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Abstract A consistent BPS formalism to study the exis-
tence of topological axially symmetric vortices in generalized
versions of the Born—Infeld—Higgs electrodynamics is imple-
mented. Such a generalization modifies the field dynamics
via the introduction of three nonnegative functions depending
only in the Higgs field, namely, G (|¢]), w(|¢]),and V (|¢|). A
set of first-order differential equations is attained when these
functions satisfy a constraint related to the Ampere law. Such
a constraint allows one to minimize the system’s energy in
such way that it becomes proportional to the magnetic flux.
Our results provides an enhancement of the role of topologi-
cal vortex solutions in Born—Infeld—Higgs electrodynamics.
Finally, we analyze a set of models entailing the recovery of
a generalized version of Maxwell-Higgs electrodynamics in
a certain limit of the theory.

1 Introduction

The well-known Born-Infeld electrodynamics was origi-
nally introduced to remove the divergence of electron’s self-
energy in classical electrodynamics by introducing a square-
root form of the Lagrangian density replacing the standard
Maxwell-Lagrangian [1,2]. In this way the field strength ten-
sor remains bounded everywhere and the energy associated
to a point-like charge becomes finite. This theory is a distin-
guished member of the family of nonlinear electrodynamics
since it enjoys three properties: (i) the Maxwell weak-field
limit holds, (ii) it shows electric-magnetic duality [3], and
(iii) we have the absence of shock waves and birefringence
phenomena concerning propagation of waves, belonging to
the class of theories called “completely exceptional” [4,5].
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Applications of Born—Infeld electrodynamics within gravi-
tation and cosmology have been considered for many years
[6-10]. This model is, moreover, worthy of special attention
since it appears in the low-energy limit of string/D-brane
physics [11-13].

On the other hand, the study of magnetic vortices gained
great interest since Abrikosov’s description for Type-II
superconductors [14], which arise naturally from the non-
relativistic limit of Ginzburg—Landau (GL) theory [15]. In
field theory, stable vortex configurations came up with the
seminal work by Nielsen and Olesen [16] whose study of
the Maxwell-Higgs (MH) model shows that electrically
neutral vortex solutions correspond to the ones obtained
by Abrikosov. Lately the existence was verified of elec-
trically charged vortex solutions in the Chern—Simons—
Higgs (CSH) [17-22] and Maxwell-Chern—Simons—Higgs
(MCSH) [23,24] models. In all these cases, the presence of
the Higgs fields is essential for the existence of vortex-type
solutions.

Recently, the existence has been intensively studied of
topological defects in generalized or new effective field the-
ories. For example one can introduce noncanonical kinetic
terms [25-32], in order to circumvent the constraints of Der-
rick’s theorem [33] and obtain topological defect solutions
(see e.g. [34,35] for a more detailed account on soliton-like
solutions in field theory). Other models are defined by intro-
ducing generalizing functions on standard field models [36—
54]. In some cases these generalized models provide self-
dual analytical solutions, which certainly enriches our under-
standing of the field [55,56]. Moreover, this procedure allows
one to control properties of the topological defect, such as
its width or energy density, providing valuable models for
the analysis of several physical problems. In the literature
there are many interesting applications of these new solutions
within several different scenarios, in particular involving the
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accelerated inflationary phase of the universe [57] via the
so-called k-essence models [58], strong gravitational waves
[59], tachyon matter [60], dark matter [61], and other topics
[62-64].

Among generalized models the simplest ones are those
generalizing the Maxwell-Higgs model [65], the Chern—
Simons—Higgs model [66], and the Maxwell-Chern—Simons—
Higgs model [67]. Based on earlier work on vortices in Born—
Infeld—Higgs models [68], in Ref. [32] a generalization of
the Born—Infeld-Maxwell-Higgs (BIMH) model was con-
structed within the context of generalized dynamics, but self-
dual or BPS vortices were not found. The main aim of the
present manuscript is to show the existence of self-dual topo-
logical BPS vortices in a generalized BIMH electrodynamics
and study their properties.

