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Abstract We discuss the dynamical analysis in f (R, T )

gravity (where R is the Ricci scalar and T is the trace of
the energy momentum tensor) for gravitating sources car-
rying axial symmetry. The self-gravitating system is taken
to be anisotropic and the line element describes an axially
symmetric geometry avoiding rotation about the symmetry
axis and meridional motions (zero vorticity case). The modi-
fied field equations for axial symmetry in f (R, T ) theory are
formulated, together with the dynamical equations. Linearly
perturbed dynamical equations lead to the evolution equa-
tion carrying the adiabatic index �, which defines the impact
of a non-minimal matter to geometry coupling on the range
of instability for Newtonian and post-Newtonian approxima-
tions.

1 Introduction

Recent developments in astrophysics and structure forma-
tion theories reveal that gravitating sources might deviate
from the most commonly studied spherical symmetry. Such
deviations in realistic scenarios appear incidentally, giving
rise to the importance of non-spherical symmetries in gravi-
tating objects. Herein, we intend to look into the implications
of the restricted class of axially symmetric sources (avoid-
ing reflection and rotation) on the gravitational evolution in
the context of the f (R, T ) theory of gravity. Consideration
of the dynamic sources together with the angular momen-
tum is a cumbersome task; however, observational data sug-
gests that the lack of spherical symmetry prevails in the more
practical and interesting situations. A viable f (R, T ) model

( d f
dr ≥ 0,

d2 f
dr2 ≥ 0) with a locally anisotropic matter distribu-

tion has been taken into account for the dynamical analysis.
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The evolution of gravitating sources has been studied with
a great deal of interest in the recent past. Stars tend to col-
lapse when outward drawn pressure decreases because of
continuous fuel consumption, leading to an imbalance in out-
ward forces and inwardly acting gravitational pull. In such
a situation, the gravitational force becomes the only gov-
erning force, massive stars burn nuclear fuel more rapidly,
and so more become unstable as compared to the stars with
relatively less mass. There are many factors other than the
mass of the gravitating source that implicate intense modifi-
cations in the range of stability/instability such as isotropy,
anisotropy, shear, dissipation, and radiation. Chanderashekar
[1] presented valuable explorations to set the instability range
for spherically symmetric gravitating source in terms of the
adiabatic index � comprising the pressure to density ratio
with the time transition.

Hillebrandt and Steinmetz [2] presented the instability
criterion for an anisotropic matter configuration of gravitat-
ing objects. Herrera et al. [3–7] published a major contribu-
tion to the establishment of the instability range of general
relativistic fluids for different cases (isotropic, anisotropic,
dissipative collapse etc.); they remarked that the pressure
anisotropy largely participates in setting the dynamical insta-
bility. Moreover, they also worked out the imprints of axially
and reflection symmetric static and dynamic sources by a
general framework and some analytic models [8,9]. Axially
symmetric shearing geodesic and shear-free dissipative fluids
are discussed in [10,11], where the shearing geodesic case
represents the zero radiation production.

General relativity (GR) is a self-consistent theory, it is
adequate for the explanation of many gravitational phenom-
ena up to cosmological scales. The scheme of GR appears
to disagree with progressing observational data such as large
scale structures ranging from galaxies to galaxy clustering,
IA-type supernovae, the cosmic microwave background [12–
15], etc. Alternatively, it can be said that GR is not the only
definite gravitational theory that is suitable for all scales.
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Many attempts have been made to validate gravitational the-
ories on large scales and agree with the cosmic acceleration
[16–28], by introducing modified theories of gravity [29–34]
for e.g. f (R), f (G), Brans–Dicke theory, f (R, T ), and so
on.

Since the introduction of f (R, T ) theory in 2011 [35],
people [36–39] worked on energy conditions along with
its cosmological and thermodynamic implications. The
f (R, T ) theory represents a generalization of f (R) theory
carrying non-minimal matter to geometry coupling. Exten-
sive work has been done on the instability range of spheri-
cally symmetric stars in GR as well as in modified theories
of gravity. The literature on the dynamical analysis of axially
symmetric sources abounds in GR. However, it being a heav-
ier task to handle modified dynamical equations in modified
theories, very few attempts have been made to explore the
axial symmetry.

