS ⊃ 4S and forbid to iden-
tify gμν and ḡμν . Details can be found in Refs. [22,24,35].
The most important relations for the present paper are

gμν = ĝμν + g̃μν, ĝμρ g̃ρ
ν = 0, ĝμρ ḡρ

ν = ḡμν,

ĝμν ĝμν = D, g̃μν g̃μν = Nε,

γ μ = γ̂ μ + γ̃ μ, ∂μ = ∂̂μ, (1)

where a complementary 2ε-dimensional metric tensor g̃μν

has been introduced. With the metric tensors we can decom-
pose a quasi-4-dimensional gluon field Aμ as

Aμ = ĝμν Aν + g̃μν Aν = Âμ + Ãμ (2)

into a D-dimensional gauge field Âμ and an associated ε-
scalar field Ãμ with multiplicity Nε = 2ε.2 Correspondingly,
there are two types of particles in the regularized theory:
D-dimensional gluons ĝ and ε-scalars g̃. The unregularized
external gluons ḡ of fdh are a part of ĝ.

The regularized Lagrangian of massless QCD in fdh and
dred is then obtained by applying relations (1) and (2) to the
Lagrangian of ordinary QCD:

LQCD,regularized = −1

4
F̂μν
a F̂μν,a

− 1

2ξ
(∂μ Âμ,a)

2 + i ψ /̂Dψ

+ ∂μca D̂μca + Lε, (3a)

2 In many applications of fdh the dimensionality of Q4S is left as a
variable Ds , which is eventually set to Ds = 4. The multiplicity of
ε-scalars is then Nε = Ds − D.
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Lε = −1

2
(D̂μ Ãν)a(D̂μ Ãν)a − ge ψ � Ãψ

− 1

4! (g
2
4ε)

αβγ δ

abcd Ãα,a Ãβ,b Ãγ,c Ãδ,d . (3b)

Here, F̂μν and D̂μ = ∂μ + igs Âμ denote the non-abelian
field strength tensor and the covariant derivative in D dimen-
sions; ψ and c are the quark and ghost fields.

The resulting ε-scalar LagrangianLε contains all standard
interaction terms of scalar fields in the adjoint representation.
Due to the Lorentz structure of the underlying vector space
there is no ε-scalar–ghost interaction in Eq. (3b). The cou-
pling of ε-scalars to (anti-)quarks is given by the evanescent
Yukawa-like coupling ≥. This could in principle be set equal
to the strong coupling gs . But, since both couplings renor-
malize differently, this would only hold at tree level and for
one particular renormalization scale [20]; the same is true
for the quartic ε-scalar coupling g4ε . In Eq. (3b) we intro-
duce an abbreviation that includes the appearing Lorentz and
color structure: (g2

4ε)
αβγ δ

abcd := g2
4ε( fabe fcdeg̃

αγ g̃βδ +perm.),
where “perm.” denotes the five permutations arising from
symmetrization in the multi-indices (a, α) . . . (c, γ ). In the

following we use all couplings in the form αi = g2
i

4π
with

i = s, e, 4ε.
The process H → gg is generated by an effective

Lagrangian which arises from integrating out the top quark
in the Standard Model. In cdr it contains only the term
− 1

4λH F̂μν
a F̂μν,a . In fdh and dred one again has to dis-

tinguish several gauge invariant structures containing either
D-dimensional gluons or ε-scalars. The effective Lagrangian
can be written as

Leff = λHO1 + λεH Õ1 +
∑

i

λ4ε,i H Õ4ε,i , (4)

with

O1 = −1

4
F̂μν
a F̂μν,a, (5a)

Õ1 = −1

2
(D̂μ Ãν)a(D̂μ Ãν)a . (5b)

Õ4ε,i denote operators involving products of four ε-
scalars. Such operators are not important in the present paper
and will not be given explicitly. Like for αs, αe and α4ε , the
couplings λ and λε can be set equal at tree level, but they
renormalize differently and have different β functions.

Our final goal is the calculation of the two-loop form
factors for gluons and ε-scalars. This requires the on-shell
calculation of the 3-point function �H AμAν (q,−p,−r). All
momenta are defined as incoming, so q = p + r . The 3-
point function can be separated into �H Âμ Âν and �H Ãμ Ãν ,
corresponding to the amplitudes for H → ĝĝ and H → g̃g̃,

respectively.3 In dred, both on-shell amplitudes are needed
according to Table 1. In fdh, only H → ḡḡ is needed, which,
however, is identical to H → ĝĝ and will not be discussed
separately.

The on-shell calculation requires the knowledge of the
two-loop renormalization constants δZ2L

λ and δZ2L
λε

. These in
turn can be obtained from an off-shell calculation of �H AμAν .
Projectors extracting the required renormalization constants
from the off-shell Green functions and precisely defining the
gluon and ε-scalar form factors are given in Appendix A.1.

