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Abstract The quantum dynamics of a spin-1/2 charged par-
ticle in the presence of a magnetic field is analyzed for the
general case where scalar and vector couplings are consid-
ered. The energy spectra are explicitly computed for various
physical situations, as well as their dependencies on the mag-
netic field strength, spin projection parameter, and vector and
scalar coupling constants.

1 Introduction

The study of relativistic quantum systems under the influence
of magnetic field and scalar potentials has attracted attention
of researchers in various branches of physics. It is well known
that these potentials can be inserted into the Dirac equation,

[βγ · p + βM]ψ(r) = Eψ(r), (1)

through the three usual substitutions, known as minimal, vec-
tor, and scalar couplings, whose representation is denoted,
respectively, by

p → p − eA, (2)

E → E − V (r), (3)

M → M + S(r). (4)

With this representation, a variety of relativistic and nonrel-
ativistic effects can be studied. Moreover, these couplings
differ in the manner how they are inserted into the Dirac
equation [1]. The minimal coupling (2) is useful for studying
the dynamics of a spin-1/2 charged particle in a magnetic
field. For example, using this model, we can study Landau
levels [2], the Aharonov–Bohm effect [3], the quantum Hall
effect [4], and other effects associated with a magnetic field.

It is well known that the prescription (3) acts differently on
electron and positron states, respectively, and the eigenvalue
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spectrum of the particle is not symmetric. In this case, bound
states exist for only one of the two kinds of particles. In other
words, we can say that, for vector coupling, the potential cou-
ples to the charge. In the context of the Dirac equation, this
coupling has been used, for example, to study the influence
of a harmonic oscillator on the Aharonov–Casher problem
[5], the Aharonov–Bohm effect for a spin-1/2 particle in the
case that a 1/r potential is present [6], the effects of non-
gauge potentials on the spin-1/2 Aharonov–Bohm problem
[7], quasiclassical theory of the Dirac equation with applica-
tions in the physics of heavy-light mesons [8], and confining
potentials with a pure vector coupling [9]. In the Schrödinger
theory, it also has important applications, such as: the dynam-
ics of an electron in a two-dimensional quantum ring [10,11],
quantum particles constrained to move on a conical surface
[12], and the effect of singular potentials on the harmonic
oscillator [13].

In the case of the scalar coupling (4), it is added to the
mass term of the Dirac equation and, therefore, it can be
interpreted as an effective, position-dependent mass and,
furthermore, it also acts equally on particles and antiparti-
cles. This coupling has been used, for example, to obtain
an exact solution of the Dirac equation for a charged parti-
cle with position-dependent mass in the Coulomb field [14],
to study the relativistic quantum dynamics of a charged
particle in cosmic string spacetime [15,16], scattering of
a fermion in the background of a smooth step potential
with a general mixing of vector and scalar Lorentz struc-
tures with the scalar coupling stronger than or equal to the
vector coupling [17], inclusion of the generalized Hulthén
potential in the case of the smooth step mass distribution
[18], and the extension of PT-symmetric quantum mechan-
ics [19]. The coupling (4) also has important applications in
nonrelativistic quantum mechanics. The Schrödinger equa-
tion with a position-dependent mass has attracted a lot of
attention due to the wide range of applications in various
areas of material science and condensed matter physics.
For example, it was used to study the dynamics of an one-
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dimensional harmonic oscillator [20], the derivation of the
Shannon entropy for a particle with a nonuniform solitonic
mass density [21], the displacement operator for quantum
systems [22,23], the use of instantaneous Galilean invari-
ance to derive the expression for the Hamiltonian of an elec-
tron [24], the determination of some potential functions for
exactly solvable nonrelativistic problems [25], and the Her-
mitian, rotationally invariant one-band Schrödinger Hamil-
tonian [26].

The cases in which the couplings are composed by a vector
(3) and a scalar (4) potential, with S = V (S = −V ), are
usually pointed out as necessary condition for the occurrence
of exact spin (pseudospin) symmetry. It is well known that
the spin and pseudospin symmetries are SU(2) symmetries
of a Dirac Hamiltonian with vector and scalar potentials.
The pseudospin symmetry was introduced in nuclear physics
many years ago [27,28] to account for the degeneracies of
orbitals in single-particle spectra. Also, it is known that the
spin symmetry occurs in the spectrum of a meson with one
heavy quark [29] and an anti-nucleon bound in a nucleus
[30], and the pseudospin symmetry occurs in the spectrum
of nuclei [31].

