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Abstract We investigate unitarity within the complex-
mass scheme, a convenient universal scheme for perturba-
tive calculations involving unstable particles in quantum field
theory which guarantees exact gauge invariance. Since this
scheme requires one to introduce complex masses and com-
plex couplings, the Cutkosky cutting rules, which express
perturbative unitarity in theories of stable particles, are no
longer valid. We derive corresponding rules for scalar theo-
ries with unstable particles based on Veltman’s largest-time
equation and prove unitarity in this framework.

1 Introduction

With the discovery of the Higgs boson at the large hadron
collider nature again reflects not only the relevance of funda-
mental principles such as gauge invariance as they are incor-
porated in theories like the standard model (SM), but also that
unstable particles are as much important as stable ones. The
majority of the known fundamental particles are unstable,
and in physical observables unstable particles usually play a
significant role.

Precision predictions within perturbative quantum field
theories (QFT) are still a challenging task, especially when
unstable particles are involved. Unstable particles are of a
non-perturbative nature in the sense that in the usual leading-
order (LO) perturbation theory all particles are stable. As a
consequence near thresholds or resonances observables even
diverge in standard perturbation theory because important
contributions are missing. A proper treatment requires the
inclusion of finite-width effects via a finite imaginary part
in the denominator of the Feynman propagator at least near
the poles of unstable particles. In perturbation theory, this
imaginary part results from a resummation of self-energies.
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To date there is no fully established treatment of unstable
particles within perturbation theory, although many solutions
have been proposed. The problem arises from the need to
resum self-energies, thus introducing a mixing of perturba-
tive orders. If done carelessly, this leads to violation of gauge
invariance and gauge independence. Thus, the naive modifi-
cation of the propagator to include a constant fixed width, the
so-called fixed-width scheme, violates Ward identities. When
performing precision calculations for Z production at LEP it
turned out that the renormalization of the Z-boson mass in
the usual on-shell renormalization scheme introduces a gauge
dependence, as pointed out by Stuart and Sirlin [1–3].

For inclusive observables that are dominated by the pro-
duction of on-shell unstable particles with a small width,
finite-width effects can be neglected if the required precision
is small compared to the ratio of width and mass of the unsta-
ble particles. This so-called narrow-width approximation is,
however, insufficient for many applications. A straightfor-
ward gauge-invariant method for the inclusion of the finite
width is the factorization scheme introduced in Ref. [4],
which consists in the multiplication of the matrix elements
with a global resonance factor. However, for more compli-
cated processes it becomes non-trivial to achieve a preci-
sion beyond LO. The fermion-loop scheme [5,6] exploits
the fact that taking into account only closed fermion loops
at the one-loop order allows to perform a gauge-invariant
and gauge-independent resummation. By construction this
method is restricted to leading-order predictions and to res-
onances that decay exclusively into fermions. The idea of a
gauge-invariant resummation can be carried further by using
the background-field method [7–9] which allows one to per-
form a Dyson summation without violating Ward identities
[10]. While the resummed self-energies still depend on the
quantum gauge parameter, this dependence can be fixed by
definition, e.g. by using a specific gauge or the prescription
of the pinch technique [11]. In practice these methods would
require complete NNLO calculations to get NLO accuracy
in the region of the resonance. The pole scheme proposed
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in Refs. [12,13] is based on the fact that both the location
of the pole and the residue of the propagator of an unsta-
ble particle are gauge independent. It allows one to com-
pute gauge-invariant matrix elements to arbitrary orders via
a Laurent expansion around the complex pole. In practice
this method gets quite involved in higher orders (see e.g.
Ref. [14]), and usually only the leading terms in the Laurent
expansion are taken into account, which is called the leading-
pole approximation. Furthermore, effective-field theory can
be used to describe unstable particles. In the method of
Refs. [15,16] non-local gauge-invariant effective operators
are introduced that allow for the gauge-invariant resumma-
tion of self-energies via appropriate choices of free parame-
ters. In the effective-field-theory approach of Refs. [17,18]
an expansion in the coupling constant and in the distance
from the pole is performed simultaneously. This basically
yields a field-theoretically elegant way to the pole approxi-
mation and can easily be combined with further expansions
(see Ref. [19] for a recent application).

The most straightforward method to describe unstable par-
ticles in perturbation theory is the complex-mass scheme
(CMS) [20–22]. It is fully gauge-invariant, valid everywhere
in phase space, basically of the same complexity as a cal-
culation for stable particles and applicable to higher orders
in perturbation theory [23–26]. Finite widths are introduced
by analytically continuing the renormalized mass parameters
to appropriate complex values. The introduction of complex
parameters immediately raises the question how unitarity is
implemented in this scheme. Unitarity is not expected to be
violated because the bare Lagrangian is left untouched and
only the renormalization procedure is modified as compared
to the standard treatment. Therefore any violation of unitar-
ity should be beyond the order of perturbation theory taken
into account completely. It has been shown by Veltman [27]
within non-perturbative QFT that unitarity is fulfilled in a
theory with unstable particles provided that the unstable par-
ticles are excluded from asymptotic states. Since the CMS
provides a perturbative description of the full theory it should
not violate unitarity, if observables are correctly computed
in a valid perturbative regime. Moreover, the CMS guar-
antees exact gauge cancelations through gauge invariance
order by order in perturbation theory. Unitarity within the
CMS has been touched upon in Ref. [23]. Unitarity in the
CMS in a model with a heavy vector boson interacting with
a light fermion has been investigated at the one-loop level in
Ref. [28].

The aim of this paper is to study unitarity in scalar field
theories in the CMS. In Sect. 2 we briefly review unitarity
and the largest-time equation in the case of stable particles
and in Sect. 3 we summarize the CMS. In Sect. 4 we investi-
gate the realization of unitarity in the CMS by constructing
and exploiting a suitable largest-time equation for unstable
particles.

2 Unitarity and Veltman’s largest-time equation
for stable particles

2.1 Unitarity

In the language of QFT unitarity means that the S matrix is
unitary, i.e. S†S = 1. Separating the non-interacting contri-
butions from S via S =: 1+ iT , one obtains the well-known
relation

T †T = i(T † − T ) (2.1)

for the transition matrixT . A simple consequence of unitarity
is the optical theorem, which states that the imaginary part
of a forward scattering amplitude Ti i is proportional to the
total cross section:

σtot = flux factor × Im [Ti i ] . (2.2)

The connection between (2.1) and the optical theorem (2.2)
is established when considering elements of the transition
matrix with definite initial and final states,

i(T ∗
i f − T f i ) =

∑

k

T ∗
k f Tki , (2.3a)

where the sum runs over all possible intermediate states k and
total 4-momentum conservation is implied. In scalar theories,
where Ti f = T f i , since the matrix elements do not depend
on the direction of the momenta, or in general for forward
scattering (i = f ), the previous equation can be written as
follows:

(2.3b)

The so-called shadowed region is given by T ∗ while the nor-
mal region is given by T and both transition amplitudes are
connected by on-shell states which is visualized as a cut (dark
hatched line). We call the equations (2.3) in the following the
unitarity equation. Unitarity is verified by computing the left-
hand side of the unitarity equation and comparing it to the
right-hand side for all possible initial and final states. Direct
computation of the left-hand side can be quite involved espe-
cially beyond the one-loop level, but with the help of cutting
rules, which we introduce in the next section, the problem is
solved theoretically and practically.

