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Abstract The implications of the shear-free condition on
the instability range of an anisotropic fluid in f (R, T ) are
studied in this manuscript. A viable f (R, T ) model is cho-
sen to arrive at stability criterion, where R is Ricci scalar
and T is the trace of energy-momentum tensor. The evolu-
tion of a spherical star is explored by employing a perturba-
tion scheme on the modified field equations and contracted
Bianchi identities in f (R, T ). The effect of the imposed
shear-free condition on the collapse equation and adiabatic
index � is studied in the Newtonian and post-Newtonian
regimes.

1 Introduction

In a recent work [1], we have studied the effect of an
anisotropic fluid on the dynamical instability of a spherically
symmetric collapsing star in f (R, T ) theory. Herein, we plan
to explore the instability range of anisotropic spherically
symmetric stars, considering shear-free condition. The role
of the shear tensor in the evolution of gravitating objects and
consequences of the shear-free condition have been studied
extensively. Collins and Wainwright [2] studied the impact of
shear on general relativistic cosmological and stellar models.
Herrera et al. [3,4] worked out the homology and shear-free
conditions for dissipative and radiative gravitational evolu-
tion.

The features of the gravitational evolution and its final
outcome are of great importance in view of general relativity
(GR) as well as in modified theories of gravity. Shear-free col-
lapse accounting for heat flow is discussed in [5], where it is
established that shear plays a critical role in the gravitational
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evolution and may lead to the formation of naked singular-
ities [6]. It is mentioned in [6] that the occurrence of shear-
ing effects near collapsing stars avoids the apparent horizon
leading to the formation of a naked singularity. However,
vanishing shear gives rise to the formation of an apparent
horizon and so the evolving cloud ends in a black hole (BH).
Thus, the relevance of the shear tensor in structure formation
and its consequences on the dynamical instability range of a
self-gravitating body is a well-motivated direction of study.

Stars shine by consuming their nuclear fuel; continuous
fuel consumption causes imbalance between inwardly act-
ing gravitational pull and outwardly drawn pressure, giving
rise to collapse [7]. The outcome of gravitational evolution is
dependent on the size as well as other physical aspects [8,9],
such as isotropy, anisotropy, shear, radiation, dissipation etc.
In comparison to the stars of mass around one solar masses,
massive stars tend to lose nuclear fuel more rapidly and so
they are more unstable. The pressure to density ratio, called
the adiabatic index, denoted by � is utilized in the estimation
of the stability/instability range of the stars. Chandrasekhar
[10] explored the instability range of spherical stars in terms
of �.

Herrera et al. [11–17] contributed substantially in address-
ing the instability problem in GR, accompanying various
situations, i.e., isotropy, anisotropy, the shear-free condi-
tion, radiation, dissipation, the expansion-free condition, and
shearing expansion-free fluids. In order to achieve a more
precise and generic description of the universe, the dark
energy components are incorporated by introducing modi-
fied theories of gravity. Modified theories are significant in
the advancement toward accelerated expansion of the uni-
verse and to present corrections to GR on large scales. The
modifications are introduced in the Einstein–Hilbert (EH)
action by inducing a minimal or non-minimal coupling of
matter and geometry [18–25].

The dynamical analysis of self-gravitating sources in mod-
ified theories of gravity has been discussed extensively in
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recent years. The null dust non-static exact solutions in f (R)

gravity are studied in [26], Cembranos et al. [27] studied the
evolution of gravitating sources in the presence of a dust
fluid. The instability range of spherically and axially sym-
metric anisotropic stars has been established in the context
of f (R) gravity [28–30], leading us to conclude that devi-
ations from spherical symmetry complicate the subsequent
evolution.

Harko et al. [31] presented the f (R, T ) theory of gravity
as another alternative to GR and a generalization of f (R) the-
ory representing non-minimal matter to geometry coupling.
The action in f (R, T ) gravity includes an arbitrary function
of the Ricci scalar R and the trace of the energy-momentum
tensor T to take into account the exotic matter. After the intro-
duction of f (R, T ) gravity, its cosmological and thermody-
namic implications were widely studied [32–40] including
the energy conditions. Recently, we have studied the evo-
lution of an anisotropic gravitating source with zero expan-
sion [41]. Herein, we are interested in the exploration of the
shear-free condition implications on a spherically symmetric
gravitating source in f (R, T ) gravity.