In this work, we study the quantum dynamics of a spin-
1/2 charged particle in the presence of a magnetic field with
scalar and vector couplings. This system has been consid-
ered in Ref. [32]. The difference between our approach and
that one is that, here, we solve the problem in a rigorous way
taking into account other questions which have not been ana-
lyzed by the authors. For example, we address the absence of
the term which depends explicitly on the spin in the equation
of motion. Since we are considering the dynamics of a parti-
cle with spin, such a term cannot be neglected in the equation
of motion [33]. Moreover, as the authors make a connection
with the Aharonov–Bohm problem, the presence of this term
has important implications on the physical quantities of inter-
est, such as energy eigenvalues, the scattering matrix, and the
phase shift (see Ref. [34] for more details). By taking into
account the term that depends explicitly on the spin in the
Pauli equation, we address the system in connection with
the spin-1/2 Aharonov–Bohm problem [35] and analyze the
questions of (a) the existence of isolated solutions to the first
order equation Dirac, and (b) the general dynamics in all
space, including the r = 0 region. We use the self-adjoint
extension method to determine the most relevant physical
quantities, such as the energy spectrum and wave functions
by applying boundary conditions allowed by the system. The
self-adjoint extension method is very useful to address physi-
cal systems whose Hamiltonian involves some singular term,
such as, for example, in monopole fields [36,37], fermions
in an Aharonov–Bohm field [38,39], and in fermion–soliton
systems with position-dependent mass [40,41].

The paper is organized as follows. In Sect. 2, we consider
the Dirac equation in (2+1) dimensions with minimal, scalar,

and vector couplings, and we derive the set of first order dif-
ferential equations. These equations are useful to investigate
possible isolated solutions to the problem. In Sect. 3, we
solve the first order Dirac equation in connection with the
Aharonov–Bohm problem and scalar and vector couplings.
We found that, for certain values assumed by the physical
parameters of the system, isolated solutions exist, and we
discuss the limits of validity of them. In Sect. 4, we derive the
Pauli equation and study the dynamics of the system taking
into account exact symmetry spin and pseudospin limits. In
Sect. 5, we briefly discuss some concepts of the self-adjoint
extension method and specify the boundary conditions at the
origin which will be used. In Sect. 6, the expressions for the
energy eigenvalues and wave functions are determined for
both symmetry limits, and we compare them with the results
of Ref. [32]. We verify that the presence of the spin element in
the equation of motion introduces a correction in the expres-
sions for the bound state energy eigenvalues. In Sect. 7, we
present our concluding remarks.

2 Equation of motion

We begin with the Dirac equation (1) in (2 + 1) dimensions
in polar coordinates (h̄ = c = 1),

{βγ · π + β [M + S(r)]} ψ(r) = [E − V (r)] ψ(r), (5)

where π = (
πr , πϕ

) = (−i∂r ,−i∂ϕ/r − eAϕ), r = (r, ϕ),
and ψ is a two-component spinor. The γ matrices in Eq. (5)
are given in terms of the Pauli matrices as [42]

βγ r = σ1 cos ϕ + sσ2 sin ϕ =
(

0 e−isϕ

e+isϕ 0

)

, (6)

βγ ϕ = −σ1 cos ϕ + sσ2 sin ϕ =
(

0 −ise−isϕ

ise+isϕ 0

)

,

(7)

β = σ3 =
(

1 0

0 −1

)

, (8)

where s is twice the spin value, with s = +1 for spin “up”
and s = −1 for spin “down”. Equation (5) can be written
more explicitly as

e−isϕ[πr − isπϕ]ψ2 = [E − M − Σ(r)] ψ1, (9)

e+isϕ[πr + isπϕ]ψ1 = [E + M − Δ(r)] ψ2, (10)

where Σ(r) = V (r) + S(r) and Δ(r) = V (r) − S(r).
If one adopts the following decomposition:

(
ψ1

ψ2

)

=
⎛

⎜
⎝

∑

m
fm(r) eimϕ

i
∑

m
gm(r) ei(m+s)ϕ

⎞

⎟
⎠ , (11)
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with m + 1/2 = ±1/2,±3/2, . . ., with m ∈ Z, and inserts
this into Eqs. (9) and (10), one obtains
[

d

dr
+ s (m + s)

r
− es Aϕ

]
g(r) = [E − M − Σ(r)] f (r),

(12)
[
− d

dr
+ sm

r
− es Aϕ

]
f (r) = [E + M − Δ(r)] g(r).

