
Eur. Phys. J. C (2015) 75:411
DOI 10.1140/epjc/s10052-015-3614-3

Regular Article - Theoretical Physics

Development of Zeldovich’s approach for cosmological distances
measurement in the Friedmann Universe

A. V. Nikolaev1,a, S. V. Chervon1,2,b

1 Ilya Ulyanov State Pedagogical University, 100 years of V.I. Lenin’s Birthday Square B. 4, 432700 Ulyanovsk, Russia
2 Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,

Private Bag, X54 001, Durban 4000, South Africa

Received: 2 June 2015 / Accepted: 12 August 2015 / Published online: 9 September 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We present our development of Zeldovich’s ideas
for the measurement of the cosmological angular diame-
ter distance (ADD) in the Friedmann Universe. We derive
the general differential equation for the ADD measurement
which is valid for an open, spatially flat, and closed universe,
and for any stress energy tensor. We solve these equations in
terms of quadratures in a form suitable for further numeri-
cal investigations for the present universe filled by radiation,
(baryonic and dark) matter, and dark energy. We perform the
numerical investigation in the absence of radiation, and we
show the strong dependence ADD has on the filling of the
cone of light rays (CLR). The difference of the empty and
totally filled CLR may reach 600–700 Mps for a redshift of
f � 3.

1 Introduction

In the present article, we are going to reconsider the issue of
cosmological distances measurement in cosmology. Methods
commonly used by astronomers are collected in the review
[1], a good introduction to this topic.

The angular diameter distance and the luminosity distance
are known for being of much practical use. These two dis-
tances are connected by the following relation [2]:

dl = (1 + f )2da (1)

where dl is the luminosity distance, da the angular diameter
distance, and f the redshift. This relation shows the feasibil-
ity to concentrate our study on the angular diameter distance.

As a rule, the derivation of the angular diameter distance
[1] is undertaken for the homogeneous Universe [3], i.e. all
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matter of the Universe is distributed homogeneously accord-
ing to the assumption.

This assumption is valid for volumes of the order of about
500 Mps as the side of a cube, and it does not reflect the
real situation in the case of the distance measurement when
the beam of light is propagating through a generally small
volume.

Let us briefly define the problem of the cosmological angu-
lar diameter distance (ADD) measurement. The definition of
ADD, which is valid in Euclidean space, is usually extended
to a curved space [4] with the formula

da = z

φ
. (2)

Here, z is the linear size of the object and φ is its angular
size (Fig. 1). In the Friedmann–Lemaitre–Robertson–Walker
(FLRW) geometry we can find the linear size of a distant
object using the metric

ds2 = dt2 − a(t)2
(

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

)
. (3)

For example, in the spatially flat universe, where k = 0,
one can obtain

z = aerφ (4)

where ae is the scale factor at the time of emission. Combin-
ing the expressions above, it is easy to obtain (as commonly
used by astronomers) the equation for the angular diameter
distance:

da = aer. (5)

To obtain the result (5) we used the FLRW metric (3)
corresponding to the homogeneous universe. Therefore, if
we suggested that our universe were not homogeneous in the
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Fig. 1 The angular diameter distance setup. Field and empty cone of
light rays schemes

cone of light rays (CLR)1 of an ADD measurement, then we
must take into account local inhomogeneities inside or close
to the CLR.

What will the ADD measurement be if we take into
account a local inhomogeneity? As far as we know, the first
who dealt with this question was Zeldovich. He presented
the solution for “the homogeneous in the mean Universe”
in [5]. It is interesting to mention that in the monograph [4]
Novikov and Zeldovich noted that during the Symposium in
Burokan (1966), American astronomers reported that famil-
iar ideas were declared by Feynman. Recently in Ref. [6] it
was also confirmed that Feynman pondered over the same
problem, and he also suggested that one should consider a
zero stress-energy tensor inside a light cone.

Considering a congruence of null geodesics, we will use
the following terminology proposed by Penrose [7]:

– The Ricci focusing is the focusing due to the gravitational
effect of intrinsic mass inside the light cone;

– the Weyl focusing is the focusing due to inhomogeneous
clumps of matter along the null geodesics path.