2.2 Veltman’s largest-time equation and unitarity

The LTE can be seen as the analog to Cutkosky’s cutting rules
[29], but it is straightforward to derive and needs less math-
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ematical tools. The derivation of the LTE for stable particles
can be found, for instance, in Refs. [27,30], and it is based on
a decomposition of the Feynman propagator in space-time
representation. This decomposition is done, in the case of
stable particles, in positive- and negative-time parts in such
a way that positive (negative) time is connected to positive
(negative) energy flow and vice versa.1 Let �F(x− y) denote
the Feynman propagator of a scalar particle in space-time
representation

�F(x − y) = 1

(2π)4

∫
d4 p

e−ip(x−y)

p2 − m2 + iε
, (2.4)

where iε (ε > 0) is an infinitesimal imaginary part that
ensures causality, then the decomposition is the following:

Decomposition theorem: There exist functions �± with the
properties

�F(xi − x j ) = θ(x0
i − x0

j )�
+(xi − x j )

+ θ(x0
j − x0

i )�
−(xi − x j ), (2.5)

�±(xi − x j ) = −(�∓(xi − x j ))
∗ = �∓(x j − xi ),

where �+(xi − x j ) and �−(xi − x j ) correspond to positive
and negative energy flow, respectively.

In Fourier space they take the simple form

�±(p,m2) = ∓2iπθ(±p0)δ(p
2 − m2). (2.6)

Given such a decomposition, one can define extended Feyn-
man rules:

The underline operation: Given a Feynman diagram F
defined by a set of vertices {xi } and corresponding couplings
{gi },we define new diagramswhere one ormore of the space-
time points xi can be underlined, i.e. xi → xi . This operation
shall have the following consequences for propagators con-
necting the vertices in the original diagram:

• i�ki = i�F(xk − xi ) is unchanged if xk, xi are
unchanged,

• i�ki is transformed as i�ki → i�+
ki = i�+(xk − xi ) if

xk → xk , but xi remains unchanged,
• i�ki is transformed as i�ki → i�−

ki if xi → xi , but xk
remains unchanged,

• i�ki is transformed as i�ki → −i�∗
ki if two connected

space-time points xk, xi are underlined,

1 The energy-flow direction is related to the sign of p0, where p0

is the zeroth component of the four-momentum. We prefer to speak
about positive- and negative-time parts instead of positive- and negative-
energy parts because of the generalization to unstable particles intro-
duced in Sect. 4.2.

• any underlined space-time point implies a factor −1 for
the corresponding vertex, i.e. if xk → xk , then the corre-
sponding coupling is replaced as igk → −igk .

At the level of Feynman diagrams the underline operation
is indicated by a circle © at the corresponding underlined
space-time points. The rules stay the same for couplings with
imaginary part; in particular, we stress that the coupling gi
is not complex-conjugated for underlined xi .

As has been shown by Veltman in Ref. [27] (see also
Ref. [30]), the following equation can be derived from these
rules:2

Largest-time equation: Given a Feynman diagram F
defined by a set of vertices {xi } and corresponding couplings
{gi }, if the Lagrangian is hermitian and all propagators ful-
fill the decomposition theorem, then the following equation
holds:

∑

underlinings

F(x1, . . . xi , . . . , x j , . . . , xN ) = 0, (2.7)

where the sum runs over all possibilities of underlining ele-
ments xi (calledLTEdiagrams in the following). In total there
are 2N contributions where N is the number of vertices.

We note that the LTE holds both for truncated or non-
truncated diagrams, and as the prescription (2.7) is linear it
does also hold for sums of diagrams and for complete ampli-
tudes T .

The unitarity equation (2.3) is recovered by extracting
two contributions from the LTE, namely the one where
none of the vertices are underlined and the one where all
of them are underlined, i.e. T (x1, . . . , xi , . . . , xN ) and
T (x1, . . . , xi , . . . , xN ). These two contributions match iT f i

and −iT ∗
i f and shifting them to the other side of equation

(2.7) we obtain the identity visualized in step ➀ of (2.8),
where the primed sum over underlinings stands for the sum
over all possible LTE amplitudes except for iT f i and −iT ∗

f i

(2.8)

The right-hand side of (2.3), i.e. step ➁ of (2.8), is obtained
by applying the kinematic constraints, i.e. the θ and δ func-
tions, imposed by the explicit solutions �± (2.6). LTE ampli-
tudes not satisfying these constraints vanish and the remain-
ing ones can be written in terms of all possible ways of
connecting amplitudes TL with complex conjugated ampli-
tudes T ∗

R via cut propagators (step ➁). The cut propaga-

2 Equation (2.7) is actually a consequence of Veltman’s LTE. For the
sake of simplicity we use the term LTE for this equation in the following.
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tors �± are the solutions (2.6) which represent propagators
where one space-time point is not underlined while the other
is. Thus, each non-vanishing LTE amplitude has two well-
defined regions, a region with the usual Feynman rules which
is always connected to the incoming particles and a region
with the “complex-conjugated” Feynman rules (underlined
vertices) which is always connected to outgoing particles. Put
in other words: four-momentum conservation and the given
values of external four-momenta forbid certain contributions
to the LTE, and the contributions left are the ones where the
energy flows from incoming particles to outgoing particles as
it is required by the unitarity equation (2.3). The property of
LTE amplitudes to fall apart into two separate regions, thus
justifying the representation of ➁, is called cut structure in
the following and reviewed in Sect. 4.3.1.
Cutkosky’s cutting rules: The underline operation together
with the LTE is equivalent to Cutkosky’s cutting rules,
namely that the discontinuity of an amplitude is obtained by
replacing propagators in all possible ways by on-shell propa-
gators (2.6), but it is constrained in such a way that the energy
flows from the initial to the final states. For more details, in
particular for the derivation of Cutkosky’s cutting rules, we
refer to the original reference [29]. In the following the ter-
minologies Cutkosky’s rules, cutting rules, and LTE with the
usual on-shell cut propagator (2.6) are used as synonyms.

2.3 A decomposition for dressed propagators

The applicability of the LTE is not restricted to amplitudes
and can be applied to Green’s functions. A cut amplitude
can be expressed in terms of cut two-point functions which
requires a decomposition, similar to the case of the usual
Feynman propagator, for two-point functions. The decompo-
sition can be achieved for dressed propagators via the Källén–
Lehmann representation as has been shown by Veltman in
Ref. [27]. Applying this idea to the unitarity equation leads
to a reinterpretation of the right-hand side of (2.8) where sim-
ple cut propagators are replaced by cut two-point functions

(2.9)

where TL,R denote the subamplitudes on the left- and right-
hand sides of the cut. The cut two-point function is given by

(2.10)

and the dotted lines in (2.9) indicate that we can have an arbi-
trary number of cut propagators. The equality ➂ holds only

for the sum of all cut amplitudes. From the perturbative point
of view the equality follows by inserting the cut two-point
function on the right-hand side of (2.9) and by identifying
TL,R with T ′

L,R supplemented by all non-cut parts of (2.10).

3 The CMS

When dealing with gauge theories it is crucial to guaran-
tee gauge invariance which is more involved when unstable
particles are present. As pointed out in the introduction, var-
ious methods have been developed to describe unstable par-
ticles in perturbation theory, but most are only valid near the
resonance and lack validity in general phase-space regions.
In contrast, the CMS is valid in the full phase space. Its
underlying idea is an analytic continuation in the masses of
the unstable particles. Being analytic relations not involving
complex conjugation, the Ward identities are not violated by
such a modification. In practice, the renormalized Lagrangian
is rewritten by replacing any appearing mass corresponding
to an unstable particle with the complex one in such a way
that the bare Lagrangian is not changed. In a way the CMS is
just a renormalization scheme with complex renormalization
constants.

We sketch the procedure: In the first step renormalized
parameters are introduced. Let m0 denote the bare mass of
an unstable particle, then introduce

m2
0 =: μ2 + δμ2. (3.1)

The complex mass μ2 is attributed to the propagator and
resummed, while the counter term δμ2 is treated as a vertex
and not resummed.

Thus, the LO propagator in the CMS reads

�F(x − y, μ) := 1

(2π)4

∫
d4 p

e−ip(x−y)

p2 − μ2 , (3.2)

or in momentum space

�F(p, μ) = 1

p2 − μ2 . (3.3)

The usual causality iε prescription [see (2.4)] becomes irrel-
evant owing to the finite imaginary part of μ2 = M2 − i�M .