(13)

Note that the above equations are coupled. However, if
Σ(r) or Δ(r) is made zero in any of the equations, we can
uncouple them easily. We will see below that this results in
important physical consequences for the physical system in
question.

3 Isolated solutions for the Dirac equation of motion

In this section, we investigate the existence of isolated solu-
tions in the quantum motion of a fermionic massive charged
particle in (2 + 1) dimensions. This is accomplished by con-
sidering the particle at rest, i.e., E = ±M , directly in the first
order equations in Eqs. (12) and (13). Such a solution is well
known to be excluded from the Sturm–Liouville problem,
and this has been investigated under diverse perspectives in
the last years [43–50]. We are seeking for bound-state solu-
tions subject to the normalization condition
∫ ∞

0

(| fm(r)|2 + |gm(r)|2)r dr = 1. (14)

In order to determine the isolated bound-state solutions,
we consider Σ(r) = 0 in Eq. (12), so that, for E = M , we
can write
[

d

dr
+ s(m + s)

r
− seAϕ

]
gm(r) = 0, (15)

[
− d

dr
+ sm

r
− seAϕ

]
fm(r) = 2(M − V (r))gm(r), (16)

whose general solutions are

gm(r) = a+r−s(m+s)ese
∫
Aϕdr , (17)

fm(r) = [
b+ − a+ I (r)

]
rsme−se

∫
Aϕdr , (18)

where a+ and b+ are constants, and I (r) is given by

I (r) =
∫

dr [2M − 2V (r)]e2se
∫
Aϕ(r)dr , (19)

which, for a given V (r) and Aϕ(r), can be expressed in terms
of the upper incomplete Gamma function [51],

Γ (a, x) =
∫ ∞

x
ta−1e−tdt, �(a) > 0. (20)

Let us now analyze the solutions for E = −M and consider
Δ(r) = 0 in Eq. (13). For this case, we write
[

d

dr
+ s (m + s)

r
−es Aϕ(r)

]
g(r) = −2 [M+V (r)] f (r),

(21)
[
− d

dr
+ sm

r
− es Aϕ(r)

]
f (r) = 0, (22)

whose general solution is

fm(r) = a−rsme−se
∫
Aϕdr , (23)

gm(r) = [b− − a−H(r)]r−s(m+s)ese
∫
Aϕdr , (24)

where

H(r) =
∫

dr [2M − 2V (r)] e−2se
∫
Aϕdr . (25)

Now, let us consider the particular case where the particle
moves in a constant magnetic field and in the presence of the
Aharonov–Bohm effect. The vector potential in the Coulomb
gauge is

A = A1 + A2, (26)

with

A1 = B0r

2
ϕ̂, A2 = φ

r
ϕ̂, (27)

where B0 is the magnetic field magnitude and φ is the flux
parameter. The potentials in Eq. (26) both provide one mag-
netic field perpendicular to the plane (r, ϕ), namely

B = B1 + B2, (28)

with

B1 = ∇ × A1 = B0ẑ, (29)

B2 = ∇ × A2 = φ
δ(r)

r
ẑ, (30)

whereB1 is an external magnetic field andB2 is the magnetic
field due to a solenoid. If the solenoid is extremely long, the
field inside is uniform, and the field outside is zero. However,
in a general dynamics, the particle is allowed to access the
r = 0 region. In this region, the magnetic field is non-null. If
the radius of the solenoid is r0 ≈ 0, then the relevant magnetic
field is B2 ∼ δ(r) as in Eq. (30). This situation has not been
accomplished in Ref. [32], which is crucial to give meaning to
the term that explicitly depends on the spin, namely, the Pauli
term appearing in the second order differential equation. This
issue will be considered later when we treat solutions for the
case E 	= ±M . Using Eqs. (29) and (30), we have

∫
Aϕdr = B0r2

4
+ φ ln r. (31)
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If φ > 0 and B0 > 0, for E = M , we have bound-state
solutions only in the following cases:
(

fm(r)
gm(r)

)
=

(
1
0

)
b+rm−λe−δr2

,

{
s = +1,

a+ = 0,
, (32)

(
fm(r)
gm(r)