Let us review the main stream of Zeldovich’s original ideas
represented in the papers [5,8]. In the article [5] Zeldovich
introduced “a homogeneous in the mean universe“ and he
analyzed the effect of the local non-uniformity of the matter-
dominated spatially flat Friedmann Universe on the angular
and luminosity distances measurement. It was found for the
ADD under suggestion that there was a negligible amount
of matter inside the light cone and it was possible to neglect
the gravitational effect of that matter. The method applied

1 In line with the term “the cone of light rays“ we will also use the
term “a light cone“ as the cone of null geodesics congruences.

is the integration of numerous lensing deflections due to the
intrinsic mass of a light cone.

The solutions of an ADD measurement for a nonhomoge-
neous nonflat universe were found in the paper by Dashevskii
and Zeldovich [8]. In this paper they also presented the
method for describing Ricci focusing through the photon
momenta. Later on we will explain this approach in detail
where we make use of this method in our study. In the work by
Dashevskii and Slysh [9] the analytical solution for a closed
matter-dominated Universe for a partly filled light cone was
found. They also derived the differential equation on the lin-
ear distance between the two rays emitted by the outer points
of the object. Let us mention here that this equation does not
contain the dark energy component and it may not be applied
for ADD measurement now from the current observational
data.

Let us note that Zeldovich’s original ideas were used after-
wards in a series of papers by Dyer and Roeder [10–12]. Their
papers are much cited and we comment on them briefly.

In the first paper [10] they used Sachs’ equations [13] and
obtained the result which was found in [5]. In the second
paper [12] they obtained a differential equation similar to
the equation from [9] which was valid only for the Universe
without dark energy, because the energy-momentum tensor
was set up as Tμν = diag(ρ, 0, 0, 0). The solution of this
equation proves to be a result from [9]. In the third paper
[11] the result was found for the Swiss Cheese Universe.

In 1976, Weinberg [14] showed that the summation of
gravitational deflection caused by individual clumps of mat-
ter is equal to the effect caused by the homogeneous dis-
tribution of the same mass. This paper narrowed the inter-
est of the community to the effects of inhomogeneity to the
distance measurement and it provides a strong criticism of
the Swiss Cheese Universe model. Nonetheless, Weinberg’s
results are in agreement with Zeldovich’s ideas. Indeed, the
matter enclosed inside a light cone for the homogeneous in
the mean Universe may be considered as a homogeneous
distribution (of a small density). What is the problem with
the direct application of the original solutions of Zeldovich
for calculating cosmological distances? The problem is the
fact that these solutions were obtained in the absence of dark
energy and dark matter, i.e. for the Universe which contains
only baryonic matter. This is controversial in our current
understanding of the Universe. Therefore in the present paper
we are going to extend Zeldovich’s original ideas for solving
this problem in a general form.

Let us mention the series of papers by Alcock and Ander-
son where they discuss the problem of the distance measure-
ment. In the first paper [15] they emphasized the importance
of a correct cosmological distance measurement for calculat-
ing the Hubble constant through gravitational lensing. In the
second paper [16] they presented an original method for the
distance measurement; the so called “effective distance”. The
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problem with their approach is that all our cosmological and
astronomical theories were developed for the angular diam-
eter (luminosity) distance. This is why we are not ready to
apply “effective distance” methods and we are going to keep
commonly accepted definitions of fundamental concepts.

The ideas of Dyer and Roeder were developed by Kan-
towski [17], who constructed an analysis of differential equa-
tions and their solutions for the Swiss Cheese Universe. In
Ref. [18] the solutions for various inhomogeneous cosmo-
logical models were found. We would like to mention the
impact of the work by Schneider and Weiss [19], and Seitz
et al.[20] in the development of Dyer and Roeder’s ideas.

Why should we reconsider previous results in the distance
measurements? From our point of view, the main problem in
these results is that they were obtained for an inhomogeneous
Universe.

Our understanding is that this assumption is too strong,
because it is already proven that the global Universe mass
distribution is homogeneous. Thus we assume that the Uni-
verse evolves like a homogeneous universe, but if we mea-
sure the distance to an object in the space, the effect of Ricci
focusing becomes weaker. The reason is in fact that the den-
sity inside the light cone is smaller than the critical density
of the Universe. Summing up the discussion above we can
state that the Zeldovich model of the Universe (the homoge-
neous in the mean Universe) is very suitable for describing
observations in the present Universe.