The procedure implies that the mass counter terms are
complex. Since the bare mass is real, the following consis-
tency equation holds:

Im[μ2] = −Im[δμ2]. (3.4)

Couplings that are purely real in the conventional framework
become complex in the CMS if they are related to the masses,

123



Eur. Phys. J. C (2015) 75 :377 Page 5 of 16 377

which is, for instance, the case for the electroweak mixing
angle in the Glashow–Salam–Weinberg theory [20,22].

We have to employ suited renormalization conditions in
order to fix the finite part of the parameters. Usually this is
done in the on-shell scheme which is distinguished by the
fact that the renormalized parameters are equal to physical
observables. More concretely, one requires that the renor-
malized two-point function of a stable particle near its mass
p2 = m2 is given by the Feynman propagator (2.4). This con-
dition does fix both the mass renormalization and the field
renormalization (see e.g. Ref. [31]). The on-shell scheme can
be extended to the case of unstable particles, and the appro-
priate renormalization conditions read [20,22]:

	R(p2)|p2=μ2 = 0, 	′
R(p2)|p2=μ2 = 0. (3.5)

Here 	R denotes the renormalized self-energy of the unsta-
ble particle and 	′

R is the corresponding renormalized self-
energy differentiated with respect to p2. The renormaliza-
tion conditions (3.5) together with the requirement that the
bare Lagrangian is real, yielding consistency equations like
(3.4), outline a gauge-invariant renormalization procedure.
Apart from the validity of Ward identities one must make sure
that the renormalization conditions do not introduce a gauge
dependence. Given the fact that the complex pole is gauge
independent, the renormalization point and the renormaliza-
tion condition (3.5) are gauge independent. Those proofs
were carried out by Stuart [1], Sirlin [2,3,32], Gambino and
Grassi [33] and Grassi et al. [34].

Even though the renormalization conditions are similar to
the ones in the on-shell scheme the difference may be signif-
icant as it is the case in the SM for the mass prediction of the
W and Z bosons [35]. In view of gauge theories and physi-
cal observables, the complex pole is more than a theoretical
construct and should be seen as the analog to the mass for
stable particles. For a discussion we refer to Ref. [36].

4 Unitarity in the CMS for scalar field theories

In the CMS the Cutkosky rules are not valid in the sense that
their application does not yield the same result as one would
get by direct computation of the left-hand side of the unitarity
equation (2.3). For instance, the Cutkosky rules require that
the discontinuity of the tree-level s-channel diagram vanishes
for s �= m2,

−2 Re

⎤
⎦

stable

=
0 if s �= m2

undefined if s = m2 .

(4.1)

Replacing the stable particle with an unstable one, the direct
computation yields

−2 Re

unstable

=
ΓM

(s − M2)2 + (ΓM)2
�= 0 ∀s.

(4.2)

In view of the LTE the reason is that the preconditions are not
fulfilled and we cannot use the cutting rules for a propagator
without having shown that there is a valid decomposition
(2.5).

As a consequence of the analytical continuation of the S
matrix to complex masses algebraic relations are untouched,
but operations where complex conjugation is involved are
no longer preserved as is the case for the unitarity equation.
The CMS guarantees gauge invariance, but it is no longer
clear how unitarity is implemented. Veltman has shown [27]
that for a super-renormalizable theory the S matrix in non-
perturbative QFT is unitary on the Hilbert space spanned by
only stable particles,

i(T ∗
i f − T f i ) =

∑

|k〉 ∈ stable particles

T ∗
k f Tki . (4.3)

Starting from the Källén–Lehmann representation for unsta-
ble particles which, in contrast to stable particles, lacks a
one-particle pole on the real axis, he showed unitarity by
deriving a LTE for dressed propagators.

We apply this idea to the CMS in perturbative QFT, derive
a corresponding LTE and show that amplitudes T computed
within the CMS at a perturbative order gn for a fixed kine-
matic configuration are unitary up to higher orders,

i(T ∗
i f − T f i ) =

∑

|k〉 ∈ stable particles

T ∗
k f Tki + O(gn+1), (4.4)

where two sources of higher orders emerge. The first source
are kinematically suppressed terms in the LTE, which are
effectively suppressed by O(�) ∼ O(g2), and the other one
are corrections due to the resummation of finite-width terms
in the CMS. Both turn out to result in non-relevant perturba-
tive corrections of order O(gn+1).

4.1 Sketch of the proof

We restrict the discussion to a simple scalar toy model. It
consists of an unstable real scalar field φ with mass squared
μ2 = M2 − i�M and a stable real scalar field χ with mass
m and the interaction

LI =
g

2!
φχ2 ⇔ = ig . (4.5)
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Owing to the required resummation of the width in the res-
onant propagators there is no unique perturbative order for
Feynman diagrams or matrix elements in the CMS. The CMS
propagator 1/(s − μ2) affects the perturbative order (it is of
order 1/M� in the resonance region but of order one other-
wise), but has no Taylor expansion near the resonance, i.e. for
s ≈ M2. Since �M is of order g2M2, the change in pertur-
bative order occurs near the resonance. The lack of a unique
perturbative order of amplitudes complicates the investiga-
tion of perturbative unitarity in the CMS. However, we can
speak of relative orders in the sense that if the left-hand side
of the unitarity equation has a phase-space-dependent order
then also the right-hand side does, and the difference in the
orders is independent of the phase-space region.

Our strategy concerning perturbative expansion is as fol-
lows: We rely on perturbation theory in the CMS. We do
never expand resonant propagators in the amplitudes. We do,
however, expand resonant cut propagators �± (if not stated
otherwise, � denotes the propagator of the unstable particle
in the following). In our model, the width of the unstable par-
ticle is of order of the coupling squared, i.e. O(�) = O(g2).
This allows one to define a consistent power counting in the
region of a resonance and away from it. While the absolute
power counting depends on the phase-space region, the rel-
ative power counting does not.

We here briefly sketch our derivation of Veltman’s unitar-
ity equation (4.3) in the CMS, to be elaborated in the fol-
lowing subsections. It is done in four steps, similarly to the
three steps ➀, ➁ and ➂ of Eqs. (2.8) and (2.9) described in
Sect. 2.3. In Sect. 4.2 we construct a decomposition of the
CMS propagator of the form (2.5). Then it follows imme-
diately that we can compute the left-hand side of (4.3) via
the LTE [step ➀ in (4.6)] as long as we consider interactions
with couplings that are either real or have a corresponding
complex-conjugated counterpart in the interaction part of the
Lagrangian,3

−2 Re =
�1

∑′
underlinings

LTE

=
�2

∑
cuts

TL TR + O gn+1) .

(4.6)

3 For real couplings that become complex in the CMS (e.g. the mix-
ing angles in the standard model), the LTE is still valid because their
complex-conjugated part is located in the corresponding counter term
which follows from the fact that the bare coupling is real. Thus, any
unitarity-violating terms from those complexified couplings are triv-
ially of higher order.

Otherwise the LTE is still valid, but the amplitude with
all space-time points underlined is not any more equal to the
complex-conjugated amplitude, and the left-hand side of the
unitarity equation can no longer be related to contributions
to the LTE.

The preconditions for this identification are automatically
fulfilled for interaction vertices if the bare Lagrangian is
real. The argument fails for the imaginary mass counter term
Im[δμ2] because the corresponding counter part resides in
the resummed propagator, thus, we have a mismatch in the
perturbative order and we have to take care of this contribu-
tion differently.

In Sect. 4.3.1 we review kinematic arguments needed for
identifying cut contributions and we investigate the cut struc-
ture and changes when unstable particles are present.

In Sect. 4.3.2 we explain how to compute the LTE ampli-
tudes when taking into account the imaginary mass counter
term. We show that the LTE amplitudes are obtained in the
usual way except for the cut contributions where each mass
counter term insertion must be rewritten appropriately.