2 Generalized Born-Infeld vortices

The Lagrangian density of our (2 4 1)-dimensional theory is
written as

L=p>1-R)+w(ol)Dugl* — W (o), (1

with the definitions

G (oD

W (¢l = B> 11—V (D], 3

where Fy, = d,A, — d,A, is the field strength tensor of
the vector potential A, while the covariant derivative realiz-
ing the coupling between the gauge and Higgs fields is given
by D,¢ = 0,¢ — ieA,¢. The positive functions G (|¢])
and w (|¢|) are the generalizing functions in the kinetic sec-
tor. The generalized potential W (|¢]), a nonnegative func-
tion, inherits its structure from the function V (|¢p|), which is
restricted by the condition 0 < V (|¢]) < 1, s0 W(¢) > 0.
The Born-Infeld parameter, 8, provides a modified dynamics
for both scalar and gauge fields, further enriching the family
of possible models.

From the action (1) the gauge field equations of motion
read

vEHY, 2

G
9 <§F”“) =ewJ", “4)

where J# = i (¢pd"p* — p*d"¢) — 2e A* |p|* plays the role
of a current.
At the static regime, Eq. (4) provides the Gauss law,

9j (Ea'Ao) = 2we’ Ao ¢ )
R ’
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which is saturated by the temporal gauge, Ag = 0. In this way
we see that the model, at static regime and in temporal gauge,
describes electrically neutral magnetic configurations. Under
these conditions, from Eq. (4) the Ampere law reads

G
€kj0; (§B> —ewl; =0, 6)

and Higgs’ field equation becomes

0=w(D;D;¢)+ (djw)D;¢

— D¢ — —— — —, 7
a¢*| T p*  0g* M
where in the last two equations R reads
G 1/2
R = (1 T EBZ) . ®)

The energy-momentum tensor of the model is given by

1
Ty = =G (I8 FP Fgy +w (I6]) (Du$)* Dy
+w (1¢]) (Dyvd)* Dy — guuv L )

In this work we are interested in searching for electri-
cally neutral magnetic vortices and, more specifically, we
will study such solutions at static regime and in temporal
gauge. As is well known in the literature, the axially symmet-
ric vortex ansatz works fine to find such solutions, namely,

a(r)—n

p=vg(r)e", Apg=——"
er

(10)

where n is an integer number and a(r) and g(r) are regular
functions that satisfy the following boundary conditions:

g0)=0, g(o0)=1, (1)
a(0)=n, a(oo)=0. (12)
Using this ansatz the magnetic field is written as
/
B=-2, (13)
er

with the short-hand notation @’ = da/dr.
For the ansatz (10) the Ampere law (6) is expressed as

G\ 2
(—B) = —Zevzwﬂ, (14)

R r
while Higgs’ field equation (7) reads

g d? 1 dw 2 ag\2
0=+ S 2 e n2 _ (_)
& +r r2g+2wdg (g) r
1 B2dG 1 dw
(15)

C4wv? R dg 2wv? dg
where R is given by Eq. (8).



Eur. Phys. J. C (2015) 75:380

Page 30f 9 380

2.1 The BPS formalism

The energy of the vortex is given by the integration of the
Too component of (9) which, in the static regime and in the
gauge Ap = 0, is given by

Too = B2 R~ V) + )’ +w? (%) ae)

and it will be nonnegative whenever the condition R > V is
satisfied. The total energy reads

E =2 / drr [ﬂz (R = V) + wv’(g)? + wv? (%)2} ,
)

where the fields were expressed in terms of the ansatz (10).
We now use the Bogomol’nyi trick [69] to rewrite it as

2
_ 1G 2F s, ag\?2
E_Zn/drr §§<B:Fﬁ,/?) T+ w (g :FT)