Let us explain our last thesis in detail by firstly discussing
the method of Dyer and Roeder. They start from Sachs’ equa-
tions [13], which are a version of the Raychaudhuri equation
for null geodesics [21]. It should be noted that the Raychaud-
huri equation is more general than the Friedmann equation
[22] and it already includes the effects of gravitational lens-
ing.

Starting from these mentioned works by Dyer and Roeder,
physicists are using (as proposed by Penrose [7]) the Weyl
and Ricci focusing for calculating the ADD.

For the Friedmann Universe, the Weyl tensor is equal to
zero (Wiklm = 0) [22]. In the case of small clumps of the
Swiss Cheese Universe, Dyer and Roeder showed [23] that
effects of the Weyl focusing on every clump can be approxi-
mated by the Ricci focusing. This proposition proves Wein-
berg’s results [14]. If we follow Zeldovich’s ideas for the
ADD measurement, then our universe remains a Friedmann
Universe and there are no concentrated clumps of matter on
the line of sight. Thus the effect of the Weyl focusing can be
neglected. To take into account the concentrated clumps of
matter, we suggest that one should use the well-developed
gravitational lensing theory. How will we take the value of
the Ricci focusing in the cases of the ADD measurement? We
will follow the Zeldovich and Dashevskii ideas, which were
published in [8], i.e. we use the fraction of perpendicular and
longitudinal components of the photon.

It should be noted that the interest of the scientific commu-
nity with regards to the problem of a distance measurement
in an inhomogeneous Universe does not end. For example, in
the paper by Bolejko and Ferreira [24], the authors once again
emphasize the importance of the effects of inhomogeneities
in cosmology. We should also mention that our idea of devel-
oping Zeldovich’s original ideas for cosmological distance
measurements is not new. In the paper by Kayser et al.[25]
the differential equation presented in Ref. [9] was used with
the aim of finding the cosmological distance in the Universe
filled with dark energy. Unfortunately, as mentioned before,
the differential equation obtained by Dashevskii and Slysh
for the matter-dominated Universe did not account for dark
energy and could not be applied to the �CDM model. It is
easy to check, by using standard cosmological parameters
and assuming a filled light cone, that the equations obtained
by Kayser et al. [25] give wrong results in this case.

The investigation of inhomogeneities and its connection
to a luminosity distance (LD) has been performed within
the framework of Lemaitre–Tolman–Bondy (LTB) solutions
in the work by Romano et al. [26]. It was shown there
that an inhomogeneous isotropic universe described by an
LTB solution admits a positive, averaged acceleration. Thus,
this model may be considered as an alternative to standard
FLRW cosmology with dark energy (DE). Also, the effect
of inhomogeneities in the presence of a cosmological con-
stant has been considered for LTB solutions which were
only locally inhomogeneous. Finally, as regards LD, it was
found that the luminosity distance as a function of the red-
shift, DL(z), is not significantly affected by small inhomo-
geneities, but the apparent cosmological observables, derived
from DL(z) under the assumption of homogeneity, are signif-
icantly affected because they are sensitive to its derivatives.
Further investigation of the effects of primordial curvature
perturbations on the apparent value of a cosmological con-
stant, using the LTB solution, was performed in the work by
Romano et al. [27].

A series of works [28–33] are devoted to the investigation
of the luminosity–redshift relation up to second order in per-
turbation theory using a very promising geodesic light-cone
(GLC) gauge, first proposed in the work by Gaspirini et al.
[28]. The LCG approach is based on null geodesics as well
and is present in our work. The key differences in the meth-
ods are a consideration of a perturbed FLRW metric in LCG
and the analysis of homogeneous in the mean universe used
in our approach. The luminosity distance was computed to
first order in the longitudinal gauge in the works by Sasaki
[34] and Kasai and Sasaki [35]. For example, in the recent
work by Marozzi [36] the expressions for the redshift and
the luminosity distance–redshift relation in a generic homo-
geneous FLRW universe with anisotropic stress have been
computed with perturbations up to second order.
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Umeh et al. [37] noted that precision cosmology from the
next generation of telescopes should be complemented with
theoretical models of the same level of precision. To this end,
the distance–redshift relation in [37] was extended from first
order to second order in cosmological perturbation theory
for a general dark energy model. In Ref. [38] the derivation
of the distance–redshift relation was presented in detail and
the observed redshift and the lensing magnification to second
order in perturbation theory was found. Let us note that in
[37,38] the ADD and luminosity distance of a source are
considered to be the same, i.e. they are connected with the
Etherington identity [2].