We have now all ingredients to discuss the classes of Feyn-
man diagrams that contribute to �H AμAν in fdh and dred:

1. Genuine two-loop diagrams �2L
H AμAν . Some remarks con-

cerning the calculation are presented in Sect. 3.
2. Counterterm diagrams �

1LCT,a
H AμAν and �

2LCT,a
H AμAν arising from

one- and two-loop renormalization of the fields, the
gauge parameter ξ , and of the couplings αs , αe, and α4ε .
The required renormalization constants are presented in
Sect. 4.

3. Counterterm diagrams �
1LCT,b
H AμAν arising from one-loop

renormalization of the effective Lagrangian (4) at the one-
loop level, which includes the renormalization of λ and
λε . This is a major complication and will be presented in
Sect. 5.

4. Overall two-loop counterterm diagrams �
2LCT,b
H AμAν aris-

ing from the two-loop renormalization of the effective
Lagrangian (4), equivalently from the renormalization
constants δZ2L

λ and δZ2L
λε

. These renormalization con-
stants are generally defined by the requirement that the
appropriate off-shell Green functions are UV finite after
renormalization. For the case of δZλ, an elegant alterna-
tive determination is possible [6], but that method fails
for δZλε . The results for δZ2L

λ and δZ2L
λε

are presented in
Sect. 6.

3 Genuine two-loop diagrams

As mentioned above the Green function �H AμAν can be sep-
arated into �H Âμ Âν and �H Ãμ Ãν , corresponding to H → ĝĝ
and H → g̃g̃. Examples for genuine two-loop diagrams with
either external gluons or ε-scalars are shown in Fig. 1.

All loop calculations have been performed using the
following setup: the generation of diagrams and analyt-
ical expressions is done with the Mathematica package
FeynArts [43]; to cope with the extended Lorentz struc-
ture in Q4S we use a modified version of TRACER [44];
all planar on-shell integrals are reduced and evaluated
with an implementation of an in-house algorithm that is

3 Amplitudes related to the process H → ĝg̃ do not have to be consid-
ered. They vanish due to Lorentz invariance.
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H H H H

Fig. 1 Sample two-loop diagrams for the process H → ĝĝ and H → g̃g̃ in dred. ε-scalars are denoted by dashed lines. The appearing coupling
combinations from left to right are λα2

s , λεα
2
e , λεα

2
s , λεα

2
4ε

H H H H

Fig. 2 Sample one-loop counterterm diagrams originating from the renormalization of the couplings αs , αe, α4ε , and of the gauge parameter ξ ,
respectively

based on integration-by-parts methods and the Laporta-
algorithm [45]; all non-planar and off-shell integrals are
reduced and evaluated with the packages FIRE [46] and
FIESTA [47].

4 Parameter and field renormalization in FDH

and DRED

We now consider the counterterm contributions �
1LCT,a
H AμAν and

�
2LCT,a
H AμAν . They are given by diagrams exemplified in Fig. 2,

where the counterterm insertions are generated by the usual
multiplicative QCD renormalization of the couplings and
fields present in Eq. (3b). In the following we present the
values of the required β functions and anomalous dimen-
sions, which govern the renormalization constants.

4.1 β functions

The renormalization of the couplings αs, αe, and α4ε is
done by replacing the bare couplings with the renormal-
ized ones. As renormalization scheme we choose a modi-
fied version of the MS scheme: like in Ref. [35] we treat
the multiplicity Nε of the ε-scalars as an initially arbitrary
quantity and subtract divergences of the form ( Nε

ε
)n . As a

consequence, the corresponding β functions depend on Nε :

β
i ≡ μ2 d

dμ2 (
αi
4π

) = β
i
(αs, αe, α4ε, Nε), with i = s, e, 4ε.

They are given in Refs. [34,35] and read

β
s = −

( αs

4π

)2
[
CA

(
11

3
− Nε

6

)
− 2

3
NF

]

−
( αs

4π

)3
[
C2

A

(
34

3
− 7

3
Nε

)
− 10

3
CANF − 2CF NF

]

−
( αs

4π

)2( αe

4π

)[
CF NF Nε

]
+ O(α4), (6a)

β
e = −

( αs

4π

)( αe

4π

)
6CF −

( αe

4π

)2

×
[
CA(2 − Nε) + CF (−4 + Nε) − NF

]
+ O(α3).

(6b)

The renormalization of the quartic coupling (α4ε)
αβγ δ

abcd
is more complicated since the tree-level color structure,
fabe fcde, is not preserved under renormalization [20]. In the
case of an SU(3) gauge group one therefore has to intro-
duce three quartic couplings, α4ε,i with i = 1, 2, 3, each
of them related to one specific color structure in a basis
of color space. Examples for such a basis are given e.g. in
Refs. [29,30].