In Sect. 4.3.3 we show to all orders, using the representa-
tion introduced in Sect. 4.3.2, that LTE amplitudes within the
CMS split into a normal region T and a complex-conjugated
region T ∗, up to terms of higher perturbative order, i.e. we
show that step ➁ in (4.6) holds. The circles attached to TR

in (4.6) indicate that TR is completely underlined (in the
sense of Sect. 2.2). The plain (dashed) lines represent stable
(unstable) particles, and the dots indicate that we can have
an arbitrary number of cut propagators. In order to identify
higher orders we need to expand in �/M . We do not perform
the expansion for the whole amplitude, but only for the cut
propagators of the unstable particles �±. We proof that LTE
amplitudes containing kinematically suppressed, or equiv-
alently, non-resonant �± do not contribute to the unitarity
equation in the considered order but are always of higher,
irrelevant order.

In Sect. 4.3.4 we investigate resonant cut contributions.
Resonances in �± play an essential role as they represent
kinematically allowed channels found on the right-hand side
of the unitarity equation. We point out that it is important
to distinguish the resonances appearing in the matrix ele-
ments TL, TR and resonant cut contributions (�±) in view
of unitarity. The former do always appear in the same way
on both sides of the unitarity equation, thus enhancing both
sides of the unitarity equation equally and we do not need to
consider them at all. We stress that we only expand unsta-
ble cut propagators, but never uncut propagators. Expanding
unstable cut propagators at leading order in �/M , we find
that a resonant �± of an unstable particle is just a δ func-
tion [see (4.12)] which seems to be in conflict with the fact
that unstable particles should not appear as asymptotic states.
However, we show that the δ function can be interpreted as a
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cut self-energy of the unstable particle, thus being consistent
with Veltman’s statement.

In order to proof unitarity in the CMS beyond one loop we
reformulate the LTE in terms of nested LTE amplitudes of
two-point functions in Sect. 4.3.5 yielding the representation
on the right-hand side of the following equation:

(4.7)

The leading-order result of our expansion (see Sect. 4.3.4)
serves as the induction start for showing unitarity in general.
From (4.7) unitarity is implied given that

(4.8)

holds, and we recover the same expression as for stable par-
ticles [(2.9) of Sect. 2.3]. In the final step we make use of
the fact that the CMS partially resums contributions and this
partial resummation appears in the mass counter term. Rear-
ranging the LTE in terms of two-point functions, unitarity-
violating terms cancel between self-energy terms and mass
counter terms (see Sect. 4.3.5).

4.2 Decomposition for the CMS propagator

We start with the construction of a propagator decomposi-
tion in the case of the CMS. Since the decomposition is not
unique, we list our assumptions which led to it. Basically, one
decomposes the propagator into positive- and negative-time
parts and adds something to these parts which is zero for pos-
itive and negative times, respectively. Working out this idea,
one realizes that the allowed transformations have always, in
Fourier space, the form of an advanced and retarded propa-
gator �A/R. Hence, our approach consists of defining mero-
morphic functions �A/R with similar pole structure as in
the case of stable particles, and among possible restrictions
Occam’s Razor suggests

�F(p, μ) − �A(p0,p, M, �)
!= �+(p0,p, M, �),

�F(p, μ) − �R(p0,p, M, �)
!= �−(p0,p, M, �), (4.9)

∫
dp0 �A/R(p0,p, M, �)e±ip0

∣∣x0
∣∣ = 0.

The function �A/R must be chosen such that �± fulfills the
decomposition theorem (2.5). The third equation is the con-

dition that the advanced/retarded propagator has only poles in
the upper/lower complex plane as it should be. Consequently,
we have the same situation as in the case of stable particles,
namely θ(±x0)FT[�A/R](x) = 0, where FT denotes the
Fourier transformation. Furthermore, we require that, sim-
ilar to the case of stable particles, the retarded propagator
turns into the advanced propagator by complex conjugation
and vice versa, which is our last assumption

�A(p0,p, M, �) = (�R(p0,p, M, �))∗. (4.10)

Given these restrictions one can easily derive the unique solu-
tions for �±. In Fourier space they read

�±(p, μ) = i Im

[
1

p̂0(p0 ∓ p̂0)

]
with p̂0 =

√
p2 + μ2.

(4.11)

As a first but very important result one verifies that in the
limit � → 0+ our solutions turn into the stable ones, i.e.

lim
�→0+ �±(p2, μ2) = ∓2π iθ(±p0)δ(p2 − M2). (4.12)

In view of consistency, this means that there is a smooth
transition from unstable to stable propagator as the mass M2

tends below the kinematic limit of instability. On the other
hand, this result tells us that in a perturbative expansion in �

the leading-order “cut” contribution is equal to the cut con-
tribution of a stable particle with the same mass. We note
that �±(p, μ) for finite � does neither involve a δ nor a θ

function. Thus, energy can flow in both directions and the
realization of causality is more involved for unstable parti-
cles.

Apparently, two problems appear:

• Given an S matrix, an expansion in small � can often
be performed only in a distributional sense, even though
perturbation theory predicts O(�) = g2, where g is the
coupling constant. For instance, for the s-channel pro-
duction of an unstable particle the width is crucial for
the finiteness of the result. The question is when we are
allowed to do a naive expansion or when is it actually nec-
essary since we only want to verify the unitarity equation
(2.3).

• At first sight the fact that the cutting rules for the CMS
propagator for � → 0+ coincide with the ones for stable
particles might interfere with Veltman’s result, namely
that only stable particles appear as asymptotic states in
the unitarity equation (4.3).

The two points do not pose any problems, as we show in the
upcoming sections.
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4.3 Cutting rules for unstable particles

4.3.1 Kinematic restrictions

The cutting rules are a special case of the LTE relations where
many terms in (2.7) do not contribute because the S matrix
underlies physical constraints such as positive energy flow
and real masses. These constraints reappear in the LTE ampli-
tudes in form of δ and θ functions.

The situation is similar for stable and unstable particles,
and we consider stable particles first. In our convention the
incoming particles are on the left and the outgoing ones on
the right. As an example consider the following diagram in
a scalar φ3 theory:

F (p1, p2, p3, p4) =
p2

p1

p3

p4
. (4.13)

If we sum over all possible underlinings the result equals zero
except for one contribution which is immediately recognized
as a cut

(4.14)

The example shows that the non-vanishing contributions of
the LTE for stable particles split into two separate regions
where the normal part (T ) is given by the black dots, while the
complex-conjugated part (T ∗) is given by the white circles.
In the following we call this property the cut structure. This
means, in particular, that for stable particles the LTE and
simple kinematic arguments lead to the unitarity equation
(2.3). Examples of vanishing LTE terms are

θ (−p0)

p2

p1 p

p3

p4
= 0 ,

δ p2 − m2
)

p2

p1 p

p3

p4
= 0 .

(4.15)

In the first term of (4.15) the cut structure is violated, i.e.
there are no two well-defined regions, and as a consequence
at some vertex in the amplitude the required energy-flow
direction is opposed to the physical energy flow which is from

the left to the right, and no energy can be transferred to the
final state. The second amplitude vanishes because the cutting
rules require the intermediate particle to be on-shell which is
impossible for stable particles since m2 < p2 = (p1 + p2)

2.
When CMS propagators are involved one would like to

have, in particular, the cut structure of non-vanishing LTE
terms, but this is a priori not given. For instance, the first term
in (4.15) does not vanish when the cut propagator is replaced
by the corresponding CMS propagator. These cut-structure-
violating contributions come from the fact that for the CMS
propagator �±(p, μ) (4.11) there is neither a θ(±p0) nor a
δ(p2 − M2) but smoothed functions instead. The smoothing
does no longer enforce the same strict kinematic constraints
as for stable particles. Nevertheless, these contributions are
suppressed by at least a factor �/M ∼ g2, and one obtains the
same behavior for unstable particles in a perturbative sense,
meaning that those LTE terms violating the cut structure are
always of higher order in the coupling constant. While the
first LTE diagram in (4.15) is also perturbatively suppressed
for p2 ∼ M2, the second one does not violate the cut structure
and, in fact, in the case of unstable particles its contribution
is relevant. Such contributions are discussed in Sects. 4.3.4
and 4.3.5.