We should stress here that in the present work we are con-
sidering the angle diameter distance in cosmology. It is well
known that for ADD measurements a very small angle (of
a few arc seconds) should be considered. For this reason,
we cannot say anything about a homogeneous and isotropic
universe in this thin cone of light rays and thus the use of
the FLRW metric is questionable in this case. When the
luminosity distance measurement is under consideration, we
use the total celestial sphere, which includes the properties
of homogeneity and isotropy so that the application of the
FLRW metric is justified. From this position, we can tell that
the Etherington identity may have small deviations for large
redshifts [39].

The paper is organized as follows: in Sect. 2 we present
the general approach for the ADD measurement in the Fried-
mann Universe and we derive the equation for the evolution
of the cross-section diameter z of a light beam from a distant
object. We show that the derived equation is valid for any type
of Friedmann Universe, for any forms of energy-momentum
tensor and the equation includes a separate term, which is
responsible for Ricci focusing. In Sect. 3, we apply the gen-
eral formula obtained in Sect. 2 for z for ADD calculation
in the Friedmann Universe of any type, filled by dark energy
and radiation. We demonstrate also that the formula for the
ADD calculation is valid for a wide range of modified gravity
theories. We present the numerical solution for a partly filled
light cone in Sect. 4.

2 ADD in the Friedmann Universe: general approach

Let us start from the definition of the angular diameter dis-
tance (2), which is generally exploited in astronomy. As men-
tioned before, it is the fraction of linear and angular sizes of
the object. In astronomy we generally deal with spherical
bodies and therefore we can simplify our task by consider-
ing the diameter of the object (z in (2)) instead of its area.
As we are discussing a congruence from a distance object of
radial null geodesics which are crossed at a point of observa-
tion (center of our spherical coordinate system), the angle φ

between the boundary points of a diameter z remains constant
by its definition (2).

Let us choose a spherical coordinate system [t, r, θ, φ]
with an observer placed in the center of it. To calculate the
changing of the linear size z during the travel of the light
beams, we have to account for the following effects:

1. Expansion of the universe.
2. The Ricci focusing.

Let us remind ourselves that in the Friedmann Universe
all matter is involved with the Hubble current and in the
comoving coordinates (with the Earth observer in the center),
the spatial coordinates of all particles are not changing ẋi = 0
[40]. Therefore we have to consider not the object itself, but
the photons which are moving along null radial geodesics.
In this context z will be the distance between two light rays
from the end points of the object at the time of emission.
Evidently z will be variable.

Our next task is to derive the differential equation involv-
ing z, which allows us to take into account the effects arising
when measuring distances in a Friedmann Universe.

For the Friedmann–Lemaitre–Robertson–Walker (FLRW)
metric, we will use the two forms

ds2 = dt2 − a2[dr2 + f 2(r)(dθ2 + sin2 θdφ2)] (6)

= dt2 − a(t)2
(

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

)
(7)

where f (r) = sin r, r, sinh r or k = 1, 0,−1 for a closed,
spatially flat, open universe, respectively. For the sake of
simplicity we choose θ = π

2 . Let us in the analysis use radial
null geodesics dφ = 0, then the metric (7) is reduced to

ds2 = a2
(

dt

a
− dr

) (
dt

a
+ dr

)
. (8)

We now define new coordinates

u = η − r, v = η + r (9)

where η = ∫ dt
a is a conformal time. Then we have u = const

for ongoing geodesics (in relation to the observer), and v =
const for ingoing ones. Since we are interested in ingoing
geodesics, we choose v = const or in terms of cosmic time t

dr = −dt

a
. (10)