)
=

(
0
1

)
a+rm−λ−1e−δr2

,

{
s = −1,

b+ = M = V = 0,

(33)

and for E = −M ,
(

fm(r)
gm(r)

)
=

(
0
1

)
b−rm−λ−1e−δr2

,

{
s = −1,

a− = 0,
(34)

(
fm(r)
gm(r)

)
=

(
1
0

)
a−rm−λe−δr2

,

{
s = +1,

b+ = M = V = 0,

(35)

where δ = eB0/4 and λ = eφ. Note that the above results
are independent of the values of s,m, and λ to ensure a bound
state. This is because the function e−δr2

predominates over
the polynomials rm−λ and rm−λ−1. If we consider B0 =
V (r) = 0, which leads to the usual Aharonov–Bohm effect,
the solution for E = M reads

gm(r) = a+rs[λ−(m+s)], (36)

fm(r) =
[
b+ − a+ Ĩ (r)

]
rs(m−λ), (37)

where

Ĩ (r) = 2M

2sλ + 1
r2sλ+1. (38)

For E = −M , we get

fm(r) = a−rs(m−λ), (39)

gm(r) = [b− − a− H̃(r)]rs[λ−(m+s)], (40)

where

H̃(r) = 2M

−2sλ + 1
r−2sλ+1. (41)

Unlike the cases of Eqs. (32)–(35), if we impose the require-
ment that B0 and V (r) are zero, there exist no bound-state
solutions of square-integrable type. In other words, for any
values of s, m, and λ in Eqs. (36)–(41), the integral (14)
diverges.

4 Equation of motion and analysis of symmetries

In this section, we investigate the dynamics for E 	= ±M .
To this aim, we choose to work with Eq. (5) in its quadratic
form. After application of the operator

β[(M + S(r)) + β(E − V (r)) + γ · π], (42)

we get
{
p2 − 2e[(A1 + A2) · p] + e2(A1 + A2)

2}ψ(r)

+ {[M + S(r)]2 − [E − V (r)]2 − esσ · (B1 + B2)
}
ψ(r)

−
(

∂S(r)

∂r
σ2 + i

∂V (r)

∂r
σ1

)
ψ(r) = 0. (43)

In this stage, it is worthwhile to mention that Eq. (43) is the
correct quadratic form of the Dirac equation with minimal,
vector, and scalar couplings, because the Pauli term is con-
sidered.

4.1 Exact spin symmetry limit: S = V

The condition for establishing the exact symmetry boundary
implies that the solution is of the form

ψ1 =
∑

m

fm(r) eimϕ. (44)

So, by making S = V (or equivalently Δ(r) = 0 [52,53]) in
Eq. (10) and using the solution (44) in Eq. (43), the equation
for fm(r) is found to be
[

− d2

dr2 − 1

r

d

dr
+m2

r2 −2e

(
B0r

2
+ φ

r

)
m

r
+ e2B2

0r
2

4

]

fm(r)

+
[
e2φ2

r2 + e2B0φ − es

(
B0 + φ

δ(r)

r

)]
fm(r)

+
[
M2 − E2 + 2(E + M)V

]
fm(r) = 0. (45)

Assuming V (r) as in Ref. [32], i.e., of the form

V (r) = a r2 + b

r2 , (46)

Equation (45) becomes

H fm(r) = k2 fm(r), (47)

with

H = H0 − esφ
δ(r)

r
, (48)

H0 = − d2

dr2 − 1

r

d

dr
+ ν2

r2 + η2 r2, (49)

where

ν2 = (m − eφ)2 + 2b(E + M), (50)

η2 = e2B2
0

4
+ 2a(E + M), (51)

k2 = meB0 − e2B0φ + esB0 + (E2 − M2). (52)

As pointed out in Ref. [32], the potential V (r) in Eq. (46)
describes an anharmonic oscillator. This model is a particular
case of a class proposed in Ref. [10] to study the Landau quan-
tization and the Aharonov–Bohm effect in a two-dimensional
ring as an exactly soluble model. The model considered in
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Ref. [10] has an advantage because, besides the model con-
sidered here, it also describes other physical systems, such as
a one-dimensional ring, a straight 2D wire, a single quantum
dot and an isolated antidot.