Yet, the argument is incomplete since suppressed terms
can become relevant as one takes into account higher per-
turbative orders, i.e. they can be of the same order as higher
quantum corrections. The next chapter is devoted to include
the imaginary mass counter term in the LTE. We discuss
how to simplify LTE relations and we show that the imagi-
nary mass counter term is responsible for the fact that contri-
butions being negligible at a certain perturbative order, stay
negligible even if the calculation is extended to higher orders
(see Sect. 4.3.3 for non-resonant and Sects. 4.3.4 and 4.3.5
for resonant propagators).

4.3.2 Including the imaginary mass counter term

A proper description of unstable particles requires the resum-
mation of self-energy contributions resulting in a non-zero
imaginary part in the LO propagator. On the other hand,
gauge invariance requires that the imaginary counter part of
the complex mass enters the Feynman rules. It is not possible
[37] to include such a coupling in the LTE relations. How-
ever, this is not necessary as we discuss in the following.
Consider the insertion of a i(−i�M) coupling between two
CMS propagators in momentum space,

(iΔ) −i2ΓM (iΔ) = . (4.16)

This insertion can always be reduced to the usual propagator
via simple differentiation with respect to �M
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(i�)(−i2�M)(i�) = −�M
∂

∂�M
i�, (4.17)

and, as becomes clear below, it is important that �M is real
which is true by construction.

For an arbitrary amplitude T , the left-hand side of the uni-
tarity equation (2.3) is computed as follows: Every insertion
of i(−i�M) can be generated by differentiating specific CMS
propagators according to (4.17). Consequently, any ampli-
tude with (−i�M) insertion in the CMS can be generated
from the diagrams in an amplitude where i(−i�M) is miss-
ing. Consider the diagrams F τ obtained from T by setting
the imaginary mass counter term �M to zero, but keeping
the resummed counter part in the propagator,

T |�M=0 =
∑

τ

F τ . (4.18)

We denote the set of propagators which are linked to a mass
counter term by � := {�τ,i } where i identifies the propaga-
tor and τ the diagram in T which contains the propagator i .
Multiple insertions of i(−i�M) are collected and the num-
ber of successive insertions is denoted by niτ . We transform
each propagator i in τ via �� : �M → �M + ωi

τ in its
denominator, and the amplitude T is then generated via

T =
∑

τ∈�

∏

i∈τ

1

niτ !
(

−�M
∂

∂ωi
τ

)niτ
F τ

��

∣∣∣∣∣
ωi

τ =0

, (4.19)

where F τ
��

is the diagram F τ with the propagators trans-
formed according to ��.

By construction F τ
��

is free of imaginary mass counter
terms and in the case of a scalar theory, as we consider it
here, we can simply commute differentiation with taking the
real part. Thus, we can directly apply the LTE on F τ

��
and

after performing the (real) differentiation we obtain the real
part of T via (4.19). This representation implies that the
cutting rules in T , T ∗ stay the same even if the imaginary
mass counter term is included. To see this consider the case
when we have a CMS propagator and at least one insertion
of i(−i�M) in an amplitude T

T =
∫

T̃ ig i�(p2, M2 − i�M) i(−i�M)

× i�(p2, M2 − i�M) ig, (4.20)

where T̃ denotes the amplitudeT with the two-point function
with the imaginary mass counter term insertion omitted and
the two couplings (ig)2 connecting T̃ and the two-point func-
tion between those couplings removed. The

∫
indicates that

the propagator’s momentum p2 may be integrated. Rewriting
the insertion one is left with

T = −�M
∂

∂ω

∫
T̃ ig i�(p2, M2 − i(�M + ω)) ig

︸ ︷︷ ︸
=T τ

��

∣∣
ω=0.

(4.21)

Applying the LTE, the propagator i� either stays the same
(∈ T ), transforms into −i�∗ (∈ T ∗), or belongs to the cutting
region

0 = −�M
∂

∂ω

∫ ⎛

⎝
∑

underlinings

T̃

⎞

⎠

× (ig)2[i�(p2, M2 − i(�M + ω))

+ (−1)2 × (−i) × �∗(p2, M2 − i(�M + ω))

+ (−1) × i�+(p2, M2 − i(�M + ω))

+ (−1) × i�−(p2, M2 − i(�M + ω))]|ω=0. (4.22)

While the first term in (4.22) corresponds to the propagator
left of the cut and the second term to the one right of the
cut, the third and fourth terms represent cut propagators with
dominantly positive or negative energy flow. The sum over
the underlinings of T̃ represents the LTE equation of the trun-
cated amplitude4 T̃ . If the propagator is in the normal region
we recover the result (4.17) after applying the differentiation

−�M
∂

∂ω
i�(p2, M2 − i(�M + ω))

∣∣∣∣
ω=0

= i�(p2, μ)i(−i�M)i�(p2, μ). (4.23)

For the propagator in the complex-conjugated region
−i�∗(p, μ) we can work out the signs leading to

−�M
∂

∂ω
(−i�∗(p2, M2 − i(�M + ω)))

∣∣∣∣
ω=0

= (−i�∗(p2, μ))i(−i�M)(−i�∗(p2, μ)). (4.24)

Consequently, we obtain cutting rules in the regions T , T ∗
for i(−i�M) which coincide with the usual Feynman rules,
namely that i(−i�M) is treated purely real.

Remember that we cannot deal with arbitrary complex
couplings in the LTE unless we give up the relation between
LTE and unitarity. Imaginary couplings do not turn into their
complex conjugates according to the last underlining rule
(see Sect. 2.2) which is necessary for identifying the left-
hand side of the unitarity equation, but we have shown that
i(−i�M) transforms correctly by other means. The result is

4 The amplitude T̃ is missing two vertices compared to T , not count-
ing the imaginary mass counter term. Therefore, the total number of
LTE amplitudes corresponding to T̃ is 2n−2 where n is the number of
vertices in T . Multiplying with the four underlinings of the propagator
we recover the 2n LTE amplitudes of T .
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true for more than just one insertion which can be shown by
working out the signs for multiple differentiation. The case
that the propagator of the unstable particle is on the cut is
discussed in the following sections.

4.3.3 Non-resonant contributions of unstable particle
propagators

We come back to the question whether contributions, which
in the case of stable particles vanish because of kinematic
constraints, can actually contribute in the case of unstable
particles. In this subsection we show that the i(−i�M) inser-
tions make sure that contributions that vanish for stable par-
ticles never become relevant for unstable ones (which are not
resonant).

Consider the amplitude

iT =

1

+

2

+

3
(4.25)

and assume
∣∣p2 − M2

∣∣ � M� (off resonance), then the
order of accuracy of the amplitude is O(M) = g4. Comput-
ing the unitarity equation (2.3), the leading contribution to
the left-hand side results from ➂

(4.26)

The higher-order contributions O(g2) are of the type of
(4.15), i.e. they either violate the cut structure or are fur-
ther suppressed [owing to p2 �= M2 and (4.28)], but they
have the topology of ➂.

As we have demonstrated in Sect. 4.3.2, we can take into
account the imaginary mass counter term via differentiation,
and the left-hand side of the unitarity equation (2.3) for ➀+➁

reads

1 − ΓM
∂

∂ΓM
+ .