:I:B%\/2FG +oun? 28y
1GB?> p?
2 2
R--22 P gy, 18
+8 >R 7 B (18)

where we have introduced the function F' which is, in prin-
ciple, arbitrary but nonnegative, to be determined later in
order to obtain solutions with well defined energy. Using the
definition (8) in the third row, we can rewrite (18) as

E=2n / drr {isﬁszG + 2wv2%g/

+——( /6\/>> +uw? (g5 % )

ﬂ2

2_
R|: (R—V)?+ = (1 V) Fi“ (19)

We observe that, by imposing the expression in the third row
to be null, this allows one to determine the function F in
terms of V and R, namely

1 2 1 2
=5 R=-V) 450V, (20)

which shows that F' is a nonnegative function because 0 <
V < 1. Letus point out that the function F is defined without
considering the self-dual equations or the BPS limit.

Now by considering condition (20) and the expression
(13) for the magnetic field, the energy (19) reads

ev2R

+——( ﬂ\/7> + wo? g:F ) . @

We can now transform the first term in a total derivative
by setting

! V2FG
E = 2mv? f drr { F % <—'B > + g(—ngg/)

(%V 2FG> = 2wgg'. (22)
ev'R

In this way, the energy (21) is written as

E = 2nv2fdrr

2
xwv? (g’ F %> +
.

1 /
F - @)
r

2
G 2F
IR (B T By E) , (23)
where

Q=

p szFG, (24)

ev?

with the function F given by Eq. (20). We can now further
constrain the set of functions G, w, and V in order to attain
a true lower bound for the energy by selecting functions sat-
isfying

Q2(0) =1, Q(co) = finite (25)

Then, by considering the boundary conditions given by Egs.
(25) and (11), the energy reads

E = 27v? |n|
2
(e 98) LG 2k
+2n/drr|:wv (g:Fr>+2R BFpB G .

This clearly shows that the energy possesses a lower bound
E > 27v° |n|, (27)
whenever the functions G, w, and V chosen provide us with

a function €2 satisfying Eq. (25). Such a lower bound is satu-
rated when the fields satisfy the BPS or self-dual equations,

ag

8/ = :l:Ts (28)
B [1—-V2

B = :l:v G (29)

@ Springer
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This is a set of first-order equations that automatically satisfy
the second-order equations (14) and (15), as can be imme-
diately seen by derivation of the former. This is so because
the Euler-Lagrangian equations only imply that a static BPS
solution will be a stationary point of the energy. In Eq. (29)
we have used (20) to compute F in the BPS limit, which
leads to

o 1-v?

- v G0

a nonnegative function due to 0 < V < 1. Similarly, the
nonnegative function €2 (r) is given by

Qpps = BV G(1 = V). 3D

By using the BPS equations (28) and (29), Ampere’s law
(14) can be written as

d
@\/m = —2ev’wg. (32)

This relation allows one to determine one of the generalizing
functions when the other two are given, for example, we can
compute w if we choose the functions G and V. Here it is
worthwhile to notice that Eq. (32) is exactly the condition
(22) in the BPS limit.

To conclude this section, the BPS energy density of the
model, which appears in

Egps =21 f drr epps, (33)
is given by

. ,32 2 2 (48 2
@m-vwl—v>+zwv(7) : (34)

and it will be positive definite whenever the functions 0 <
V(g)<landw(g) > 0.

3 A family of models

In this section we shall focus on the special case

2U
OENIEE (35)

since this choice, in the limit 5 — o0, allows one to obtain
the generalized Maxwell-Higgs model from the Lagrangian
density (1):

L= Fi F*" +w (19 IDuol> — U (I8]).  (36)

G (gD
4
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With this choice the BPS equations read

g ===, (37)
r

-1
B—+ 2_U<1_fg_(2]) , (38)

The condition (32) reads

d
—2UG = —Zevzwg, (39)
dg

and the BPS energy density is

-1/2
epps = 2U (1 - Z—U) / +20%w (@)2. (40)
B2 r
Therefore, the generalized models can be defined by choos-
ing G (g) and U (g) functions which, via the constraint (39),
allow one to find the remaining function w (g). These three
functions must be nonnegative for positive definiteness of
the energy density. In the next sections we shall choose some
models satisfying the constraint (25) and, therefore, their BPS

solutions will saturate the bound (27).