In the present case of H → gg the renormalization con-
stant for α4ε only appears in diagrams like the third of Fig. 2.
Hence, only the following contracted β function is needed:

(β
4ε

)
αβγ δ

abcd δab g̃αβ

=
{( αs

4π

)2
C2

A(9+6 Nε)+
( αs

4π

) (α4ε

4π

)
C2

A (1− Nε) 12

+
( αe

4π

)2 [CANF (4 − 2 Nε) + CF NF (−8 − 4 Nε)]

+
( αe

4π

) (α4ε

4π

)
CANF (1 − Nε)(−4)

+
(α4ε

4π

)2
C2

A (1− Nε)(−7 − 2 Nε)

}
δcd g̃

γ δ+O(α3).

(7)

This result is obtained from a direct off-shell calculation. It
agrees with a general result from [48].
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4.2 Anomalous dimensions

For the off-shell calculation of �H AμAν also renormaliza-
tion of the fields and of the gauge parameter ξ is needed.
The renormalization of ξ is fixed by the requirement that
the gauge fixing term does not renormalize: ξ → Z Âξ . The
anomalous dimensions γi = μ2 d

dμ2 ln Zi of gluon and ε-
scalar fields are obtained from a direct off-shell calculation
of the respective two-loop self energies. Their values up to
two-loop level read

γ Â = −
( αs

4π

)[
CA

(
13

6
− ξ

2
− Nε

6

)
− 2

3
NF

]

−
( αs

4π

)2
[
C2

A

(
59

8
− 11

8
ξ − ξ2

4
− 15

8
Nε

)

− 5

2
CANF − 2CF NF

]

−
( αs

4π

)( αe

4π

)
CF NF Nε + O(α3), (8a)

γ Ã = −
( αs

4π

)
CA(3 − ξ) −

( αe

4π

)
[−NF ]

−
( αs

4π

)2
[
C2

A

(
61

6
−2ξ− ξ2

4
− 11

12
Nε

)
− 5

3
CANF

]

−
( αs

4π

)( αe

4π

)
[−5CF NF ]

−
( αe

4π

)2
[
CANF

(
−1+ Nε

2

)
+CF NF

(
2 + Nε

2

) ]

−
(α4ε

4π

)2
C2

A (1 − Nε)
3

4
+ O(α3). (8b)

Setting Nε and αe to zero in Eq. (8a) yields the well-known
gluon anomalous dimension in cdr; see e.g. [49]. The value
of γ Ã agrees with the general result for the anomalous dimen-
sion of a scalar field [48], confirming the point of view that ε-
scalars behave like ordinary scalar fields with multiplicity Nε .

5 Operator renormalization and mixing in FDH and
DRED

The second type of counterterm contributions, denoted by
�

1LCT,b
H AμAν and �

2lCT,b
H AμAν , originates from the necessary renor-

malization of the effective Lagrangian (4), equivalently of
the operators O1 and Õ1. One major difficulty is that mul-
tiplicative renormalization of the parameters λ and λε is not
sufficient since the operators mix with further operators. We
will show that the full operator mixing involving gauge non-
invariant operators has to be taken into account. The renor-
malization constants cannot be predicted from known QCD
renormalization constants but need to be determined from an

off-shell calculation. The general theory of operator mixing
in gauge theories and the classification of gauge invariant and
gauge non-invariant operators has been developed long ago
[7,8,50].

In the following we briefly describe operator mixing in
the much simpler case of cdr and then explain the cases of
fdh and dred, which involve further operators.

5.1 Operators in cdr

In cdr, a useful basis of scalar dimension-4 operators, which
is closed under renormalization, is given in Ref. [6]:

O1 = −1

4
F̂μν
a F̂μν,a (9a)

O2 = 0, (9b)

O3 = i

2
ψ

←→
/̂D ψ, (9c)

O4 = Âν
a(D̂

μ F̂μν)a − gsψ � Âψ − (∂μca)(∂μca), (9d)

O5 = (D̂μ∂μc)aca . (9e)

Operator O1 is gauge invariant and related to coupling renor-
malization; O2 = mψψ in Ref. [6] and corresponds to the
fermion mass renormalization; we set m = 0. All other oper-
ators are constrained by BRS invariance and Slavnov–Taylor
identities [7,8]; operators O4 and O5 are not gauge invariant.
The basis is chosen such that O3, O4, and O5 are related to
field renormalization of ψ , Âμ, and c, respectively. In par-
ticular, the first two terms of O4 are generated by applying
the functional derivative

Âν
a(x)

δ

δ Âν
a(x)

(10)

on the gauge invariant part of the QCD action; the remain-
ing term is then required by BRS invariance and the non-
renormalization of the gauge fixing term.4

The operators renormalize as

Oi →
∑

j

Zi j O j,bare, (11)

where Oj,bare arises from Oj by replacing all parameters and
fields by the respective bare quantities. Following an elegant
proof in Ref. [6] the nontrivial cdr renormalization matrix
Zi j can be written in the form

4 See Refs. [8,50] for more details; the full operator O4 can be obtained
from evaluating WYÂν

a
Âν
a + W (∂νca)Aν,a , where W is the linearized

Slavnov–Taylor operator and YÂν
a

is the source of the BRS transforma-

tion of Âν
a in the functional integral. Since W is nilpotent, this definition

shows that O4 is compatible with BRS invariance and the Slavnov–
Taylor identity and can appear in the operator mixing.
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Zi j = δi j + Di lnZ j . (12)

Here, Di are derivatives with respect to parameters and
Z j are combinations of ordinary QCD renormalization con-
stants. As a result, in particular the renormalization of Z11 is
given by

Z11 = 1 + αs
∂

∂αs
ln Zαs , (13)

with the multiplicative renormalization constant of αs , Zαs .
In this way the renormalization of the parameter λ in the cdr
version of Leff is related to the renormalization of αs .