The purpose of this manuscript is to work out the instabil-
ity problem for axially symmetric (in absence of reflection
and radiation) anisotropic sources in the context of f (R, T )

gravity. The reason of avoiding reflection and rotation terms
in axial symmetry is only to somehow reduce the compli-
cations in the analysis. The modified EH action in f (R, T )

admits an arbitrary function of R and T to account for the
exotic matter. The action in f (R, T ) is given by [35]

∫
dx4√−g

[
f (R, T )

16πG
+ L(m)

]
, (1.1)

where L(m) represents the matter Lagrangian and g repre-
sents the metric. Several choices of L(m) can be considered,
each of which stands for a specific form of fluid.

The article is organized as follows: The matter configu-
ration and components of the field equations together with
the dynamical equations are furnished in Sect. 2. Section 3
covers the information as regards the f (R, T ) model and per-
turbed conservation equations leading to the collapse equa-
tion. Section 4 contains the range of stability of Newtonian
(N) and post-Newtonian (pN) limits in terms of the adiabatic
index. The last section consists of concluding remarks; it is
followed by an appendix.

2 Interior spacetime and dynamical equations

The general line element for axially symmetric compact
objects constituting five independent metric coefficients is
given by

ds2 = −A2dt2 + B2dr2 + B2r2dθ2 + C2dφ2 + 2Gdtdθ

+ 2Hdtdφ, (2.2)

where the metric functions A, B,C,G, H have a dependence
on time, and on radial and axial coordinates (t, r, θ). Here,

we ignore the meridional motions and rotation about the sym-
metry axis. The absence of dtdθ and dtdφ terms leads to a
restricted character, i.e. the vorticity-free case. The modified
equations are highly non-linear in nature, so it is a tough
task to handle such equations with non-diagonal entries in
the metric tensor, which is why we have taken the zero vor-
ticity case to somehow manage the dynamical analysis by an
analytic approach.

The reduced form of the general axial symmetry with three
independent metric functions is [40]

ds2 = −A2(t, r, θ)dt2 + B2(t, r, θ)(dr2 + r2dθ2)

+C2(t, r, θ)dφ2. (2.3)

Taking L(m) = −ρ and 8πG = 1, varying the action (1.1)
with respect to the metric tensor guv , leads to the following
form for the modified field equations:

Guv = 1

fR

[
( fT + 1)T (m)

uv + ρguv fT + f − R fR
2

guv

+ (∇u∇v − guv�) fR

]
, (2.4)

where � = ∇u∇v , fR ≡ d f (R, T )/dR, fT ≡ d f (R, T )/

dT , ∇u is the covariant derivative and T (m)
uv is the energy

momentum tensor for the usual matter. The matter configu-
ration is considered to be locally anisotropic [32], as given
by

T (m)
uv = (ρ + p⊥)VuVv −

(
KuKv − 1

3
huv

)
(Pzz − Pxx )

−
(
LuLv − 1

3
huv

)
(Pzz − Pxx ) + Pguv

+ 2K(u Lv)Pxy, (2.5)

where ρ is the energy density and

P = 1

3
(Pxx + Pyy + Pzz), huv = guv + VuVv,

Pxx , Pyy, Pzz and Pxy are the respective stresses causing
pressure anisotropy, provided that Pxy = Pyx and Pxx �=
Pyy �= Pzz . Ku and Lu represent the four vectors in radial and
axial directions, respectively, and Vu is for the four-velocity;
these quantities are linked as

Vu = −Aδ0
u, Ku = Bδ1

u1, Lu = r Bδ2
u . (2.6)

The components of the modified (effective) Einstein tensor
are

G00 = 1

A2 fR
ρ + 1

A2 fR

[
f − R fR

2
− ḟ R

A2

( ˙2B

B
+ Ċ

C

)
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− f ′
R

B2

(
1

r
+ 2B ′

B
− C ′

C

)
− f θ

R

r2B2

(
2Bθ

B
− Cθ

C

)

+ f ′′
R

B2

]
, (2.7)

G01 = −1

A2B2 fR

[
A′

A
ḟR + Ḃ

B
f ′
R − ḟ R

′
]

, (2.8)

G02 = −1

r2A2B2 fR

[
Aθ

A
ḟR + Ḃ

B
f θ
R − ḟ R

θ
]