The modified action in f (R, T ) gravity is as follows [31]:

∫
dx4√−g

[
f (R, T )

16πG
+ L(m)

]
, (1.1)

where L(m) denotes the matter Lagrangian, and g represents
the metric tensor. Various choices of L(m) can be taken into
account, each of which leads to a specific form of fluid. Many
people worked out this problem in GR and modified theories
of gravity, and the stability of general relativistic dissipa-
tive axially symmetric and spherically symmetric systems
with a shear-free condition has been established in [42,43].
A dynamical analysis of the shear-free spherically symmetric
sources in f (R) gravity is presented in [44].

The organization of this article is as follows: Sect. 2 com-
prises the modified dynamical equations in f (R, T ) gravity.
Section 3 includes the model under consideration, the per-
turbation scheme, and the corresponding collapse equation
along with the shear-free condition in the Newtonian and
post-Newtonian eras. Section 4 contains concluding remarks
followed by an appendix.

2 Dynamical equations in f (R, T )

In order to study the implications of the shear-free condi-
tion on the evolution of spherically symmetric anisotropic
sources, modified field equations in f (R, T ) gravity are for-
mulated by varying the action (1.1) with the metric guv . Here,
we have taken L(m) = ρ [36], for this choice of L(m) the
modified field equations in f (R, T ) gravity take the follow-
ing form:

Guv = 1

fR

[
( fT + 1)T (m)

uv − ρguv fT + f − R fR
2

guv

+(∇u∇v − guv�) fR

]
. (2.2)

Here T (m)
uv is the energy-momentum tensor for the usual mat-

ter taken to be locally anisotropic.
The three dimensional spherical boundary surface � is

considered that constitutes two regions named ‘interior’ and
‘exterior’ spacetimes. The line element for the region inside
the boundary � is

ds2− = A2(t, r)dt2 − B2(t, r)dr2

−C2(t, r)(dθ2 + sin2 θdφ2). (2.3)

The line element for the region beyond � is [1]

ds2+ =
(

1 − 2M

r

)
dν2 + 2drdν − r2(dθ2 + sin2 θdφ2),

(2.4)

where ν is the retarded time and M denotes the total mass.
The expression for the anisotropic energy-momentum ten-

sor T (m)
uv is given by

T (m)
uv = (ρ + p⊥)VuVv − p⊥guv + (pr − p⊥)χuχv, (2.5)

where ρ is the energy density, Vu describes the four-velocity
of the fluid, χu is the radial four vector, and pr and p⊥ rep-
resent the radial and tangential pressure, respectively. These
physical quantities are linked by

V u = A−1δu0 , V uVu = 1, χu = B−1δu1 , χuχu = −1.

(2.6)

The shear tensor denoted by σuv is defined as

σuv = V(u;v) − a(uVv) − 1

3
�(guv − VuVv), (2.7)

where au is four acceleration and � is expansion scalar, given
by

au = V(u;v)V
v, � = V u

;u . (2.8)

The components of the shear tensor are found by variation of
(2.7) and these are used to find the expression for the shear
scalar in the following form:

σ = 1

A

(
Ḃ

B
− Ċ

C

)
, (2.9)

where a dot and a prime indicate time and radial derivatives,
respectively. From the shear-free condition we arrive at a
vanishing shear scalar, i.e., σ = 0, implying Ḃ

B = Ċ
C .

It is worth mentioning here that the expansion scalar and
a scalar function described in terms of the Weyl tensor and
the anisotropy of the pressure controls the departure from
the shear-free condition. Such a function is related to the
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Tolman mass and appears in a natural way in the orthog-
onal splitting of the Riemann tensor [45]. It is obvious that
pressure anisotropy and density inhomogeneities have exten-
sive implications on the stability of the shear-free condi-
tion, but it is not intuitively clear that their specific com-
bination affects the stability [43]. Generically the shear-free
condition remains unstable against the presence of pressure
anisotropy. Alternatively, one can consider such a case that
pressure anisotropy and density inhomogeneity are present
in such a way that the scalar function appearing in an orthog-
onal splitting of the Riemann tensor vanishes, implying non-
homogeneous anisotropic stable shear-free flow. Since we
are dealing with a fluid evolving under the shear-free con-
dition, we shall make use of this condition while evaluating
the components of the field equations and also in the conser-
vation equations.