3.1 Some choices for the potential

Next we shall consider two classes of models characterized
by the form of the “potential” U (g). First we will consider,
in each case, the asymptotic behavior of the functions g(r)
and a(r) compatible with the boundary conditions that make
the energy finite and positive, and next solve the BPS equa-
tions. On the other hand we note that 8 is not a constant
characterizing the solutions but rather a parameter determin-
ing a particular model within the family defined by the cor-
responding term in the action (1). In some of the following
numerical cases we shall treat nevertheless f as a free param-
eter for the computations, which means that in those cases
we will be comparing the behavior of the solutions corre-
sponding to different models of the family of generalized
Born-Infeld Lagrangians. In order to perform the numerical
analysis, without loss of generality, we sete = 1 = v.

3.2 Asymptotic behavior for |¢|* models

The |¢)|4-m0dels are described by the function U (g) given
by

1 2,2
U(g)=§(1—g) ; 41
and by the function G (g) whose behavior when r — 0 is

G(g) =ao+oang® +--, (42)
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and when r — oo reads

G@)=af +a™ (1 —g)+ay™ (1—g) +---, (43)
where g, a2, . . ., and oz(()oo), ozgoo), ... are some constants.

By introducing the above information into the BPS equa-
tions (37) and (38), we can compute the behavior of field
profiles when r — 0:

B . ,32 1/2 C,,r"”
g =G = (ﬁ2 - 1) f@ o
,32 1/2 )
N ,32 3/2 Qo + a2) /32 —w C,zlrz"“ L
B —1 ()32 2 dn+1)
(45)

where C,, is a set of constants.
Similarly, we calculate the behavior of the profiles at infin-

ity:
=g ()~ r~exp [—rv/2aef™) ] (46)
a@r) ~rl/? exp [—rﬁ(a(()oo>)_1/4] . 47

These expansions are fully consistent with the assumed
boundary conditions (11) and (12) for the BPS solutions.

3.3 Asymptotic behavior for |¢|® models

In this case, the function U (g) is given by

1
U(g) = §g2(1 - gH% (48)

We consider the behavior of a function G which at origin
takes the form

—2
G(g)=2—2+1/0+)/282+'~, (49)
and at infinity is
G =1+ U-+n A=+ (50

The behavior of the profiles at r — 0 is

n C2r3n+2
r)y~ Cur'* — + - 51
g () n 1) Pt 1)’ (5D
C2 2n+2
a(r)~n-— n” (52)

22+ 1)
Qy-2+ ) ,32 — V-2 Chp4n+2
42 (y_)*r 2n+ 1) "

+...’

while the asymptotic behavior for » — oo is
1 —g(r)~r Vexp [—rfz(yg“)))—l/“] (53)
a )~ r'exp [—rv/207™) 7] (54)

and, again, these expansions are consistent with the problem
under consideration.

3.4 Discussion of results

Once the boundary conditions are fixed, we have performed
numerical solutions of the BPS equations (37) and (38) by
using routines of Maple 16.2. The first numerical results
are obtained by considering fixed values of (= 1.05), and
comparing the standard MH, CSH and BIMH models with
our |¢|4-BIMH and |¢|6-BIMH models. These results are
shown in Figs. 1, 2, 3, and 4. The second numerical anal-
ysis was performed by fixing n = 1 and varying the val-
ues of B(= 1.05, 1.25, 2.00, co), with the resulting profiles
depicted in Figs. 5, 6, 7, and 8 for the |¢>|4—BIMH and |¢>|6—
BIMH models studied in this work. In both scenarios, we

l A
0.8 1 —+— BIMH
- |¢|4—m0del
0.6 1 MH
|0 -model
g —— CSH
0.4 1
0.2 1
04 T
0 1 2 3 4 5 6 7