, (2.9)

G11 = 1

B2 fR

[
Pxx ( fT + 1) + ρ fT

+ ḟ R
A2

(
Ḃ
B − Ȧ

A
− Ċ

C

)
− f − R fR

2
− f θθ

R

r2B2 − f̈ R
A2

+ f ′
R

B2

(
1

r
− A′

A
+ B ′

B
− C ′

C

)

+ f θ
R

r2B2

(
3Bθ

B
− Aθ

A
− Cθ

C

)]
, (2.10)

G12 = 1

r2B4 fR

[
Pxy( fT + 1) + f ′θ

R − Bθ

B
f ′
R − B ′

B
f θ
R

]
,

(2.11)

G22 = 1

r2B4 fR

[
Pyy( fT +1)+ρ fT + ḟ R

A2

(
Ḃ

B
− Ȧ

A
+ Ċ

C

)

+ f̈ R
A2 − f − R fR

2
− f ′′

R

B2 − f θ
R

r2B2

×
(
Aθ

A
− Bθ

B
+ Cθ

C

)
− f ′

R

B2

(
A′

A
− B ′

B
+ C ′

C

)]
,

(2.12)

G33 = 1

C2 fR

[
Pzz( fT + 1) + f̈ R

A2 − f θθ
R

r2B2

+ ρ fT − f − R fR
2

− ḟ R
A2

(
Ȧ

A
− ˙2B

B

)

− f ′′
R

B2 − f ′
R

B2

(
A′

A
− 2B ′

B
− 1

r

)

− f θ
R

r2B2

(
Aθ

A
− 2Bθ

B

)]
. (2.13)

Here the dot, prime, and θ indicate the derivatives w.r.t. t, r ,
and θ coordinates, respectively. The expression for the Ricci
scalar is

R = 2

A2

[
Ȧ

A

( ˙2B

B
+ Ċ

C

)
− Ḃ

B

(
Ḃ

B
+ ˙2C

C

)
− 2B̈

B
− C̈

C

]

+ 2

B2

[
A′′

A
+ A′C ′

AC
+ B ′′

B
− 1

r

(
A′

A
− B ′

B
− C ′

C

)
− B ′2

B2

+ C ′′

C
+ 1

r2

(
Aθθ

A
+ Bθθ

B
+ Cθθ

C
−

(
Bθ

B

)2

+ AθCθ

AC

)]
.

(2.14)

In order to explore the stellar evolution, one needs to
arrive at the dynamical equations, which can be obtained
by employing the contracted Bianchi identities. Conserva-
tion laws play a significant part in the establishment of the
instability range by a more generic analytic approach; the
dynamical equations in our case are

Guv
;v Vu = 0 ⇒

[
1

fR
T 0v + 1

fR

(D)

T 0v

]

;v
(−A) = 0, (2.15)

Guv
;v Ku = 0 ⇒

[
1

fR
T 1v + 1

fR

(D)

T 1v

]

;v
(B) = 0, (2.16)

Guv
;v Lu = 0 ⇒

[
1

fR
T 2v + 1

fR

(D)

T 2v

]

;v
(r B) = 0, (2.17)

but, on simplification, we have

G00
,0 + G01

,1 + G02
,2 + G00

(
2 Ȧ

A
+ ˙2B

B
+ Ċ

C

)

+G01
(

3A′

A
+ 2B ′

B
+ C ′

C
+ 1

r

)

+G02
(

3Aθ

A
+ 2Bθ

B
+ Cθ

C

)

+G11 B Ḃ

A2 + G22 r
2B Ḃ

A2 + G33CĊ

A2 = 0, (2.18)

G01
,0 + G11

,1 + G12
,2 + G00 AA

′

B2 + G01
(
Ȧ

A
+ Ċ

C
+ ˙4B

B

)

+G11
(
A′

A
+ 3B ′

B
+ C ′

C
+ 1

r

)

+G12
(
Aθ

A
+ 4Bθ

B
+ Cθ

C

)

−G22
(
r + r2B ′

B

)
+ G33CC

′

B2 = 0, (2.19)

G02
,0 + G12

,1 + G22
,2 + G00 AAθ

r2B2 + G02
(
Ȧ

A
+ ˙4B

B
+ Ċ

C

)