5.2 Operators in fdh and dred

In fdh and dred, the basis of operators needs to contain addi-
tional terms involving ε-scalars. We use a basis constructed
analogously to Eqs. (9) from gauge invariant operators and
operators corresponding to field renormalization. Then there
are two kinds of changes: there are modifications of the oper-
ators O3 and O4, and there are additional basis elements. The
new basis operators correspond to the ε-scalar kinetic term,
Õ1, to the new parameters αe and α4ε , Õ3, and Õ4ε,i , and to
the field renormalization of Ãμ, Õ4. The notation is chosen
such that in all cases Oj and Õ j have a similar structure:

O1 = −1

4
F̂μν
a F̂μν,a, (14a)

O2 = 0, (14b)

O3 = i

2
ψ

←→
/̂D ψ − geψ � Ãψ, (14c)

O4 = Âν
a(D̂

μ F̂μν)a + gs fabc(∂
μ Ãν

a) Âμ,b Ãν,c

−gsψ � Âψ − (∂μca)(∂μca), (14d)

O5 = (D̂μ∂μca)ca, (14e)

Õ1 = −1

2
(D̂μ Ãν)a(D̂μ Ãν)a, (14f)

Õ3 = geψ � Ãψ, (14g)

Õ4 = Ãν
a(D̂

μ D̂μ Ãν)a, (14h)

Õ4ε,i = O( Ã4). (14i)

Since we consider massless QCD there is no ε-scalar mass
term. Like in Eq. (4), operators involving four ε-scalars are
not needed explicitly.

This set of operators differs in a crucial way from the
cdr case. The difference between operators Õ1 and Õ4 is
related to the total derivative � Ãμ Ãμ. Hence, the basis for
space-time integrated operators (zero-momentum insertions)
does not coincide with the one for non-integrated opera-
tors (non-vanishing momentum insertions). As discussed by
Spiridonov in Ref. [6], in such a case his method cannot
be used. Therefore, in fdh and dred it is not possible to

derive complete results for the operator mixing analogous to
Eqs. (12) and (13).

This implies two difficulties: First, the two-loop renormal-
ization of Õ1 and the corresponding parameter λε cannot be
obtained from a priori known two-loop QCD renormalization
constants but need to be determined from an explicit two-
loop off-shell calculation. Second, the off-shell Green func-
tions get contributions from unphysical, gauge non-invariant
operators, so the full operator mixing needs to be taken into
account.

We have carried out the explicit one-loop calculations to
obtain all required one-loop results for Z1 j and Z 1̃ j . The
results are

δZ1L
11 =

( αs

4π

) [(
− 11

3
+ Nε

6

)
CA + 2

3
NF

]
1

ε
, (15a)

δZ1L
1̃1

= 0, (15b)

δZ1L
11̃

= 0, (15c)

δZ1L
1̃1̃

=
[( αs

4π

)
(−3)CA+

( αe

4π

)
NF−

(α4ε

4π

)
(1−Nε)CA

]
1

ε
,

(15d)

δZ1L
13 = 0, (15e)

δZ1L
1̃3

=
( αe

4π

) Nε

2
CF

1

ε
, (15f)

δZ1L
14 =

( αs

4π

) 3

4
CA

1

ε
, (15g)

δZ1L
1̃4

= 0, (15h)

δZ1L
14̃

=
( αs

4π

) (
− 3

2

)
CA

1

ε
, (15i)

δZ1L
1̃4̃

=
( αs

4π

) 1

2
(3 − ξ)CA

1

ε
, (15j)

δZ1L
15 = 0, (15k)

δZ1L
1̃5

= 0. (15l)

Renormalization constants involving operators Õ3 or Õ4ε,i

are not needed for the calculations in the present paper.
The renormalization constants (15a)–(15d) agree with those
given in Ref. [35]. The only gauge-dependent quantity is
Z1L

1̃4̃
. This is due to the fact that operator Õ4 is related to the

field renormalization of the ε-scalars. In all other renormal-
ization constants related to field renormalization the gauge-
dependent parts incidentally cancel out.