The co-vector field

kin
α = −∂αv (11)

should be a null one and has to satisfy the geodesics equation.
From the metric (7) it is easy to find

kin
α =

(
−1

a
,−1, 0, 0

)
, kα

in =
(

−1

a
,

1

a2 , 0, 0

)
. (12)
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It is easy to check that kαkα = 0.
Now we will find the affine parameter for kα

in from the
geodesic equation,

kα
;βk

β = ∂kα

∂λ
+ 
α

γβk
γ kβ = 0. (13)

By substituting (12) into (13) we obtain

∂a

∂λ
+ ȧ

a
= 0. (14)

From Eq. (14) we can find the relation for the affine param-
eter,

dλ = −adt. (15)

Using the Eq. (15) we can calculate the expansion of �

[21]:

� ≡ kα
;α = − 2

a2

(
ȧ − f ′(r)

f (r)

)
. (16)

We can also use the geometrical interpretation of the
expansion �:

� = 1

S

∂S

∂λ
. (17)

It is easy to see that a congruence’s cross-sectional area S in
the chosen metric (7) is

S = π z2

4
(18)

where z is the diameter of the cross section.
Our task now is to represent � through z, the distance

between two neighbor rays (one from the beginning of the
object and another from the end of the object). Further, we
will interpret z as the diameter of the cross section if we
assume rotational symmetry in the FLRW metric. For the
sake of simplicity, let the first light ray propagate along the
axis φ = 0. As we noted at the beginning of this section,
we first want to find a differential equation for z in the Fried-
mann Universe. From the definition of the ADD in the curved
space-time (for the FLRW metric (7) da = a f (r)) we have
the distance between the two rays,

z = aφ f (r). (19)

Substituting (19) and (18) into (17) one can find � = − 2ż
az

and using (16) we obtain

ż = z

a

(
ȧ − f ′(r)

f (r)

)
. (20)

For the derivative along the path, using (10), we find

z̈ = z

a

(
ä − ȧ

a

f ′(r)
f (r)

+ f ′′(r)
f (r)a

)
. (21)

We can express f ′(r)
f (r) from (20) and insert it into (21). Then

taking into account that f ′′(r)
f (r) = k, we obtain the equation

for an arbitrary curvature,

z̈ − ȧ

a
ż −

(
ä

a
− ȧ2

a2 − k

a2

)
z = 0. (22)

The initial conditions are

z(t0) = 0, ż|t0 = φ. (23)

The initial conditions are derived from the fact that the
distance at the point of observation between two rays from
the object is equal to zero, and the change in the velocity of
this distance equals the angle of observation by definition,
and the fact that c = 1.

Our next task is to derive the expression for Ricci focusing
in the Friedmann Universe. To this end let us approach the
work in [8] and restore the result for the sake of completeness
without essential changes.

Let us define the angle ψ between the rays by the formula

tan ψ ∼= ψ = −dz

dt
= −φ f (r)ȧ + φ f ′(r) (24)

where (19) and (10) were used. The first ray propagates along
the axis of the coordinates. Let us write the angle ψ as the
ratio of the perpendicular component of the momentum of
the second photon q to its longitudinal component h,

ψ = −q

h
. (25)

Since |q| ≤ h the total momentum P is proportional to the
frequency of the quantum, and it is equal to h. From the
redshift formula, the total momentum P is given by

P = h = h̄ω = K

a(t)
(26)

where K = h̄ω(t0)a(t0) is a constant. From (26) we obtain
the expression for the transverse component q in the case of
propagation in the homogeneous universe,

q = −ψh = Kφ

a

(
ȧ f (r) − f ′(r)

)
,

while for the derivative of this component along the path,
using (10), we find for arbitrary curvature k = {−1, 0, 1}
dq

dt
= hz

[
ä

a
− ȧ2

a2 − k

a2

]
. (27)

Thus we can rewrite (22) using (27)

z̈ − ȧ

a
ż − q̇

h
= 0. (28)

Let us reaffirm for ourselves that we derived the gen-
eral differential equation for the Friedmann Universe where
the part responsible for Ricci focusing is represented by the
separate term. We want to focus attention on the difference
between the resulting differential equation and that obtained
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by Dashevsky and Slysh [9]. The result obtained by them
is valid for the special case—a Friedmann Universe with
�0 = �M = 1. Equation (28) is valid for any type of Fried-
mann Universe: an open, spatially flat or closed model, and
for any expression and form of the energy-momentum ten-
sor. Thus our equation is valid even for modified theories of
gravitation if a Friedmann Universe is involved.