− Bθ

r2B
G11 +

(
A′

A
+ 4B ′

B
+ C ′

C
+ 3

r

)
G12

+G22
(
Aθ

A
+ 3Bθ

B
+ Cθ

C

)
− G33 CC

θ

r2B2 = 0. (2.20)

The notation of 0, 1 and 2 indicates the t, r and θ . Terms
belonging to the matter or effective part of the dynamical
equations can be viewed separately by inserting the compo-
nents of the Einstein tensor given in Eqs. (2.7)–(2.13). The
dynamics of the gravitating axial system can be explored with
the help of a perturbation scheme, which is useful in estimat-
ing the change in the system with the passage of time.
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3 f (R, T )model and perturbation approach

The selection of the model under observation is a crucial
constituent of the analysis. Since we are dealing with the
system analytically, the model selected would bring forth
a fruitful mechanism for some particular form of f (R, T ).
We found that the f (R, T ) form suitable for a dynamical
analysis is constrained to f (R, T ) = f (R) + λT , where
λ is a positive constant and f (R) is an arbitrary function
of the Ricci scalar. The origin of such a restriction is the
fact that non-linear terms of the trace in f (R, T ) complicate
the formation of the modified field equations, which cannot
be handled analytically. Such f (R, T ) models bearing non-
linear terms of the trace of energy momentum can be dealt
with by using numerical techniques leading to more specific
outcomes, whereas the findings of analytic approach yield
more generic results. The viable f (R, T ) model we have
chosen is

f (R, T ) = R + αR2 + λT, (3.21)

where any positive values can be assigned to α and λ.
The onset of the modified field equations is non-linear in

nature; the solution is still undetermined, which is why the
perturbation approach is utilized to monitor the variations in
the gravitating system with the time transition. All physical
quantities are taken to be time independent initially, but the
passage of time implicates a dependence on time as well. To
introduce first order perturbations, we chose 0 < ε 
 1

A(t, r, θ) = A0(r, θ) + εD(t)a(r, θ), (3.22)

B(t, r, θ) = B0(r, θ) + εD(t)b(r, θ), (3.23)

C(t, r, θ) = C0(r, θ) + εD(t)c(r, θ), (3.24)

ρ(t, r, θ) = ρ0(r, θ) + ερ̄(t, r, θ), (3.25)

Pxx (t, r, θ) = Pxx0(r, θ) + ε P̄xx (t, r, θ), (3.26)

Pyy(t, r, θ) = Pyy0(r, θ) + ε P̄yy(t, r, θ), (3.27)

Pzz(t, r, θ) = Pzz0(r, θ) + ε P̄zz(t, r, θ), (3.28)

Pxy(t, r, θ) = Pxy0(r, θ) + ε P̄xy(t, r, θ), (3.29)

R(t, r, θ) = R0(r, θ) + εD(t)e(r, θ), (3.30)

f (R, T ) = [R0(r, θ) + αR2
0(r, θ) + λT0(r, θ)]

+ εD(t)e(r, θ)[1 + 2αR0(r, θ)], (3.31)

fR = 1 + 2αR0(r, θ) + ε2αD(t)e(r, θ), (3.32)

fT = λ. (3.33)

The first order perturbed Bianchi identities (2.18)–(2.20)
imply
[

˙̄ρ +
{
ρ0

(
a

A0
+ 2λ1b

B0
+ λ1c

C0

)
+ λ1b

B0
(Pxx0 + Pyy0)

+λ1c

C0
Pzz0 + Z1p

}
Ḋ

]
= 0, (3.34)

[
λ1 P̄xx + λρ̄ − 2(λ1Pxx0 + λρ0)

(
b

B0
+ eα

I

)
D

]
,1

+ (
λ1 P̄xx + λρ̄

) (
A′

0

A0
+ 3B ′

0

B0
+ C ′

0

C0
+ 1

r

)

+ 1

r2

[
λ1 P̄xy − 2

(
2b

B0
+ eα

I

)
Pxy0D

]
,2

+λ1 P̄xy
r2B2

0

(
Aθ

0

A0
+ 4

Bθ
0

B0
+ Cθ

0

C0

)