(4.27)

The first term can never become resonant because it vio-
lates the cut structure and the second term is non-resonant as
long as the amplitude itself is non-resonant which is true by
our assumption s �≈ M2. Deriving the leading behavior of
�±(p, μ) for small �/M for p0 �= ±√

p2 + M2 we obtain

�±(p, μ) = ±i

(
−p0 ± 2

√
p2 + M2

)

2
√
p2 + M23 (

p0 ∓ √
p2 + M2

)2 �M

+ O
((

�

M

)3
)

= ±�M f (�M) , (4.28)

where f is a smooth function with Taylor expansion in �M .
The explicit factor in �M indicates the suppression and
after carrying out the differentiation in (4.27) the leading
term of order �M is eliminated and the resulting order is
g2 × O(�2) = g6. Since g4 is the current accuracy of the
amplitude (4.25) the contributions from ➀+➁ are negligi-
ble, which is no coincidence.

The argument is easily extended to arbitrary high order.
Consider an amplitude up to the order of gn , where n is arbi-
trary. We compute the LTE according to (4.19) and assume
we have a term U ∈ F τ of the order of gm and m ≤ n either
violating the cut structure or having at least one non-resonant
�±(p, μ). The order ofU is bounded from below as follows:

O(U) ≥ gm
n−m

2∑

k=0

1

k!
(

−ξ
∂

∂�M

)k

�M f (�M)

∣∣∣∣∣∣
ξ=�M

= O
(
gm�

n−m
2 +1

)
= O(gn+2), (4.29)

where the equality (=) occurs solely for one non-resonant
�± in U . Multiple insertions of i(−i�M) result in a system-
atic elimination of orders as can be easily seen realizing that
the differential operator in (4.19) is nothing but the Fourier
representation of the translation operator

(
e−ξ ∂

∂�M

)
n−m

2

:=
n−m

2∑

k=0

1

k!
(

−ξ
∂

∂�M

)k

, (4.30)

where the series of the exponential function is terminated at
the order (�M)

n−m
2 . On the other hand, the translation opera-

tor acts as follows on a function P: e−ε0
∂
∂ε P(ε)

∣∣∣
ε0=ε

= P(0).

Thus, we obtain the same result with possible deviations start-
ing at the order (�M)

n−m
2 +1 = O(gn−m+2) which shows the

result (4.29).
Loosely speaking, the non-resonant propagators are exp-

anded in � and thereafter the resummed and non-resummed
terms explicitly cancel. As finite-width terms in the complex-
mass counter term δμ2 result only from a reparametrization
of the theory, resummed and non-resummed terms have to
compensate each other in each fully calculated order.

The results so far can be summarized as follows:

123



Eur. Phys. J. C (2015) 75 :377 Page 11 of 16 377

• There exists a decomposition for the CMS propagator
(4.11) satisfying the decomposition theorem (2.5), thus,
allowing to derive a LTE [step ➀ in (4.6)].

• The LTE does not allow one to include the imaginary
mass counter term directly, but it can be introduced via
(4.19).

• We have shown that cut-structure-violating terms as well
as all cuts of non-resonant propagators can always be
neglected no matter at which order in the coupling con-
stant the violation takes place. Thus, only correctly cut
LTE amplitudes have to be taken into account, which is
required by unitarity [step ➁ in (4.6)].

Further, from the stated results it follows immediately that
unitarity is fulfilled automatically if there are no resonant
�±(p, μ). The missing piece which has yet to be investigated
is when �±(p, μ) becomes resonant. This happens when
internal momenta are integrated out, or usually when certain
phase-space integrations are carried out.

4.3.4 Resonant contributions of unstable particle
propagators at one-loop order

In this section we discuss resonant �±(p, μ) at leading order
in �/M . Those terms are no longer negligible in the LTE as
for instance the second term of (4.15) for an unstable s-
channel particle and s ≈ M2.

Naively interpreting the unitarity equation (2.3) would
lead us to the conclusion that only the sums of all diagrams on
both sides of the unitarity equation coincide, though, in the
case of stable particles diagrams can be separated according
to their topology and perturbative order. Perturbative unitar-
ity then follows from the fact that the coupling can be cho-
sen arbitrarily meaning that we can, in principle, distinguish
between orders by varying the coupling. This argument can-
not be directly transferred when the theory is renormalized
according to the CMS. The distinction of perturbative orders
does no longer work because of resummation, and we actu-
ally have to consider sums of diagrams, but the occurrence
of non-trivial relations between topologically different Feyn-
man diagrams can be excluded at least in scalar theories. As
discussed in Sect. 4.1, we can consider relative orders in the
sense that if the left-hand side of the unitarity equation has
a phase-space-dependent order then also the right-hand side
does, and the difference of orders is independent of phase
space. Our strategy is therefore to identify the diagrams not
only by their topology, but also by the perturbative order in
certain phase-space regions where it is well defined, e.g. for
|s − M2| ∼ �M or |s − M2| � �M .

At this point we recall that besides the loop expansion
we only expand cut propagators �± connecting the regions
T , T ∗ in �/M , but do never expand the propagators � within
T or T ∗.

We start again with the example of the s-channel produc-
tion of an unstable particle. For the resonant case one must
perform a Laurent expansion to capture the leading behavior,

�±(p, μ)
∣∣
p0=±

√
p2+M2 = ∓i

2

�M
+ O

(
�

M

)
. (4.31)

The LTE at LO reads for p2 = M2

−2Re

⎤
⎦ = 1 + O g2 = (2ΓM) 1 + O g2 ,

(4.32)

where in the last step we made use of (4.31) and the identity

1

�M
= �(p, μ)�M�∗(p, μ)

∣∣
p2=M2 . (4.33)

The LTE does not know about the diagrammatic significance
of �M which we have to determine and plug in by hand, and,
as discussed before, �M must be computed at least by the
one-loop renormalization conditions (3.5). We denote 	1

R the
renormalized (according to the CMS) one-loop self-energy of
the unstable particle and 	1 the corresponding unrenormal-
ized one. The self-energies are related to the counter term
δμ2 by the renormalization conditions (3.5), and the con-
sistency equation (3.4) links δμ2 and �M , so we obtain a
relation between �M and 	1

�M = Im[δμ2] = − Re

[
i	1(p2)

∣∣∣
p2=μ2

]
. (4.34)

In the next step we assume that the analytic continuation of
the self-energy behaves well enough at p2 ≈ M2, i.e. we
suppose that

i	R(p2)

�M

∣∣∣∣
p2≈M2

= O(g2), (4.35)

which can be obtained formally by performing an expansion
in p2, but sometimes a Taylor expansion is not possible as is
the case when infrared singularities appear. Then one usually
has logarithmic corrections, but they do not bother us as long
as the limit g → 0 exists. In the next step we make use of
the assumption (4.35) and find for �M :

O(g4) = Re
[

i	R|p2≈M2
] = Re

[
i	|p2≈M2

] +�M

⇒ �M = − Re
[

i	|p2≈M2
] +O(g4)

= − Re
[

i	|p2≈M2
]
(1 + O(g2)). (4.36)

This equation expresses what is known from the on-shell
scheme, i.e. the width is the cut through loops and can be
interpreted as the decay width. At one-loop order the widths
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in the CMS and the on-shell scheme coincide, but this is no
longer true at higher orders and we will not be able to argue
this way in the general case.

Nevertheless, let us make use of this result to demonstrate
unitarity at one-loop order. At this order we can directly apply
the cutting rules to 	1 since there are no intermediate unsta-
ble particles (in our model)

(4.37)

This result together with (4.32) and (4.34) yields exactly what
is required by unitarity, namely

(4.38)

One can verify that no double counting occurs and that the
one-loop amplitude ➂ in (4.25) is canceled by the mass
counter term ➁ up to terms of relative order g2 ∼ � ∼
p2 − M2, as is required by the renormalization condition
(3.5).