Fig. 1 Higgs field g(r), forn = 1 and dashed-dotted lines for = 1.5

14

0.8 1

0.6 1

0.4 1

0.2

Fig. 2 Gauge field profile a(r), for n = 1 and dashed-dotted lines for
B=15

@ Springer
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SN
124\
\ — — BIMH
11 - |¢|4—model
— MH
0.8 1 l6/° -model
—— CSH
B 0.6 1
04
02
0 ‘ —_—
0 1 2 3 4 5 6
r

Fig. 3 Magnetic field profiles B(r), for n = 1 and dashed lines for
B=15

3N
\
\ — — BIMH
\ - |¢\47model
R —— MH
|¢\6—model
—— CSH
gbps

Fig. 4 BPS energy density e, (1), for n = 1 and dashed lines for
B=15

have depicted the field profiles g(r), a(r), the magnetic field
B(r), and the BPS energy density egps(r) corresponding to
the different models under comparison.

To further clarify the plots, we note that the first ¢*-model
is defined by

G=1, w=1, (55)

and it represents the standard Born-Infeld-Maxwell-Higgs
model (dashed-dotted red lines in Figs. 1, 2, 3, and 4).

The second one (dashed-dotted green lines in Figs. 1, 2,
3, and 4) is given by the following functions:

G (g) = exp(2g?), w (g) = g exp(2g?). (56)

The ¢6-m0del (dashed-dotted orange lines in Figs. 1,2, 3, 4)
is defined by the functions

3 2
=" w(g==-(1+g". (57)
g 3

@ Springer

- =B=105
——p=125
— ' B=2.00
_B:w
4
0.9 1
0.6 1
g ]
0.4
0.2 1
(U -
0 1 2 3 4

r

Fig. 5 Higgs field profile g(r), for n = 1. Upper figure represents the
|¢|*-model defined by Eq. (56) and the bottom figure represents the
|¢|°-model defined in Eq. (57)

1.07

0.91

0.81

0.7

0.61

0.5

0.4

0.3

0123 45 6 789 012 3 456 789
r r

Fig. 6 Gauge field profile a(r), for n = 1. Left figure represents the
|¢|*-model defined by Eq. (56) and the right figure represents the |¢|°-
model defined in Eq. (57)

For completeness, we also depict the profiles of the standard
MH (solid black line) and CSH models (solid blue line).

In general we see that the introduction of a finite value for
B has a non-trivial impact on the profiles of a(r) and g(r).
This follows from the comparison between the standard ¢*
BIMH model in Eq. (55) (red dashed curve, corresponding
to B = 1.5) and the standard MH system (solid black curve),
with the former vortex being thicker than the latter. We also
see that the impact of changing the G and w functions through
the new |q15|4 and |¢|®-BIHM models introduced in this work
is to made the vortex even thicker (green and orange curves,
corresponding to models (56) and (57), respectively). This
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| 0.15
i
B]S*\‘
RERY 0.10
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0.05 -
0.5 1
0
0 1 2 3 4 5 01 2 3 4 5 6 7
r r

Fig. 7 Magnetic field B(r), for n = 1. Left figure represents the |¢|*-
model defined by Eq. (56) and right figure represents the |¢|®-model
defined in Eq. (57)

\ A
) 0.4
4 | I S B=10s
1 ——-B=125
- ——p=200
25
! == 0.3 1
|
21
Epps
i s h% 0.2 1
SN
Y
™ 0.1
05
0 1 2 3 4 0 1 2 3 4 s
r r

Fig. 8 BPS energy density egps(r), for n = 1. Left figure represents
the |¢|*-model defined by Eq. (56) and right figure represents the |¢|°-
model defined in Eq. (57)

is also reflected in the physical magnitudes characterizing
the vortex, as both the magnetic field and the energy den-
sity profiles (see Figs. 3 and 4, respectively) undergo large
modifications as compared to their standard counterparts. In
general, this means that, at fixed B, one can control thick-
ness and physical magnitudes of the vortex by introduction
of suitable G and w functions.