+ (
λ1 P̄yy + λρ̄

) (
1

r
+ B ′

0

B0

)
+ (

λ1 P̄zz + λρ̄
) C ′

0

C0

+D

[
(λ1Pxx0 + λρ0)

((
a

A0

)′
+

(
c

C0

)′

+ 3

(
b

B0

)′
−

(
2b

B0
+ eα

I

) (
A′

0

A0
+ 3B ′

0

B0
+ C ′

0

C0
+ 1

r

))

+ (λ1Pyy0 + λρ0)

((
b

B0

)′ ( 2b

B0
+ eα

I

)
B ′

0

B0

) (
1

r
+ B ′

0

B0

)

+ (λ1Pzz0 + λρ0)

((
c

C0

)′
−

(
2b

B0
+ eα

I

)
C ′

0

C0

)

+ λ1Pxy0

((
a

A0

)θ

+ 4

(
b

B0

)θ

+
(

c

C0

)θ

−
(

2b

B0
+ eα

I

)
Cθ

0

C0

)]
+ Z2p = 0, (3.35)

[
λ1 P̄yy + λρ̄ − 2(λ1Pyy0 + λρ0)

(
b

B0
+ eα

I

)
D

]
,2

+
[

1

r2B4
0 I

λ1 P̄xy

]′
+ ρ̄

Aθ
0

A0
+ (

λ1 P̄xx + λρ̄
) Bθ

0

B0

+λ1 P̄xy

(
A′

0

A0
+ 4B ′

0

B0
+ C ′

0

C0
+ 3

r

)
+ (

λ1 P̄yy + λρ̄
)

×
(
Aθ

0

A0
+ 3

Bθ
0

B0
+ Cθ

0

C0

)
+ (

λ1 P̄zz + λρ̄
) Cθ

0

C0

+D

[
ρ0

((
a

A0

)θ

− 2

(
b

B0
+ eα

I

)
Aθ

0

A0

)
+ λ1Pxy0

×
((

a

A0

)′
+

(
c

C0

)′
+ 4

(
b

B0

)′
−

(
4b

B0
+ 2eα

I

)

×
(
A′

0

A0
+ 4B ′

0

B0
+ C ′

0

C0
+ 3

r

))
+ (λ1Pxx0 + λρ0)

×
(

4

(
b

B0

)θ

−
(

2b

B0
+ eα

I

)
Bθ

0

B0

)
+ (λ1Pyy0 + λρ0)

×
((

a

A0

)θ

+ 3

(
b

B0

)θ

+
(

c

C0

)θ

−
(

2b

B0
+ eα

I

)
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×
(
Aθ

0

A0
+ 3

Bθ
0

B0
+ Cθ

0

C0

))
+ (λ1Pzz0 + λρ0)

×
((

c

C0

)θ

−
(

2b

B0
+ eα

I

)
Cθ

0

C0

)]
+ Z3p = 0, (3.36)

where Z1p, Z2p, and Z3p are given in the appendix. To have a
simplification, we substitute I = 1+2αR0 and J = e2αR0.
The expression for the energy density ρ̄ is derived from
Eq. (3.34) as

ρ̄ = −
{
ρ0

(
a

A0
+ 2λ1b

B0
+ λ1c

C0

)

+ λ1b

B0
(Pxx0 + Pyy0) + λ1c

C0
Pzz0 + Z1p

}
D. (3.37)

The energy density and pressure stresses are associated as
[32,41]

P̄i = �
pi0

ρ0 + pi0
ρ̄, (3.38)

where � describes the variation of different stresses with
the energy density. The index has a variation as i =
xx, yy, xy, zz, and Eq. (3.37) together with Eq. (3.38) leads
to the corresponding perturbed stresses. Implementation of
a linear perturbation on the Ricci scalar yields an ordinary
differential equation having a solution of the following form:

D(t) = −e
√
Z4t . (3.39)

The expression for Z4 is provided in the appendix; Eq. (3.39)
is valid for overall positive values of Z4.

4 N and pN approximation

This section presents the terms belonging to the N and pN
limits with an instability criterion in terms of the adiabatic
index. Making use of Eqs. (3.39) and (3.38) in Eq. (3.35)
leads to the evolution equation. The N and pN approxima-
tions for the system considered are discussed in the following
subsections.