The Laurent expansion (4.31) is not appropriate when the
momentum p is an internal loop or an integrated phase-space
momentum. Instead we can make use of the solutions for the
decomposition �±(p, μ) for small widths as given by the
cutting rules (4.12) in Sect. 4.2. As Veltman has shown, one
does not expect unstable particles in asymptotic states, and
this dilemma is resolved at LO as follows. Similarly to the
identity (4.33), we have in distributional sense that

(4.39)

where we used (4.34) and (4.37) in the last step. This shows
that the LO resonant �± can be interpreted as a higher-order
cut amplitude which is what is required by Veltman’s unitar-
ity equation. For instance, consider the one-loop self-energy
of the stable particle denoted as 	1

χ . Computing the LTE and
making use of the result (4.39) yields up to higher orders

(4.40)

This can be generalized and proves (4.7) and (4.8) and thus
unitarity as long as the leading behavior of �± is sufficient.

4.3.5 Generalization to higher orders

In Sect. 4.3.4 we gave an interpretation for resonant �± at
leading order in �/M . In the following we generalize this
result to arbitrary order by pursuing the strategy devised in
steps ➂ and ➃ in (4.7) and (4.8).

For LTEs of higher-order amplitudes the approximation
(4.39) is not sufficient, and more terms in the expansion
of �± in �/M must be taken into account. However, with
the expansion the diagrammatic interpretation gets lost, and
it is difficult to compare the result to the right-hand side
of the unitarity equation. Motivated by Veltman’s approach
to derive LTEs for dressed propagators, we try to identify
the LTE of higher-order two-point functions as higher-order
cut two-point functions, i.e. we aim at defining cuts that
fulfill

(4.41)

where iG represents the full propagator of the unstable par-
ticle. Provided that (4.41) is true, if the LTE of an arbi-
trary amplitude can be rearranged in such a way that the
cut region is given by LTEs of two-point functions [step ➂ in
(4.7)] instead of the usual �±, then unitarity follows imme-
diately since we have the correct cut structure (as shown in
Sect. 4.3.3) and valid cuts (4.41) (to be defined). Thus, the
problem is reduced to the problem of studying LTEs of two-
point functions and this is necessary because the CMS mixes
loop orders and only the LTE of the whole two-point function
can yield well-defined cuts, which we show below.

The idea is the following: For a specific amplitude we con-
sider all diagrams up to a certain order in the CMS. Applying
the LTE yields contributions with the correct cut structure
(4.6). In contributions where unstable propagators are cut,
these are iteratively replaced by cuts of the full propagator
upon including the needed higher-order contributions [see
(4.7)]. The validity of this replacement can be justified as
follows. Consider a LTE contribution F̃ with a �±(p, μ)

originating from a specific CMS propagator �(p, μ) some-
where in a diagramF . If the diagram is of highest considered
order, we can simply use (4.39) to replace �(p, μ) by a cut
through stable particles. If the diagram F is not of highest
order, there are diagrams that have the same structure asF but
more self-energy insertions next to that propagator. Among
the contributions to the LTE of these higher-order diagrams
are terms that have the same structure as F̃ , but where instead
of the �± LTE components of two-point functions appear
(originating from the self-energy insertions), and collecting
all these terms we retrieve F̃ with a nested LTE of a two-point
function.
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We first give a simple example for a LTE of an amplitude
with nested two-point functions. We show that the nested
two-point functions reappear as a LTE of the two-point func-
tions, i.e. we can identify cut two-point functions. Consider
the subset of diagrams T̃ of the complete 2 → 2 two-loop
amplitude T defined by

T ⊃ T̃ = + = .

(4.42)

In this example, the hatched circle represents the propagator
of the stable particle precisely up to one-loop order. For the
purpose of demonstration, assume values of s off the reso-
nance which is less complicated [the case s ≈ M2 is taken
care of as described in (4.51) below]. Computing the LTE of
T , but only keeping the topologies of the kind of T̃ , yields

(4.43)

where

p �
: = 2 Re

[[ ]
, p0 > 0

= + + +

(4.44)

represents the LTE of the nested two-point function. Under-
lined end-points in two-point functions do not come with cou-
plings and the underlining rules must be extended. We define
the LTE of a two-point function by pretending there were cou-
plings (ig)2 at the end-points allowing us to make use of the
usual underlining rules. After removing the end-point cou-
plings (dividing by g2), the difference between the two-point
function with and without couplings is a sign, which is the
reason why we have to take 2 Re instead of −2 Re.

We arrive at

−2 Re [T ] ⊃ + O g8
)

=
2Re

[ ]]]
+ O g8

)
,

(4.45)

i.e. the cut through the two-point function defined as in (4.41)
is expressed by a cut of a two-point function of lower order.

After isolating cut two-point functions the normal region TL

and the complex-conjugated region T ∗
R are given by

TL = , T ∗
R = , (4.46)

and notice that for this way of identifying terms in the LTE
external states need not to be on-shell. The reformulation of
the LTE (4.45) in terms of nested LTEs of two-point functions
(4.44) is exactly step ➂ in (4.7) which we elaborate now.

In our example (4.42) we derive a decomposition in
momentum space for the one-loop propagator

G1 = := + +

(4.47)

in terms of G1,±, to be determined, which fulfill a space-
time decomposition (2.5) where the Feynman propagator
�F is replaced by G1. Such a decomposition of G1 allows
us to compute the LTE of amplitudes expressed in terms of
G1 propagators by the sum of all possible underlinings with
suited expressions for G1,+(−) which must be the same for
arbitrary amplitudes, but may be different for different prop-
agators (different order or different particles). Further, the
LTE diagrams must respect the cut structure since we have a
physical situation and the computed sum of LTE amplitudes
must equal the sum of LTE amplitudes obtained from the
original amplitude without the identification of nested two-
point functions. In order to derive G1,+(−) we start from the
same amplitude (4.42),

T̃ = , (4.48)

where the doubly lined propagator is defined in (4.47) and
computing the LTE, assuming we have a decomposition for
(4.47), we obtain the result on the left-hand side of (4.45).
The approximated solutions for the G1,± are simply read off
by comparing with (4.43) and are given by (4.44) and

the counter part where the energy flow is in the opposite
direction which can be obtained by replacing black dots with
white dots and vice versa in (4.44).

For a generic two-point function G the existence of an
approximate decomposition is guaranteed by the fact that
there is a decomposition for both stable and unstable (4.11)
tree-level propagators and the perturbative cut structure (see
Sect. 4.3.3), which is a consequence of kinematics. In gen-
eral, the existence of a decomposition implies that the cor-
responding propagators must follow the underlining rules in
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LTE diagrams and can only emerge as unchanged, complex
conjugated or cut. Moreover, the two-point function behaves
in the same way: It either stays the same, is complex conju-
gated or multiple terms can be associated to the cut region
where the energy flow points in a specific direction. All other
possible outcomes violate the cut structure. The solutionsG±
for a general two-point function are obtained by computing
the LTE of G and making use of the cut structure [as in the
example (4.44)]. The term G+(−) is given by the diagrams
where the energy flow is to the right(left).

Returning to (4.7), instead of computing the LTE of an
amplitude which is given by vertices and tree-level propaga-
tors, we can think of the same amplitude, but reformulated in
terms of . In the LTE we encounter cut propagators like
(4.44) which can be substituted by the real part of the two-
point function, leading exactly to the right-hand side of (4.7).