With these results the bare effective Lagrangian can be
written as

Lbare
eff = H

∑

j

(λ Z1 j O j,bare + λε Z 1̃ j O j,bare), (16)

where the sum runs over all operators in Eqs. (14). Sometimes
it is useful to write this using multiplicative renormalization
constants for λ and λε as
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O3 O3 O4 O4

Õ4 Õ4 O5 O5

Fig. 3 Sample one-loop counterterm diagrams originating from operators O3, O4, Õ4, and O5

Lbare
eff = ZλλHO1,bare + Zλε λεHO1̃,bare + · · · , (17)

suppressing operators not present at tree level, such that
λZλ = λZ11 + λεZ 1̃1 and similarly for Zλε .

The one-loop counterterm effective Lagrangian involving
the renormalization constants of Eqs. (15) is then given by

L1LCT
eff = H

∑

j

(
λ δZ1L

1 j O j + λε δZ1L
1̃ j

O j

)
. (18)

We have now all ingredients for the one-loop counterterm
diagrams �

1LCT,b
H AμAν relevant for the computation of H → gg,

where the gluons are either D-dimensional gauge fields or ε-
scalars. These counterterm contributions arise from one-loop
counterterm diagrams with one insertion of L1LCT

eff . Sample
diagrams are given in Fig. 3. They show insertions of oper-
ators O3, O4, Õ4, and O5. The Feynman rules for operator
insertions are given in Appendix A.2.

The calculation shows that all these operators generate
non-vanishing contributions to �

1LCT,b
H AμAν . However, in the

extraction of the form factors and two-loop renormalization
constants to be discussed in the next section there are cance-
lations, and O4 is the only new operator which contributes.

6 Two-loop renormalization constants of λ and λε

Putting together the results from the previous three sections
it is possible to calculate the two-loop renormalization con-
stants δZ2L

λ and δZ2L
λε

appearing in Eq. (17). They can be
obtained from a complete off-shell two-loop calculation and
the requirement that the corresponding Green functions are
UV finite after renormalization:
[
�2L
H AμAν + �

1LCT,a
H AμAν + �

2LCT,a
H AμAν + �

1LCT,b
H AμAν

+�
2LCT,b
H AμAν

]off−shell

UVdiv.
= 0. (19)

All ingredients except the last term are computed in the pre-
vious sections, and Eq. (19) is then used to extract δZ2L

λ and
δZ2L

λε
. The result for δZ2L

λ is

δZ2L
λ =

( αs

4π

)2
{
C2

A

[ 121
9 − 11

9 Nε + N2
ε

36

ε2 + − 34
3 + 7

3 Nε

ε

]

+ CANF

[− 44
9 + 2

9 Nε

ε2 + 10

3ε

]
+CF NF

2

ε
+N 2

F
4

9ε2

}

+
( αs

4π

)( αe

4π

)
CF NF

(
−1 − λε

λ

)
Nε

2ε
. (20)

Since the off-shell calculations have been done numerically
with the help of FIESTA [47] the analytical expressions have
been obtained by rounding to a least common denominator.
The numerical uncertainty is less than 1

72 for the terms of the
order O(ε−2) and 1

6 for the terms of the order O(ε−1).
The result (20) is not new; it agrees with Ref. [35], where

it has been obtained using Spiridonov’s method. The recal-
culation serves as a test of the setup and the results given in
the previous sections. At the same time a comparison with
Ref. [35] confirms that Eq. (20) is actually exactly correct,
in spite of numerical uncertainties.

In the same way, we obtain the renormalization constant
δZ2L

λε
:

δZ2L
λε

=
( αs

4π

)2
{
C2

A

[ 49
4 + 5

4 Nε

ε2 +
− 113

24 + 71
24 Nε + λ

λε

(
2− Nε

2

)

ε

]

+ CANF

[
− 1

ε2 +
5
6 − 2 λ

λε

ε

]}

+
( αs

4π

)( αe

4π

){
CANF

[
− 3

ε2 +
3
2 + 3 λ

λε

ε

]

+ CF NF

[
− 3

ε2 +
5
2 − 3 λ

λε

ε

]}
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+
( αs

4π

)(α4ε

4π

)
C2

A (1 − Nε)

[
6

ε2 + −4 − 3 λ
λε

ε

]

+
( αe

4π

)2
{
CANF

− 3
2 + 3

4 Nε

ε

+ CF NF

[
− 3Nε

2 ε2 + 3 − 7
4 Nε

ε

]
+ N 2

F

ε2

}

+
( αe

4π

)(α4ε

4π

)
CANF (1 − Nε)

[
− 2

ε2 + 3

2ε

]

+
(α4ε

4π

)2
C2

A (1 − Nε)

[− 5
4 − Nε

ε2 + 15

8ε

]
. (21)

Compared to Eq. (20) this result is more complicated and
includes all combinations of the three couplings αs, αe, and
α4ε . This result is new; as described in Sect. 5 it cannot be
obtained using Spiridonov’s method. The numerical uncer-
tainty is less than 1

48 for all terms. A forthcoming comparison
with a prediction of the infrared structure of H → g̃g̃ will
confirm that expression (21) is exactly correct [51].