4.1 Newtonian approximation

To approximate the instability/stability range in the New-
tonian regime, we let A0 = 1, B0 = 1, ρ0 � pi0; i =
xx, yy, xy, yy, and the Schwarzschild coordinates C0 = r ,
the evolution equation along with these assumptions yields

� <
λN ′

0 − 3
r N0 − 2λ(ρ0N2)

′ − 2
r (Pxy0N2)

θ + λN2N3 − 2
r N2 + λPxy0N4 + Z2N

p

λ1(Pxx0N1)′ + λ1
r2 (Pxy0N1)θ − 1

r N1(Pxx0 + Pyy0 + Pzz0)
, (4.40)

where Z2N
p

corresponds to the N approximation terms of Z2p ,
and

N0 = −
{
ρ0N1 + λ1b(Pxx0 + Pyy0) + λ1c

r
Pzz0 + Z1Np

}
,

N1 = a + 2λ1b + λ1c

r
, N2 = b + αe

I
,

N3 = a′ + 4b′ + 2
(c
r

)′
, N4 = aθ + 4bθ + cθ

r
.

The inequality for � contains both material functions and
effective part entries; the system remains stable as long as the
inequality (4.40) holds. The terms appearing in the expres-
sion for � are presumed in such a way that all terms maintain
positivity, and this requirement imposes some restrictions on
the physical parameters. The constraints in the N approxi-
mation are

Pxx0 + Pyy0 + Pzz0 <
λ1r

N1
(Pxx0N1)

′ + 1

r2 ,

(Pxy0N2)
θ < −2λ(ρ0N2)

′.

Violations of these constraints imply instability in the sources
and thus lead to gravitational collapse.

4.2 Post Newtonian approximation

In the pN approximation, we assume A0 = 1 − m0
r and

B0 = 1+ m0
r , and the corresponding inequality for the range

of stability is

� <
λN ′

10 + N9N10 − 2λ(ρ0N6)
′ − 2

r (Pxy0N6)
θ + λρ0N7 − 3

r N6 + λPxy0N8 + Z
2pN
p

λ1(Pxx0N5)′ + λ1
r2 (Pxy0N5)θ − 1

r N5(Pxx0 + Pyy0 + Pzz0) + N11
, (4.41)

where

N5 =
(

ar

r − m0
+ 2λ1br

r + m0
+ λ1c

r

)
, N6 = 2λ1br

r + m0
+ eα

I
,

N7 =
(

ar

r − m0

)′
+ 4

(
br

r + m0

)′
+

(
2c

r

)′

−N6

(
2

r
+

(m0

r

)′ 3r

r + m0

)
,

123
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N8 =
(

ar

r − m0

)θ

+
(

br

r + m0

)θ

+
(c
r

)θ

,

N9 =
(

3

r
+

(m0

r

)′ 3r

r + m0

)
,

N10 =−
{
ρ0N5+ 2λ1br

r + m0
(Pxx0+Pyy0)+ λ1c

r
Pzz0+Z

1pN
p

}
,

N11 = Pxy0N5

(r + m0)2

((
ar

r − m0

)θ

+
(

4br

r + m0

)θ
)

.

Likewise the metric coefficients and effective part terms in
the Newtonian limit can be constrained to maintain stability
of the self-gravitating system. The system is stable unless the
above mentioned inequality holds, the system collapses when
the ordering relation (4.41) breaks down. One can deduce
the results of the GR approximations by choosing vanishing
values of λ and α.

5 Summary and discussion

Observational signatures support the argument that gravitat-
ing sources might deviate from spherical symmetry inciden-
tally. Thus non-spherical symmetries facilitate in examining
realistic situations such as large scale structures, weak lens-
ing, CMB, etc. Motivated by the significance of non-spherical
symmetries, we intend to explore the impact of an axially
symmetric gravitating source in the context of f (R, T ) grav-
ity. More particularly we are dealing with a restricted axial
symmetry by ignoring meridional motions and rotation about
the symmetry axis. The consequence of the restricted charac-
ter of spacetime is that we have a vorticity-free case, because
the absence of dtdθ and dtdφ terms indicates that vorticity
of the gravitating source vanishes for an observer at rest. The
metric under consideration is axially symmetric with three
independent metric functions.