Having shown (4.7), i.e. how to rearrange LTEs of matrix
elements in order to identify nested LTEs of two-point func-
tions, we turn to the proof of (4.8) and elaborate on the mean-
ing of (4.41). The diagrammatic significance of �M turns out
to be a real problem beyond one loop in our current frame-
work. At some point in our calculation, in particular when
�± is resonant, we have to plug in the expression for �M
obtained from the renormalization condition. This problem
can be circumvented by making use of resummed results, i.e.
instead of using the usual perturbative expansion we repre-
sent two-point functions by their fully resummed equivalent
deliberately taking into account non-significant (higher) per-
turbative orders. Then the partial resummation of the CMS
is replaced by a complete resummation which turns out to be
sufficient for a diagrammatic interpretation. Returning to the
statement that, in contrast to the on-shell scheme, �M does
not represent well-defined cut contributions, one realizes that

2 Re
[
i	̃R(p2)

]
:= 2 Re

[
i	R(p2) − �M

]

= 2 Re
[
i(	R(p2) − μ2)

]
(4.49)

does, which can be understood as follows. We express the
fully resummed two-point function as

i

p2 − μ2 + 	R
= i

p2 − μ2 + 	R

(
p2 − μ2 + 	R

i

)∗

×
(

i

p2 − μ2 + 	R

)∗
, (4.50)

and computing the LTE of this expression we obtain

(4.51a)

(4.51b)

Note that when taking the real part of (4.50) one must only
compute the real part of

[
i
(
p2 − M2

) + �M − (i	R)∗
]

because the other factors form a real number. Further, the
step (4.51a) is only allowed if i/(p2 − μ2 + 	R) is non-
singular which is true for unstable particles. Equation (4.51a)
expresses the LTE of two-point functions by the LTE of
self-energies. The equality with (4.51b) is equivalent to
(4.41) allowing us to properly define cut two-point functions.
Expanding the full propagators in (4.51b) in the CMS implies
that the right-hand side of (4.41) should be defined as

(4.52)

where the cut self-energies are defined by (4.49) and normal
and complex-conjugated self-energies are just the usual ones
renormalized according to the CMS. This definition of cuts
is in agreement with Veltman’s unitarity equation (4.3) as we
show in the sequel.

In (4.49), (4.50), (4.51a) and (4.51b), i.e. for dressed
propagators there is no partial resummation. Starting from
the CMS, we can construct dressed propagators by resum-
ming renormalized self-energies. After full resummation the
i�M in the propagator cancels with the i�M of i	R and
all explicit i�M expressions disappear which is the reason
why (4.49) represents well-defined cuts. In this limit uni-
tarity is not violated as has been shown by Veltman [27]
and it is left to understand that nothing goes wrong when
going from full resummation to the CMS. This is formally
shown as follows: We only need to study cut two-point func-
tions, i.e. we need to show that the right-hand side of (4.51a)
is equal to (4.51b). Assume the left-hand side of (4.51a) is
given at n-loop order, then (4.51a) tells us that the LTE of an
n-loop two-point function can be computed by LTEs of n-
loop self-energies, where we actually mean the self-energies
(4.49). As in our example (4.45), these self-energy LTEs
are iterated LTEs of one- to (n − 1)-loop two-point func-
tions. Thus, one makes the induction hypothesis that LTEs
of two-point functions (4.51) represent well-defined cuts at
n − 1 loops. Expanding the two-point function on the left-
hand side of (4.51a) at n loops the statement (4.51b) fol-
lows from the induction hypothesis, the start of the induction
being given by (4.37). Thus, cuts are defined iteratively as
in the example (4.45) and each cut through an unstable par-
ticle, possibly belonging to higher-order contributions and
after collecting all terms like in (4.40) results in a nested cut
two-point function (4.52) which itself can have cut unstable
particles.

123



Eur. Phys. J. C (2015) 75 :377 Page 15 of 16 377

Let us illustrate the procedure at the example of our toy
theory. Consider the two-point function of an unstable parti-
cle at two-loop order

(4.53)

where 	2
R,φ = 	

(1)
R,φ+	

(2)
R,φ is the two-loop self-energy of the

unstable particle φ renormalized according to the CMS, and
	

(1)
R,φ and 	

(2)
R,φ denote the one-loop and two-loop renormal-

ized contributions to the two-loop self-energy, respectively.
At this point we have to require that the perturbation series is
valid in the sense that the two-point function is well approx-
imated by

(4.54)

where the two-point function on the right-hand side is defined
as the resummed propagator for which the self-energy is eval-
uated and renormalized at two-loop order. Then we can com-
pute the LTE with the help of (4.51a) and up to higher orders
we have

(4.55)

where 	̃2
R,φ is given by

	̃2
R,φ = 	

(2)
φ + 	

(1)
φ − Re[δμ2]. (4.56)

Notice that the imaginary part of δμ2 dropped out and only
the real part is left over renormalizing the one- and two-
loop self-energies. In what follows we could have argued
with the induction hypothesis, but we work out this example
explicitly and compute the LTE of 	

(2)
φ and 	

(1)
φ . The LTE of

	
(1)
φ is trivial and yields the one-loop cut (4.37). Among all

contributions to 	
(2)
φ there is none with nested unstable two-

point functions except for the CMS propagator. For instance,
consider the example

Σ(2)
φ ⊃ . (4.57)

We apply the LTE and we only keep the terms with the correct
cut structure since the other ones are negligible. Then we
can compute the LTE for the two-point functions or matrix
elements with the help of (4.55). Keeping only the terms
directly related to our example (4.57), we obtain

(4.58)

As already mentioned, since there are no nested unstable
two-point functions, we can directly apply (4.39)

(4.59)

In this way we can show that all two-loop self-energies
in this theory yield, up to higher orders, well-defined cut
self-energies. Having dealt with the two-loop self-energies,
if we combine the one- and two-loop result in (4.55), we have
explicitly shown (4.51b) at two-loop order. In case of nested
unstable two-point functions we would have had to use the
induction hypothesis.

Finally, our results can be summarized as follows:

• In the beginning we demonstrated how to compute LTEs
of arbitrary amplitudes leading us to the result that the cut
structure is guaranteed in a perturbative sense, which is
the basis for unitarity. It remains to check that �± yields
well-defined cuts.

• From the solutions of �± for CMS propagators we con-
cluded that unitarity holds off resonances. The leading
behavior of resonant �± can be interpreted as the cut
one-loop two-point function [see (4.39)].

• The leading approximation of �± is not enough beyond
one-loop, and higher-order corrections need to be inclu-
ded. The LTEs of different loop orders do not separately
represent valid cuts in the sense of Veltman’s definition
and must be considered simultaneously because owing
to the partial resummation the diagrams are connected to
each other and cancelations take place. Whenever there
is a resonant unstable �± we identify cuts by iteratively
including appropriate higher-order contributions result-
ing in nested LTEs of two-point functions. For the LTE
of the two-point functions up to a given order a valid cut
interpretation can be assigned which is consistent with
the interpretation of Veltman, i.e. only lines of stable par-
ticles are cut.

5 Conclusions

The CMS provides a straightforward method to consistently
implement unstable particles in perturbative calculations.
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Formally, the procedure is an analytic continuation of matrix
elements to complex masses and (if necessary) couplings
with appropriate renormalization condition.

In the CMS the Cutkosky cutting rules can no longer be
used to verify unitarity, and it was not clear how perturbative
unitarity is implemented. Following Veltman, we derived a
largest-time equation within the CMS which could then be
used to obtain a diagrammatic representation for the imagi-
nary part of scattering amplitudes, also when unstable parti-
cles are present.

Our derivation of the largest-time equation is based on the
decomposition theorem and we showed that an appropriate
decomposition can be achieved for the CMS propagator. As a
result, one finds that the would-be cut propagators �±(p, μ)

of unstable particles are smoothed versions of the stable ones.
In case of stable particles the Largest-Time Equation coin-
cides with the Cutkosky cutting rules, but including unstable
particles leads to additional contributions which can be inter-
preted as contributions where the energy flow is backward.
Performing an expansion solely of would-be cut propagators
�±(p, μ) of unstable particles in �/M does indeed yield cut-
ting rules where unstable resonant �±(p, μ) can be replaced
by higher-order cuts through stable particles only. In this way,
we recover the perturbative statement of Veltman’s result in
the CMS, namely that a QFT is unitary up to higher orders
only if unstable particles are excluded from asymptotic states.
While we only considered a toy model with real couplings,
the generalization to complex couplings is straightforward.
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