Hereafter, we depict the profiles for the second and third
models by fixing n = 1 and some values of . From Figs.
5 and 6 we see that for the |¢|*-BIMH model the thickness
of the vortex increases as  decreases, i.e., when the non-
linear effects of the Born—Infeld contribution grow stronger,
while for the |¢|°-BIMH model the new effects play a very
little role, leaving almost unmodified the vortex profile. For
the |¢|*-BIMH model this implies large modifications on the
magnetic field and energy density profiles, since their max-
imum at r = 0 grows quickly with 1/8. On the other hand,

as one could have expected, the tiny modifications on the
vortex profile with 8 in the |¢|®-BIMH model also have lit-
tle effect on the magnetic field and energy density profiles.
For this model these profiles have a different behavior as in
the |¢ |*-BIMH model, since their maxima are not attained at
r = 0, but rather at a finite distance, a feature that holds for
any value of 8.

This analysis shows that the modified-BIHM models
through B corrections do not change the qualitative features
of the physical magnitudes characterizing the vortex, but
are able to introduce quantitative modifications, which can
become large, as in the |¢ |4-BIMH model.

4 Conclusions

In this work we have studied a family of generalized Born—
Infeld theories with a free parameter, f, and three general-
izing functions which are nonnegative. These generalizing
functions are constrained by the condition (32), which is the
Ampere law of the model. We have worked out the theory and
obtained BPS solutions of vortex-type using Bogomol ' nyi
trick and determined the physical properties of the solutions
in terms of the magnetic flux and energy density. It was shown
that whenever the conditions (25) are satisfied, the energy of
the topological vortices has a lower bound

E > 270 |n|, (58)

which is saturated by the self-dual or BPS topological solu-
tions. In the numerical analysis we have employed two
classes of models characterized by the potential term, namely,
|p|* and |¢|® models, and we have depicted the correspond-
ing results for the field profiles and the physical magnitudes
characterizing the vortices. Such results have been compared
to those of the standard Maxwell-Higgs, Chern—Simons—
Higgs, and Born-Infeld-Maxwell-Higgs models.

As observed in other cases of Born—Infeld-type modifica-
tions in the literature, the introduction of finite values for the
Born—Infeld 8 has a non-trivial impact on the field profiles
of the vortices, with the result that the corresponding phys-
ical properties can be controlled by adequate combination
of Born—Infeld modification and w(g) and G(g) functions.
When we vary 8, however, the size of the variation of the vor-
tex properties largely depends on the model chosen, with the
|¢|* one showing important variation, while the |¢|®-one is
almost insensitive to changes in f. Since topological defects
find applications to many context of modern physics as use-
ful tools for the modeling of different kinds of systems, to be
able to modify the physical properties of vortex solutions is
a strong motivation in favor of consideration of this kind of
models. Finally let us mention that the parameter § cannot
be made arbitrarily small. Our numerical analysis shows that

@ Springer
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for all |¢|*-models the solutions are obtained when 8 > 1.In
the case of the |¢|°-models it was observed that when 8 > 1
the numeric computations are always valid. The presence of
a critical minimum value, B, below which numerical com-
putations break down and no solution can be attained, seems
to be a quite general phenomenon occurring in Born—Infeld-
type modifications, as found in other investigations in the
literature [32,70,71]. In those cases, around B, the physi-
cal magnitudes characterizing the topological defect change
abruptly as g is slowly varied, as happens in our case. Though
some research has been performed as regards the implications
of this feature, this issue remains unsolved. To conclude, we
point out that the results presented here could be generalized
to include non-symmetric BPS fields.
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