7 UV renormalized form factors of gluons and ε-scalars

Now that all renormalization constants are known it is pos-
sible to calculate the two-loop form factors of gluons and
ε-scalars in the fdh and dred scheme. A proper definition
of the form factors and the corresponding projection opera-
tors can be found in Appendix A.1.

We present the results in two ways: First, we give results
with independent couplings needed to determine the IR
anomalous dimensions of gluons and ε-scalars; second, we
give simplified results, where all couplings are set equal.
These can be viewed as the final results for the UV renormal-
ized but IR regularized form factors. We give them including
higher orders in the ε-expansion.

7.1 Results for independent couplings

The UV renormalized but IR divergent form factor for H →
ĝĝ in dred is given at the one-loop and two-loop level by

F̄1L
ĝ (αs , λε/λ, Nε)

=
( αs

4π

){
CA

[
− 2

ε2 + − 11
3 + Nε

6

ε
+ π2

6
+ λε

λ
Nε

+ ε
(

− 2 + 14

3
ζ(3) + 3

λε

λ
Nε

)]
+ 2NF

3ε

}

+ O(ε2), (22)

F̄2L
ĝ (αs , αe, λε/λ, Nε)

=
( αs

4π

)2
{
C2

A

[
2

ε4 +
77
6 − 7

12 Nε

ε3

+
175
18 − π2

6 − Nε

(
1 + 2 λε

λ

)
+ N2

ε

36

ε2

+
− 238

27 − 11
36 π2 − 25

3 ζ(3)+ Nε

(
49
27 + π2

72 − 29
3

λε

λ

)
+ 1

6
λε

λ
N 2

ε

ε

]

+ CANF

[
− 7

3ε3 + − 13
3 + 2

9 Nε

ε2 +
64
27 + π2

18 + 2
3

λε

λ
Nε

ε

]

+ CF NF
1

ε
+ 4N 2

F

9ε2

}
−

( αs

4π

)( αe

4π

)
CF NF

Nε

2ε
+ O(ε0).

(23)

As mentioned in the beginning the ĝ form factor in dred is
identical to the gluon form factor in fdh, and Eq. (23) agrees
with the result given in Ref. [35].

Since there are no external ε-scalars in diagrams related
to the gluon form factor internal ε-scalars have to be part of a
closed ε-scalar loop or have to couple to a closed fermion
loop. Hence, the effective coupling λε always appears
together with at least one power of Nε in Eqs. (22) and (23).

The ε-scalar form factor for H → g̃g̃ in dred is given by

F̄1L
g̃ (αs, αe, α4ε, λ/λε, Nε)

=
( αs

4π

)
CA

[
− 2

ε2 − 4

ε
− 2 + π2

6
+ 2

λ

λε

+ ε
(

− 4 + π2

12
+ 14

3
ζ(3) + 4

λ

λε

)]

+
( αe

4π

)NF

ε
+

(α4ε

4π

)
CA (1 − Nε)

×
[

2 + ε
(

4 − π2

12

)]
+ O(ε2), (24)

F̄2L
g̃ (αs, αe, α4ε, λ/λε, Nε)

=
( αs

4π

)2
{
C2

A

[
2

ε4 +
27
2 − Nε

4

ε3 +
281
18 − π2

6 − Nε

9 − 4 λ
λε

ε2

+
469
216 − 5

12π2 − 25
3 ζ(3) + Nε

(
233
216 + π2

24

)
− 16 λ

λε

ε

]

+ CANF

[
− 1

ε3 − 7

9ε2 +
113
54 + π2

6

ε

]}

+
( αs

4π

)( αe

4π

){
CANF

[
− 2

ε3 − 4

ε2 + −2− π2

6 + 2 λ
λε

ε

]

+ CF NF

[
− 3

ε2 + 5

2ε

]}

+
( αs

4π

)(α4ε

4π

)
C2

A (1 − Nε)

[
− 4

ε2 + −16 + π2

6

ε

]

+
( αe

4π

)2
{
CANF

[−1 + Nε

2

ε2 +
1
2 − Nε

4

ε

]
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+ CF NF

[
2 − Nε

2

ε2 + −1 − Nε

4

ε

]
+ N 2

F

ε2

}

+
( αe

4π

)(α4ε

4π

)
CANF (1 − Nε)

2

ε

+
(α4ε

4π

)2
C2

A(1 − Nε)
−3

8ε
+ O(ε0). (25)

Compared to Eqs. (22) and (23) the result with external ε-
scalars is more complicated and includes all combinations of
the couplingsαs, αe, andα4ε . In this result, like in all previous
results, the evanescent coupling αe appears always together
with at least one power of NF and the quartic coupling α4ε

is always accompanied by a factor (1 − Nε).