4.2 Exact pseudospin symmetry limit: S = −V

In this case, the condition for establishing the exact pseu-
dospin symmetry limit implies that the resolution is related
to the down component of the spinor in Eq. (11), namely

ψ2 = i
∑

m

gm(r) ei(m+s)ϕ. (53)

By making S = −V (or equivalently Σ(r) = 0 in Eq. (9)
and again using Eq. (53) in Eq. (43), the equation for gm(r)
can be found:

H̃ gm(r) = k̃2gm(r), (54)

with

H̃ = H̃0 − esφ
δ(r)

r
, (55)

H̃0 = − d2

dr2 − 1

r

d

dr
+ ν̃2

r2 + η̃2 r2, (56)

where

ν̃2 = (m + s − eφ)2 + 2b(E − M), (57)

η̃2 = e2B2
0

4
+ 2a(E − M), (58)

k̃2 = (m + s)eB0 − e2B0φ + esB0 − (M2 − E2). (59)

5 Self-adjoint extension analysis

In this section, we review some concepts as regards the self-
adjoint extension approach. An operator O , with domain
D(O), is said to be self-adjoint if and only if O = O† and
D(O) = D(O†), O† being the adjoint of the operator O . For
smooth functions ξ ∈ C∞

0 (R2) with ξ(0) = 0, we should
have Hξ = H0ξ , and it is possible to interpret the Hamil-
tonian H0 (49) as a self-adjoint extension of H0|C∞

0 (R2/{0})
[54–56]. The self-adjoint extension approach consists, essen-
tially, in extending the domain of D(O) in order to match
D(O†). From the theory of symmetric operators, it is a well-
known fact that the symmetric radial operator H0 is essen-
tially self-adjoint for ν ≥ 1, while, for ν < 1, it admits a
one-parameter family of self-adjoint extensions [57], H0,λm ,
where λm is the self-adjoint extension parameter. To charac-
terize this family, we will use the approach in [58,59], which
is based on the boundary conditions at the origin. All the
self-adjoint extensions H0,λm of H0 are parameterized by the
boundary condition at the origin,

Ψ0 = λmΨ1, (60)

with

Ψ0 = lim
r→0+ r

ν fm(r), (61)

Ψ1 = lim
r→0+

1

rν

[
fm(r) − Ψ0

1

rν

]
, (62)

where λm ∈ R. For λm = 0, we have the free Hamiltonian
(without the δ function) with regular wave functions at the
origin, and for λm 	= 0 the boundary condition in Eq. (60)
permits an r−ν singularity in the wave functions at the origin.

6 The bound state energy and wave function

In this section, we determine the energy spectrum by solving
Eq. (47). For r 	= 0, the equation for the component fm(r)
can be transformed by the variable change ρ = ηr2, resulting
in

ρ f ′′
m(ρ) + f ′

m(ρ) −
(

ν2

4ρ
+ ρ

4
− k2

4η

)
fm(ρ) = 0. (63)

Due to the boundary condition in Eq. (60), we seek regular
and irregular solutions for Eq. (63). Studying the asymptotic
limits of Eq. (63) leads to the following regular (+) (irregular
(−)) solution:

fm(ρ) = ρ± ν
2 e− ρ

2 F(ρ). (64)

With this, Eq. (63) is rewritten as

ρF ′′(ρ) + (1 ± ν − ρ)F ′(ρ) −
(

1 ± ν

2
− k2

4γ

)
F(ρ) = 0.

(65)

Equation (63) is of the confluent hypergeometric equation
type,

zF ′′(z) + (b − z)F ′(z) − aF(z) = 0. (66)

In this manner, the general solution for Eq. (63) is

fm(r) = amρ
ν
2 e− ρ

2 F(d+, 1 + ν, ρ)

+ bmρ− ν
2 e− ρ

2 F(d−, 1 − ν, ρ), (67)

with

d± = 1 ± ν

2
− k2

4η
. (68)

In Eq. (67), F(a, b, z) is the confluent hypergeometric func-
tion of the first kind [51] and am and bm are, respectively, the
coefficients of the regular and irregular solutions.

In this point, we apply the boundary condition in Eq. (60).
Doing this, one finds the following relation between the coef-
ficients am and bm :

λmην = bm
am

[
1 + λmk2

4(1 − ν)
lim

r→0+ r
2−2ν

]
. (69)
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We note that limr→0+ r2−2ν diverges if ν ≥ 1. This con-
dition implies that bm must be zero if ν ≥ 1 and only the
regular solution contributes to fm(r). For ν < 1, when the
operator H0 is not self-adjoint, there arises a contribution
of the irregular solution to fm(r) [34,60–63]. In this man-
ner, the contribution of the irregular solution for the system’s
wave function stems from the fact that the operator H0 is not
self-adjoint.