The components of the modified Einstein tensor are

G00 = 1

fR

[
ρ + f − R fR

2
+ f ′′

R

B2 − 3 ḟ R
A2

Ḃ

B

− f ′
R

B2

(
B ′

B
− 2C ′

C

)]
, (2.10)

G01 = 1

fR

[
ḟ R

′ − A′

A
ḟR − Ḃ

B
f ′
R

]
, (2.11)

G11 = 1

fR

[
pr + (ρ + pr ) fT − f − R fR

2

+ f̈ R
A2 − ḟ R

A2

(
Ȧ

A
− 2Ċ

C

)
− f ′

R

B2

(
A′

A
+ 2C ′

C

)]
,

(2.12)

G22 = 1

fR

[
p⊥ + (ρ + p⊥) fT − f − R fR

2

+ f̈ R
A2 − f ′′

R

B2 − ḟ R
A2

(
Ȧ

A
− ˙2B

B

)

− f ′
R

B2

(
A′

A
− B ′

B
+ C ′

C

)]
. (2.13)

The dynamical equations extracted from the conservation
laws are vital in the study of stellar evolution. The conserva-
tion of the full field equations is considered to incorporate the
non-vanishing divergence terms; the Bianchi identities are

Guv
;v Vu = 0, Guv

;v χu = 0, (2.14)

and on simplification of (2.14), we have dynamical equations
as follows:

ρ̇ − ρ
ḟ R
fR

+ [1 + fT ] (3ρ + pr + 2p⊥)
Ḃ

B
+ Z1(r, t) = 0,

(2.15)

(ρ + pr ) f
′
T + (1 + fT )

{
p′
r + ρ

A′

A

+pr

(
A′

A
+ 2

C ′

C
− f ′

R

fR

)
− 2p⊥

C ′

C

}

+ fT

(
ρ′ − f ′

R

fR

)
+ Z2(r, t) = 0, (2.16)

where Z1(r, t) and Z2(r, t) are provided in the appendix as
(5.1) and (5.2), respectively. Deviations from equilibrium in
the conservation equations with the time transition leads to
the stellar evolution, and a perturbation approach is devised
to estimate the instability range.

3 Perturbation scheme and shear-free condition

We consider a particular f (R, T ) model of the form

f (R, T ) = R + αR2 + λT, (3.17)

where α and λ can be any positive constants. The perturba-
tion approach is utilized to estimate the instability range of
a spherical star with the shear-free condition. This scheme
is utilized in the determination of more generic analytical
constraints on the collapse equation, or rather to establish a
dynamical analysis of special cases numerically. Also, the
field equations are highly nonlinear differential equations; in
such a scenario the application of a perturbation is beneficial
to gaining insight.

It is assumed that initially all quantities are independent of
time and with the passage of time the perturbed form depends
on both time and radial coordinates. Taking 0 < ε � 1, the
physical quantities and their perturbed form can be arranged
as

A(t, r) = A0(r) + εD(t)a(r), (3.18)

B(t, r) = B0(r) + εD(t)b(r), (3.19)

C(t, r) = C0(r) + εD(t)c̄(r), (3.20)

ρ(t, r) = ρ0(r) + ερ̄(t, r), (3.21)

pr (t, r) = pr0(r) + ε p̄r (t, r), (3.22)

p⊥(t, r) = p⊥0(r) + ε p̄⊥(t, r), (3.23)

m(t, r) = m0(r) + εm̄(t, r), (3.24)

R(t, r) = R0(r) + εD1(t)e1(r), (3.25)

T (t, r) = T0(r) + εD2(t)e2(r), (3.26)

f (R, T ) = [R0(r) + αR2
0(r) + λT0] + ε(D1(t)e1(r)[1

+2αR0(r)] + D2(t)e2(r)), (3.27)

fR = 1 + 2αR0(r) + ε2αD1(t)e1(r), (3.28)

fT = λ. (3.29)