7.2 Results for equal couplings

During the renormalization process the couplings αs , αe, α4ε ,
and λ, λε have to be distinguished. After renormalization they
can be set equal, giving a simpler form of the final result.5

The results for Nε = 2ε at the one(two)-loop level up to
order O(ε4) (O(ε2)) then read

F̄1L
ĝ =

( αs

4π

){
CA

[
− 2

ε2 − 11

3ε
+ 1

3
+ π2

6
+ ε

14

3
ζ(3)

+ ε2 47

720
π4 + ε3

(62

5
ζ(5) − 7

18
π2ζ(3)

)

+ ε4
( 949

60480
π6 − 49

9
ζ(3)2

)]
+ 2NF

3ε

}
+ O(ε5), (26)

F̄2L
ĝ =

( αs

4π

)2
{
C2

A

×
[

2

ε4 + 77

6ε3 +
77
9 − π2

6

ε2 + − 400
27 − 11

36π2 − 25
3 ζ(3)

ε

+ 5711

162
+ 17

9
π2 − 33ζ(3) − 7

60
π4

+ ε

(
189767

972
+ 65

27
π2 − 1058

27
ζ(3) − 1111

2160
π4

+ 71

5
ζ(5) + 23

18
π2ζ(3)

)

+ ε2
(

4972715

5832
− 233

324
π2 − 26404

81
ζ(3) − 307

360
π4

− 341

5
ζ(5) + 257

1680
π6 − 11

54
π2ζ(3) + 901

9
ζ(3)2

)]

+ CANF

[
− 7

3ε3 − 13

3ε2 +
76
27 + π2

18

ε
− 916

81
− 5

18
π2−2ζ(3)

+ ε

(
− 14603

243
− 8

27
π2 − 604

27
ζ(3) − 59

1080
π4

)

5 If the results of Sect. 7.1 were not desired for independent couplings,
the genuine two-loop diagrams could have been computed in a simpler
way, with all couplings set equal from the beginning—this is what is
done in many applications of fdh and dred in the literature.

+ ε2
(

− 366023

1458
+ 127

162
π2 − 4448

81
ζ(3)

− 257

648
π4 − 98

5
ζ(5) + 61

27
π2ζ(3)

)]

+ CF NF

[
1

ε
− 73

6
+ 8ζ(3)

+ ε

(
− 2045

36
+ 7

18
π2 + 92

3
ζ(3) + 4

27
π4

)

+ ε2
(

− 53269

216
+ 263

108
π2 + 1232

9
ζ(3) + 46

81
π4

+ 32ζ(5) − 20

9
π2ζ(3)

)]
+ 4N 2

F

9ε2

}
+ O(ε3), (27)

F̄1L
g̃ =

( αs

4π

){
CA

[
− 2

ε2 − 4

ε
+ 2 + π2

6
+ ε

14

3
ζ(3)

+ ε2 47

720
π4 + ε3

(62

5
ζ(5) − 7

18
π2ζ(3)

)

+ ε4
( 949

60480
π6 − 49

9
ζ(3)2

)]
+ NF

ε

}
+ O(ε5),

(28)

F̄2L
g̃ =

( αs

4π

)2
{
C2

A

[
2

ε4 + 27

2ε3 +
64
9 − π2

6

ε2

+ − 1211
54 − π2

4 − 25
3 ζ(3)

ε
+ 6052

81
+ 263

108
π2 − 323

9
ζ(3)

− 7

60
π4 + ε

(
263363

972
+ 1489

324
π2 − 1655

27
ζ(3)

− 67

120
π4 + 71

5
ζ(5) + 23

18
π2ζ(3)

)

+ ε2
(

6457043

5832
+ 6803

972
π2− 34459

81
ζ(3)− 15221

12960
π4

− 235

3
ζ(5) + 257

1680
π6 − 16

27
π2ζ(3) + 901

9
ζ(3)2

)]

+ CANF

[
− 3

ε3 − 52

9ε2 + 151

27ε
− 1925

162
− 25

54
π2

− 28

9
ζ(3)+ε

(
− 10538

243
− 46

81
π2− 922

27
ζ(3)− 61

720
π4

)

+ ε2
(

− 291065

1458
+ 419

486
π2 − 8678

81
ζ(3) − 3971

6480
π4

− 382

15
ζ(5) + 203

54
π2ζ(3)

)]

+ CF NF

[
− 1

ε2 + 1

2ε
− 41 − π2

3
+ 12ζ(3)

+ ε

(
− 669

4
− 3

2
π2 + 196

3
ζ(3) + 2

9
π4

)
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+ ε2
(

− 4607

8
− 61

12
π2 + 868

3
ζ(3) + 67

60
π4

+ 48ζ(5) − 10

3
π2ζ(3)

)]
+ N 2

F

ε2

}
+ O(ε3). (29)

8 Conclusions

We have computed the H → gg amplitudes at the two-loop
level in the fdh and dred scheme and presented the MS
renormalized on-shell results up to the order ε2. In dred,
this involves two different amplitudes for H → ĝĝ and
H → g̃g̃ with external gluons/ε-scalars. The computation
is motivated because it contains key elements which consti-
tute important building blocks for further computations, and
because it is essential for the complete understanding of the
infrared divergence structure of fdh and dred amplitudes.