For fm(r) to be a bound state wave function, it must vanish
at large values of r , i.e., it must be normalizable. So, from the
asymptotic representation of the confluent hypergeometric
function, the normalizability condition is translated into

bm
am

= −Γ (1 + ν)

Γ (1 − ν)

Γ (d−)

Γ (d+)
. (70)

From Eq. (69), for ν < 1, we have

bm
am

= λmην. (71)

By combining Eqs. (70) and (71), one finds

Γ (d+)

Γ (d−)
= − 1

λmγ ν

Γ (1 + ν)

Γ (1 − ν)
. (72)

Equation (72) implicitly determines the bound state energy
for the system for different values of the self-adjoint exten-
sion parameter. Two limiting values for the self-adjoint exten-
sion parameter deserve some attention. For λm = 0, when
the δ interaction is absent, only the regular solution con-
tributes for the bound state wave function. On the other side,
for λm = ∞, only the irregular solution contributes for the
bound state wave function. For all other values of the self-
adjoint extension parameter, both regular and irregular solu-
tions contribute to the bound state wave function. The ener-
gies for the limiting values are obtained from the poles of the
gamma function, namely,
{
d+ = −n for λm = 0, (regular solution),
d− = −n for λm = ∞, (irregular solution),

(73)

with n a nonnegative integer, n = 0, 1, 2, . . .. By manipula-
tion of Eq. (73), we obtain

E2 − M2 = 2

√
e2B2

0

4
+ 2a(E + M)

×
[
2n + 1 ±

√
(m − eφ)2 + 2b(E + M)

]

+ e2B0φ − meB0 − esB0, S = V, (74)

E2 − M2 = 2

√
e2B2

0

4
+ 2a(E − M)

×
[
2n + 1 ±

√
(m + s − eφ)2 + 2b(E − M)

]

+ e2B0φ − (m + s)eB0 − esB0, S = −V .

(75)
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Fig. 2 Plots of the energy (Δ(r) = 0) as a function of the magnetic
field B0 for s = −1 and different values of n and m: n = 0 (solid line),
n = 1 (dashed line), and n = 2 (dotted line)

As an illustration the profiles of the energy under the exact
spin symmetry limit (S = V ) as a function of the magnetic
field B0 and with spin projection parameter values s = 1 and
s = −1 are shown in Figs. 1 and 2, respectively. From Figs. 1
and 2 we can note that the ground state n = 0 corresponds
to the lowest energies, as it should for particle energy levels.

In particular, it should be noted that for the case when
ν ≥ 1 or when the δ interaction is absent, only the regular
solution contributes for the bound state wave function (bm =
0), and the energy is given by Eq. (74) using the plus sign. The
unnormalized bound state wave functions for our problem are

fm(r) =
[
e2B2

0

4
+ 2a(E + M)

]± 1
4

√
(m−eφ)2+2b(E+M)

× r±
√

(m−eφ)2+2b(E+M)e− 1
2

√
e2B2

0
4 +2a(E+M)r2
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× F

(
− n, 1 ±

√
(m − eφ)2 + 2b(E + M),

√
e2B2

0

4
+ 2a (E + M)r2

)
, S = V, (76)

gm(r) =
[
e2B2

0

4
+ 2a(E − M)

]± 1
4

√
(m+s−eφ)2+2b(E−M)

× r±
√

(m+s−eφ)2+2b(E−M)e− 1
2

√
e2B2

0
4 +2a(E−M)r2

× F

(
− n, 1 ±

√
(m + s − eφ)2 + 2b(E − M),

√
e2B2

0

4
+ 2a(E − M)r2

)
, S = −V . (77)

The self-adjoint extension is related with the presence of
the δ interaction. In this manner, the self-adjoint extension
parameter must be related with the δ interaction coupling
constant φs. In fact, as shown in Refs. [34,64] (see also
Refs. [60,65]), from the regularization of the δ interaction,
it is possible to find such a relationship. Using the regular-
ization method, one obtains the following equation for the
bound state energy:

Γ (d+)

Γ (d−)
= − 1

r2ν
0

(
φs + αν

φs − αν

)
1

γ ν

Γ (1 + ν)

Γ (1 − ν)
. (78)

By comparing Eqs. (72) and (78), this relation is found to be

1

λm
= 1

r2ν
0

(
φs + αν

φs − αν

)
(79)

where r0 is a very small radius which comes from the δ

regularization [34,64]. The result of Eq. (79) provides an
explicit formula for the self-adjoint extension parameter λm .
We have, therefore, derived the most important quantities for
the system without any arbitrary parameter coming from the
self-adjoint extension method.