Considering the Schwarzschild coordinate C0 = r and
implementing the perturbation scheme on the vanishing shear
scalar implies

b

B0
= c̄

r
. (3.30)
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Using (3.18)–(3.29) and (3.30) in the dynamical equations
i.e., (2.15) and (2.16), leads to the following expressions:

˙̄ρ +
[

2eρ0

Y
+ λ1

c̄

r
(2ρ0 + pr0 + 4p⊥0) + Y Z1p

]
Ḋ = 0,

(3.31)

λ1

{
p̄r

′ + ρ̄
A′

0

A0
+ p̄r

(
A′

0

A0
+ 2

r
− 2αR′

0

Y

)
− 2 p̄⊥

r

}
+ λρ̄′

+2α D̈

[
1

A2
0

(
e′ + 2e

B ′
0

B0
− c̄

r
R′

0

)
+ B2

0 (Y )

{
e

B2
0Y

}′]

+D

[
λ1[( a

A0
)′(ρ0 + pr0) − 2(pr0 + p⊥0)(

c̄

r
)′]

−2α

Y

{
λ1

(
p′
r0 + ρ0

A′
0

A0
+ pr0

(
A′

0

A0
− 2αR′

0

Y
+ 2

r

))}

+λ

(
e′ + e[ρ′

0 − 2αR′
0

Y
]
)

+ Y Z2p

]
= 0, (3.32)

where Z1p and Z2p are given in the appendix. For the sake
of simplicity we put Y in place of 1 + 2αR0 and λ1 = λ+ 1,
assuming that D1 = D2 = D and e1 = e2 = e. The
above mentioned perturbed dynamical equations and per-
turbed field equations shall be used to arrive at perturbed
physical quantities such as ρ̄, p̄r , and p̄⊥.

The expression for ρ̄ can be found from (3.31), as follows:

ρ̄ = −
[

2eρ0

Y
+ c̄

r
(3ρ0 + pr0 + 4p⊥0) + Y Z1p

]
D.

(3.33)

The Harrison–Wheeler type equation of state relates ρ̄ and
p̄r ; it is given by

p̄r = �
pr0

ρ0 + pr0
ρ̄. (3.34)

Putting ρ̄ from (3.33) in (3.34), we find

p̄r = −�
pr0

ρ0 + pr0

[
2eρ0

Y
+ λ1

c̄

r
(3ρ0

+pr0 + 4p⊥0) + Y Z1p

]
D. (3.35)

The perturbed form of the field equation (2.13) yields an
expression for p̄⊥ that turns out to be

p̄⊥ =
{
Y c̄

r
− 2αe

}
D̈

A2
0

− λρ̄

λ1

+
{(

p⊥0 − λ

λ1
ρ0

)
2αe

Y
+ Z3

λ1

}
D, (3.36)

Z3 is the effective part of the field equation given in the
appendix as (5.5).

Substitution of ρ̄, p̄r , and p̄⊥ from (3.33), (3.35), and
(3.36) into (3.32) leads to a collapse equation,

D̈

[
2α

A2
0Y

{
e′ + 2e

B ′
0

B0
− c̄

r
R′

0

}
− 2αB2

0

{
e

B2
0Y

}′

+ 1

A2
0

{Y c̄
r

− 2αe}
]

+ D

[
1

Y

{
λ1

(
(ρ0 + pr0)

(
a

A0

)′

− 2(ρ0 + p⊥0)

(
c̄

r

)′)
− 2α

Y

{
λ

(
e′ − ρ′

0 − 2αR′
0

Y

)

+ λ1

(
e′ pr0 + e[p′

r0 + ρ0
A′

0

A0
+ pr0(

A′
0

A0
+ 2

r
− 2αR′

0

Y
)]

)}

−
(

λ + λ1�
pr0

ρ0 + pr0

) {
ρ0

2e

Y
+ λ1

c̄

r
(3ρ0 + pr0

+ 4p⊥0) + Y Z1p

}
,1

+
{
A′

0

A0
+ 2

r

λ

λ1

+�
pr0

ρ0+ pr0

(
A′

0

A0
+ 2

r
− 2αR′

0

Y

)
+ λ1

(
�

pr0

ρ0 + pr0

)′}

×
{

2eρ0

Y
+ λ1

c̄

r
(3ρ0 + pr0 + 4p⊥0) + (Y )Z1p

}

+2

r

1

λ1
Z3

}
+ Z2p

]
= 0. (3.37)