The renormalization procedure has been described in
detail. It is less trivial than in many QCD calculations in cdr,
since not only the strong coupling needs to be renormalized
but also evanescent couplings of the ε-scalar. The computa-
tion provides a further example of the well-known fact that
regardless of whether fdh or dred is used, the evanescent
couplings have to be renormalized independently.

Further, the renormalization of the effective dimension-
5 operators involves mixing with new, ε-scalar dependent
operators. A suitable basis of operators has been provided.
One unavoidable fact is that the extended operator space con-
tains operators which are total derivatives. As a result the
required operator mixing renormalization constants cannot
be obtained in the same elegant way of Ref. [6] as in cdr.
Instead, they had to be obtained from explicit one- and two-
loop off-shell calculations.

The results for the UV renormalized but infrared diver-
gent form factors can also be used to complete the study of
the general infrared divergence structure of two-loop ampli-
tudes in fdh and dred, begun in Ref. [34,35]. From general
principles it is known that all infrared divergences can be
expressed in terms of cusp and parton anomalous dimen-
sions. The results of the present paper allow one to extract
the final missing two-loop anomalous dimension for external
ε-scalars. This extraction, together with further checks and
results, will be presented in a forthcoming paper [51], where
the infrared structure will also be investigated by a SCET
approach.
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Appendix A

A.1 Projectors and form factors of gluons and ε-scalars

According to its Lorentz structure the on-shell Green function
�on-shell
H Âμ Âν

can be represented as

�on-shell
H Âμ Âν

= a (p · r) ĝμν + b pνrμ + c pμrν

+ d pμ pν + e rμrν, (30)

where the coefficients a . . . e are momentum-dependent
quantities, and coefficient a is the gluon form factor. Due
to QCD Ward-identities the relation a = −b holds; see e.g.
Ref. [1]. Accordingly, the on-shell Green function �on-shell

H Ãμ Ãν

with external ε-scalars can be represented as

�on-shell
H Ãμ Ãν = f (p · r)g̃μν, (31)

where we refer to f as ε-scalar form factor. All coefficients
of the covariant decomposition can be extracted with appro-
priate projection operators, which are given below.

In the off-shell case the UV divergence structure of
�H Âμ Âν can be represented in a more specific way as

�H Âμ Âν

∣∣∣
off-shell

UVdiv.
=

[
A + A′ p2 + r2

(p · r)
]

(p · r) ĝμν

+ B pνrμ+C pμrν +D pμ pν +E rμrν,

(32)

where the coefficients A . . . E are now momentum-
independent. Since these divergences can be absorbed by
counterterms corresponding to operators O1 and O4 the rela-
tion A = −B again holds; see e.g. the Feynman rules (35)
and (38). Due to this there are two possibilities of extracting
coefficient A, which corresponds to the desired renormaliza-
tion constant δZ2L

λ : The first one is to extract the coefficient
of (p · r) ĝμν and neglect terms ∝ p2, r2; the second is to
extract coefficient −B. We checked explicitly that the rela-
tions a = −b and A = −B hold throughout the paper.

Again, the covariant decomposition with external ε-
scalars is much simpler and reads

�H Ãμ Ãν

∣∣∣
off-shell

UVdiv.
=

[
F + F ′ p2 + r2

(p · r)
]

(p · r) g̃μν. (33)

The desired coefficient for the computation of δZ2L
λε

is F .
Accordingly, we extract the coefficient of (p · r) g̃μν and
neglect terms ∝ p2, r2.
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The corresponding projection operators are

Pμν

g,(p·r)ĝμν =
{
ĝμν[(p · r)2 − p2r2]

− (pνrμ + pμrν)(p · r)+ pμ pνr2+rμrν p2
}

× 1

(D − 2)(p · r)[(p · r)2 − p2r2] , (34a)

Pμν
g,pνrμ =

{
ĝμν (p · r)[p2r2 − (p · r)2] + pνrμ[(p · r)2

+ p2r2(D − 2)] + pμrν (p · r)2 (D − 1)

+ (pμ pνr2 + rμrν p2)(p · r)(1 − D)

}

× 1

(D − 2)[(p · r)2 − p2r2]2 , (34b)

Pμν

g̃,(p·r)g̃μν = g̃μν

Nε(p · r) . (34c)

A.2 Feynman rules

In the following we give the Feynman rules according to
operators O1, Õ1, O4, and Õ4, which are needed for the
renormalization in the fdh and dred scheme. Feynman rules
including four ε-scalars are not relevant in this paper and are
not given explicitly.

• Feynman rules according to the Lagrangian term λHO1:

(35)

(36)

(37)

• Feynman rules according to the Lagrangian term λεH Õ1

(38)

(39)

(40)

• Feynman rules according to the Lagrangian term HO4:

(41)

(42)

(43)

123



418 Page 12 of 13 Eur. Phys. J. C (2015) 75 :418

(44)

(45)

• Feynman rules according to the Lagrangian term H Õ4:

(46)

(47)
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