7 Nonrelativisitic limit

Let us now examine the nonrelativistic limit of Eq. (43) by
setting E = M + E , with M 
 E , for the two cases S = V
and S = −V . After applying this limit, we find

Hψ = 2MEψ, (80)

where

H = (p − eA)2 − esσ · B + 2M[S(r) + V (r)]. (81)

Using the ansatz of Eq. (11) in Eq. (80), again, we get the
equation for fm(r) (for S = V ),

[
− d2

dr2 − 1

r

d

dr
+ ν̄2

r2 + η̄2 r2 − esφ
δ(r)

r

]
fm(r)

−E fm(r) = 0, (82)

where

ν̄2 = (m − eφ)2 + 4Mb, (83)

η̄2 = e2B2
0

4
+ 4Ma, (84)

k̄2 = meB0 − e2B0φ + esB0 + 2ME . (85)

On the other hand, for S = −V , the term involving the
potential is now identically zero. The resulting equation is
given by

[
− d2

dr2 − 1

r

d

dr
+ ν̆2

r2 + η̆2 r2 − esφ
δ(r)

r

]
gm(r)

−E gm(r) = 0,

where

ν̆2 = (m + s − eφ)2, (86)

η̆2 = e2B2
0

4
, (87)

k̆2 = eB0(m + s) − e2B0φ + esB0 + 2ME . (88)

In order to determine the energy spectrum, we use the same
technique as above. Performing the same steps as for the
relativistic case, one obtains the energy levels,

E = 1

M

√
e2B2

0

4
+ 4Ma

[
2n + 1 ±

√
(m − eφ)2 + 4Mb

]

+ 1

2M

[
e2B0φ − (m + s)eB0 − esB0

]
, S = V,

(89)

E = 1

2M
eB0(2n + 1 ± |m − eφ|)

+ 1

2M

[
e2B0φ − (m + s)eB0 − esB0

]
, S = −V .

(90)

The corresponding wave functions are given by

fm(r) =
(
e2B2

0

4
+ 4Ma

)± 1
4

√
(m−eφ)2+4Mb

× r±
√

(m−eφ)2+4Mbe− 1
2

√
e2B2

0
4 +4Mar2

× F

(
−n, 1 ±

√
(m − eφ)2 + 4Mb,

√
e2B2

0

4
+ 4Mar2

)
, S = V, (91)
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fm(r) =
[
e2B2

0

4

]± 1
4 |m−eφ|

r±|m−eφ|e− 1
4 eB0r2

× F

(
−n, 1 ± |m − eφ|, 1

2
eB0r

2
)

, S = −V .

(92)

8 Conclusions

In this paper, we have studied the relativistic quantum dynam-
ics of a spin-1/2 charged particle with minimal, vector, and
scalar couplings. The minimal coupling was chosen so as to
lead to the spin-1/2 Aharonov–Bohm effect. In a first attempt,
we have solved the first order Dirac equation. We verified that
there are isolated solutions for the system for some special
cases. These solutions depend on the values assumed by the
spin projection parameter s, as well as on the choice of the
scalar and vector potential functions, S(r) and V (r).

In contrast to the literature, we have considered the correct
quadratic form of the Dirac equation with minimal, vector,
and scalar couplings. As we have mentioned before, in the
approach of Ref. [32] the authors have not taken into account
the term that depends explicitly on the spin in the Pauli equa-
tion of motion. We have revisited the dynamics of the system
in detail and shown that the correct approach should involve
the spin element. Thus, we have derived the Pauli equation
and studied the dynamics of the system taking into account
the exact symmetry spin and pseudospin limits. Because the
equation of motion includes a δ function, we have used the
self-adjoint extension method to specify the proper bound-
ary conditions at the origin. The analytical solutions of the
model allow a calculation of the expressions for the energy
eigenvalues and wave functions for both symmetry limits.
We verify that the presence of the spin element in the equa-
tion of motion introduces a correction in the expressions for
the bound state energy and wave functions, a fact that does
not occur in Ref. [32].
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