3 Method of ADD calculation

Let us investigate “homogeneous” and “homogeneous in
the mean universe” cases. We will study a Friedmann Uni-
verse filled by a perfect fluid (matter, radiation) with vacuum
energy. We will consider the method of the ADD calculation
for such a universe.

Let us start with the homogeneous universe. The dynamics
of the universe can be described by the Einstein–Friedmann
equations,

ȧ2

a2 + k

a2 = 8πG

3
ρ, (29)

ä

a
= −4πG

3
(3p + ρ). (30)

Using these equations in (27) we can obtain the important
relation

q̇

h
= −4πGz(p + ρ). (31)

Thus Eq. (28) transforms to

z̈ − ȧ

a
ż + 4πGz(p + ρ) = 0. (32)

We can find the solutions for (32) independent of the form
of the scale factor a(t) and compatible with the initial con-
ditions (23),

z =

⎧⎪⎪⎨
⎪⎪⎩

φa sin
∫ t0
t

dt
a : k = 1,

φa
∫ t0
t

dt
a : k = 0,

φa sinh
∫ t0
t

dt
a : k = −1.

(33)

One can easily check these solutions by direct substitution
of the solutions (33) into (32). Thus (33) is the solution for
the homogeneous universe, and the angular diameter distance
can be calculated with the formulas

da =

⎧⎪⎪⎨
⎪⎪⎩

a sin
∫ t0
t

dt
a : k = 1,

a
∫ t0
t

dt
a : k = 0,

a sinh
∫ t0
t

dt
a : k = −1.

(34)

To obtain the dependence da on the redshift f 2, an expres-
sion of the form da = ψ( f ) for the most general cosmolog-

2 It should not be confused with f (r) used in Sect. 2.

ical model (for a mixture of vacuum energy and relativistic
and non-relativistic matter) should involve the equation of
state [3]

− dρ

ρ + p
= 3d ln a. (35)

This equation can be solved for matter (p = 0), radiation
(p = ρ/3), and vacuum energy (p� = −ρ� = const). The
expression for a mixture of them is

ρ = 3H2
0

8πG

[
�� + �M

(a0

a

)3 + �R

(a0

a

)4
]

(36)

where the present energy densities in the vacuum, non-
relativistic matter, and relativistic matter are, respectively,

ρ� = 3H2
0 ��

8πG
, ρM = 3H2

0 �M

8πG
, ρR = 3H2

0 �R

8πG
. (37)

Using (37), the Friedmann equation (30) can be represented
in the form

dt = dx

H0x
√

�S
(38)

where x = a
a0

= 1
1+ f (t = t0 ⇒ x = 1), �k = − k

a2
0 H

2
0

, the

redshift f , and

�S = �� + �k x
−2 + �Mx−3 + �Rx

−4.

Thus following (34) we can present the resulting formulas
for ADD in the form

da =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
1+ f

1
H0

√
�k

sin
∫ 1

1
1+ f

√
�k

dx
x2

√
�S

: k = 1,

1
1+ f

∫ 1
1

1+ f

dx
H0x2

√
�S

: k = 0,

1
1+ f

1
H0

√
�k

sinh
∫ 1

1
1+ f

√
�k

dx
x2

√
�S

: k = −1.

(39)

Let us mention that the result (39) is in agreement with
the widely used formulas represented in [1].

We should mention that (34) is valid for any modified grav-
itational theory where the “Einstein–Friedmann” equations
can be written in the form

ȧ2

a2 + k

a2 = ψ(t), (40)

ä

a
= ξ(t). (41)

Here ξ(t) and ψ(t) are arbitrary functions.
Let us turn our attention to the investigation of the “homo-

geneous in the mean universe” case.
The description of such a universe contains two proposi-

tions: (1) we have a homogeneous distribution of matter over
the whole universe; (2) the interaction between matter and
light rays is negligible under standard observations.
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The proposition (2) means that for this type of universe,
we have q̇ = 0 and Eq. (28) takes the form

z̈ − ȧ

a
ż = 0. (42)

The solution of (42) can be presented in a form compatible
with the initial conditions (23),

z = φ

a0

∫
adt. (43)

Thus, the expression for the angular diameter distance for
any curvature in the case of the “homogeneous in the mean
universe” is

da = 1

a0

∫ t0

t
adt. (44)

Note that the result is valid for any modified gravity theory
when the Friedmann Universe is under consideration.