Matching conditions at the boundary surface together with
the perturbed form of (2.13) can be written in the simplified
form as follows:

D̈(t) − Z4(r)D(t) = 0, (3.38)

provided that

Z4 = r A2
0

Y c̄ − 2αer

[
2αe

Y
p⊥0 + λ

c̄

r
(3ρ0 + pr0

+4p⊥0) + Y Z1p + Z3

λ1

]
. (3.39)

The valid solution of (3.38) turns out to be

D(t) = −e
√
Z4t . (3.40)

The terms of Z4 must be constrained in such a way that
all terms maintain positivity. The impact of the shear-free
condition on the dynamical instability of N and pN regimes
is covered in the following subsections.

3.1 Newtonian regime

In order to establish the instability range in the Newtonian
era, we set ρ0 � pr0, ρ0 � p⊥0, and A0 = 1, B0 = 1.
Insertion of these assumptions and (3.40) into (3.37) leads to
the instability condition, relating the usual matter and dark
source contribution,
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� <
Z4X3 + X4 + λρ0(X2 + Y Z1p(N )),1 + X1X2 − 2

rλ1
Z3(N ) + Y Z2p(N )

λ1 pr0X ′
2 +

{
pr0

(
2αR′

0
Y − 2

r

)}
X2

, (3.41)

where

X1 = (λρ′
0 + 2λ

rλ1
), X2 = 2e

Y
+ 3λ1b,

X3 = −2α2bR′
0 + Yb,

Z4 = λ1
[
ρ0a

′ + 2(pr0 + p⊥0)b
′]

+2α

Y

[
λ

(
2αR′

0

Y
− ρ′

0 + e′
)

+λ1

{
pr0 + e[p′

r0 + pr0

(
2

r
− 2αR′

0

Y

)
]
}]

.

The quantities Z1p(N ) and Z2p(N ) are terms of Z1p and
Z2p belonging to the Newtonian era. The gravitating source
remains stable in the Newtonian approximation until the
inequality for � is satisfied, for which the following con-
straints must be met:

2αR′
0 < Y,

2αR′
0

Y
> ρ′

0 − e′.

The case when α → 0 and λ → 0 leads to GR corrections
and results for f (R) can be retrieved by setting λ → 0.

3.2 Post-Newtonian regime

We assume A0 = 1 − m0
r and B0 = 1 + m0

r to evaluate the
stability condition in the pN regime. On substitution of these
assumptions in (3.37), we have the following inequality for
� to be fulfilled for the stability range:

� <
Z4X5 + X6 + λρ0(X7 + Y Z1p(PN )),1 + X8X7 − 2

rλ1
Z3(PN ) + Y Z2p(PN )

λ1 pr0X ′
7 +

{
pr0

(
m0

r(r−m0)
+ 2αR′

0
Y + 2

r

)}
X7

, (3.42)

where

X5 = 2αr2

(r − m0)2

{
e′ − r

r + m0

(
bR′

0 + 2e
m0

r

)}

+Y

[
r2

(r − m0)2

{
2αe − Y

c̄

r

}

−2α(r + m0)
2

r2

{
er2

Y (r + m0)2

}′]
,

X6 = λ1

{
ρ0

(
ar

r − m0

)′
− 2(pr0 + p⊥0)b

′
}

−2α

Y

[
(λ1 pr0 + λ)e′

+e

{
λ1(p

′
r0 + ρ0m0

r(r − m0)
) + pr0

(
2

r
− 2αR′

0

Y

)}

−λ

(
ρ′

0 − 2αR′
0

Y

)]
,

X7 = 2e

Y
+ λ1b

(
2 + r

r + m0

)
,

X8 =
(

m0

r(r − m0)
+ 2αR′

0

Y
+ 2λ

λ1r
+ λρ′

0

)
.