If we consider the �CDM model, the ADD formula (44),
with the help of (38), transforms to

da =
∫ 1

1
1+ f

dx

H0

√
�� + �k x−2 + �Mx−3 + �Rx−4

. (45)

The obtained expression for ADD coincides with the
solution found by Dashevskii and Zeldovich [5,8], when
�� = �R = 0.

4 Numerical solutions

We now present numerical solutions to Eq. (28) for the partly
filled cone for the present day Universe: k = 0, �R = 0,
�M + �� = 1.

As a first step, we may rewrite the Einstein–Friedmann
equations (29) and (30) for the spatially flat universe,

ä

a
= −4πG

3
(ρ + 3p), (46)

ȧ2

a2 = 8πGρ

3
. (47)

Let us write the solution for the equation of state (35) of a
mixture of matter and vacuum energy

ρ = 3H2
0

8πG

[
�� + �M

(a0

a

)3
]

. (48)

Now we make the substitution of (48) into (46),

ȧ2

a2 = H2
0

[
�� + �M

(a0

a

)3
]

. (49)

The solution (it is also presented in [41], as an exercise) is

a = a0

[√
�M

��

sinh
3

2
H0

√
��t

] 2
3

. (50)

We introduce α as the coefficient of the light cone “fill-
ness”, i.e. α = 1 for the filled cone (with the critical density)
and α = 0 for the empty cone (with null density inside). Thus

Fig. 2 The angular diameter
distance with respect to the
redshift for empty, half-filled,
and filled cones
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we can rewrite Eq. (22) in the form

z̈ − ȧ

a
ż − α

q̇

h
= 0. (51)

Using (50) we can transform (51) into

z̈ − k coth

(
3

2
kt

)
ż + 3

2
αk2

(
sinh

3

2
kt

)−2

z = 0, (52)

with initial conditions z(t0) = 0 and ż|t0 = φ. We know that
da = z

φ
; thus we can rewrite (52),

d̈a − k coth

(
3

2
kt

)
ḋa + 3

2
αk2

(
sinh

3

2
kt

)−2

da = 0, (53)

with initial conditions da(t0) = 0 and ḋa |t0 = 1. In terms of
the redshift f we may calculate te, the time of emission, and
t0, the time of observation, with the relation

t = 1

h0

∫ 1
1+ f

0

dx

x
√

�� + �Mx−3
(54)

for te. For t0 we should select f = 0. The results are shown in
Fig. 2. It is clear from the plots in Fig. 2 that the difference in
the ADD measurement may lead to 600–700 Mps at f � 3.

The GNU Octave code3 for solving (53) may be found on
the web-page http://lgca.ulspu.ru/nikolaev.

5 Conclusions

We extended Zeldovich’s ideas for ADD measurements in
two directions. First, we have a generalization of the ADD
formula from a closed to spatially flat and open Friedmann
Universes. Second, we proposed not only empty and filled
cone of light rays (CLR), but also the partly filled CLR.

These main results are represented by the differential
equation (28) which allows us to separate the effects of the
expansion of an homogeneous universe and Ricci focusing
for congruence of radial null geodesics. It was shown that
this equation consists of a classical solution for the homoge-
neous Friedmann Universe and, as a special case, it reduces
to the equations obtained by Zeldovich et al. The solution
of (28) was presented in quadratures in a form suitable for
further numerical analysis.

The numerical solution for the partly filled CLR was
obtained. From this solution (Fig. 2) it became evident that
the standard ADD measurement (in a universe filled by (dark
and baryonic) matter and dark energy) may be applied for an
object with redshift f of not more than 0.5. For objects with
f > 0.5, the influence of CLR filling became crucial. For
example, for a redshift of f � 3, the ADD may have a differ-
ence of about 600–700 Mps for an empty and a totally filled
CLR.

3 https://www.gnu.org/software/octave/.

These results can help astronomers to improve their calcu-
lations where ADD is involved. We plan to present an exten-
sion of this method to gravitational lensing and a supernova
data analysis in the next publication.
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