Z1p(PN ) and Z2p(PN ) are terms of Z1p and Z2p that lie in
the post-Newtonian era. The above inequality (3.42) holds for
positive definite terms and describes the stability range of the
subsequent evolution. The positivity of each term appearing
in (3.42) leads to the following restrictions:

r

r + m0

(
bR′

0 + 2em0

r

)
< e′, 2αe − Yb

>
(r2 − m2

0)
2

r4

{
er2

Y (r + m0)2

}′

×
(

ar

r − m0

)′
> 2(pr0 + p⊥0)b

′, ρ′
0 <

2αR′
0

Y
.

4 Concluding remarks

In this manuscript, we carried out a study of the implica-
tions of the shear-free condition on the stability of spherically

symmetric anisotropic stars in f (R, T ). Our exploration
regarding the viability of the f (R, T ) model reveals that
the selection of f (R, T ) model for dynamical analysis is
constrained to the form f (R, T ) = f (R) + λT , where λ

is an arbitrary positive constant. The restriction on the form
of f (R, T ) originates from the complexities of nonlinear
terms of the trace in an analytical formulation of the field
equations. The model under consideration is of the form
f (R, T ) = R + αR2 + λT , representing a viable substi-
tute to dark source and the exotic matter, both satisfying the
viability criterion (positivity of radial derivatives up to sec-
ond order).
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In f (R, T ) gravity, the non-minimal matter–geometry
coupling includes the terms of the trace T in the action (1.1)
that is beneficent in the description of quantum effects or so-
called exotic matter. The components of the modified field
equations together with the implementation of the shear-free
condition are developed in Sect. 2. Further conservation laws
are considered in order to arrive at the dynamical equations
by means of the Bianchi identities. These equations are uti-
lized to estimate the variations in the gravitating system with
the passage of time.

The complexities of more generic analytical field equa-
tions are dealt with by using a linear perturbation of the
physical quantities. The perturbation scheme induces a sig-
nificant ease in the description of the dynamical system, or
rather to present a stability analysis by means of numerical
simulations. The analytic approach we have employed here
is more general and substantially important in explorations
regarding structure formation. The perturbed shear-free con-
dition together with the dynamical and field equations leads
to the evolution equation, relating � with the usual and dark
source terms. It is found that the induction of the trace of
the energy-momentum tensor in the action (1.1) contributes
a positive addition to �, which slows down the subsequent
evolution considerably.

The outcome of the gravitational evolution is size depen-
dent, and we have as well other physical aspects such as
isotropy, anisotropy, shear, radiation, dissipation, etc. The

instability range for N and pN approximations is considered,
which imposes some restrictions on the physical variables.
It is observed that the terms appearing in � are less con-
strained for both the regimes (N and pN) in comparison to
the anisotropic sources [1]. Thus, the shear-free condition
benefits in more stable anisotropic configurations. Correc-
tions to GR and f (R) establishments can be made by setting
α → 0, λ → 0, and λ → 0, respectively. The local isotropy
of the model can be settled by assuming pr = p⊥ = p. The
extension of this work for a shearing expansion of the free
evolution of anisotropic spherical and cylindrical sources is
in process.
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Appendix

We have

Z1(r, t) = fR A
2

[{
1

fR A2

(
f − R fR

2
− 3 ḟ R

A2

Ḃ

B
− f ′

R

B2

(
B ′

B
− 2C ′

C

)
+ f ′′

R
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3
Ḃ

B

)2

+ 9 Ȧ
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Ḃ
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Ȧ

A

(
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+ 1

B2

(
ḟ ′
R − A′

A
ḟR

) (
3A′

A
+ B ′

B
+ 2C ′

C

)
, (5.1)

Z2(r, t) = fR B
2

[{
1

fR A2B2

(
ḟ R

′ − A′

A
ḟR − Ḃ

B
f ′
R

)}
,0

+
{

1

fR B2

(
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2

− ḟ R
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(
Ȧ

A
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B2

(
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C
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A2
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]
+ (R fR − f )
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B

− 1

A2

ḟ R
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{
A′

A

(
Ȧ

A
+ Ḃ

B

)
+ B ′

B

(
Ȧ

A
− 2Ċ

C
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+

(
Ȧ

A
+ 5Ḃ

B

) (
ḟ R
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A
ḟR − Ḃ

B
f ′
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− f ′
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{
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B
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A
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)
; (5.2)
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Z1p = 2αA2
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