The implications of axial symmetry on gravitating system
have been studied extensively in GR and modified theories
of gravity. The alternative gravity theory we have chosen to
establish the instability range is f (R, T ) gravity, because
the dynamical instability of axially symmetric sources in
f (R, T ) framework has not been ascertained yet. The model
under study, f (R, T ) = R+αR2 +λT , is viable for positive
values of α and λ. The modified field equations are obtained
by varying the action (3.27) for an anisotropic matter distri-
bution. The components of the field equations (2.7)–(2.13)
are used to arrive at conservation equations (2.18)–(2.20).
These equations are of fundamental importance in the estab-
lishment of the instability range analytically.

The field equations are non-linear in nature; it is a diffi-
cult task to evaluate their general solution. To account for
this issue, we consider a linear perturbation of the usual mat-
ter and dark source terms. The perturbed physical quantities

such as the energy density and anisotropic pressure stresses
are extracted from the linearly perturbed components of the
field equations, which are further inserted in the perturbed
Bianchi identities to arrive at a collapse equation carrying
both material and dark source ingredients. An ordinary dif-
ferential equation is formed from the perturbed Ricci scalar,
whose solution together with the evolution equation provides
the adiabatic index.

The adiabatic index defines the range of instability for N
and pN approximations, inducing some constraints on the
physical quantities that are provided in the previous section.
Corrections to GR and f (R) gravity can be determined by
setting α → 0, λ → 0 and λ → 0, respectively.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix

The following equations contain linearly perturbed terms of
the conservation equations and the Ricci scalar, respectively:

Z1p = e

2
−A2

0

{
1

A2
0B

2
0 I

2

(
(2αeR0)

′
(

1 − b

B0

)
−2αeR0

A′
0

A0

)}

,1

− A2
0

r2

{
2

A2
0B

2
0 I

2

(
(αeR0)

θ

(
1 − b

B0

)
− (αeR0)

Aθ
0

A0

)}

,2

+ α2R3
0

I
+ 1

B2
0

[
(eθ (2αeR0))

θ

r2 − 4α

×
(

(R0R
′
0)

′ + (R0Rθ
0 )θ

r2

) (
a

A0
+ b

B0
+ αeR0

I

)

+ I ′
{(

c

C0

)′
−2

(
b

B0

)′
− b

B0

(
2A′

0

A0
+ 2B ′

0

B0
− 3

r

)

− c

C0

(
A′

0

A0
− C ′

0

C0
− 1

r

)
+ (2αeR0)

I

(
C ′

0

C0
+ 2B ′

0

B0

−3

r

)}
+ (e′(2αeR0))

′ + I θ

r2

{(
c

C0

)θ

− 2

(
b

B0

)θ

− b

B0

(
2Aθ

0

A0
+ 2Bθ

0

B0

)
− c

C0

(
Aθ

0

A0
− Cθ

0

C0

)
+ (2αeR0)

I

×
(
Cθ

0

C0
+ 2Bθ

0

B0

)}
+ (2αeR0)

′
(
C ′

0

C0
− 2B ′

0

B0
+ 1

r

)

+ (2αeR0)
θ

r2

(
Cθ

0

C0
− 2Bθ

0

B0

)
+

(
2a

A0
+ b

B0

)

×
(
I ′′ + I θθ

r2

)
−

(
3A′

0

A0
+ 2B ′

0

B0
+ 1

r
+ C ′

0

C0

)
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× ×
(

(2αeR0)
′

I

(
1 − b

B0

)
− A′

0

A0

(2αeR0)

I

)

+
(
Aθ

0

A0

(2αeR0)

I
− (2αeR0)

θ

I

(
1 − b

B0

))

×
(

3Aθ
0

A0
+ Cθ

0

C0
+ 2Bθ

0

B0

)]
, (5.1)

Z2p =
[[

1

I B2
0

{
D̈

DA2
0

− 1

B2
0

{
eB2

0

2
+ I ′

((
a

A0

)
′

−
(

b

B0

)′
+

(
c

C0

)′)
+

(
J ′ − 2b

B0
I ′

)

×
(
A′

0

A0
+ C ′

0

C0
− B ′

0

B0
− 1

r

)

+ 1

r2

(
J θθ +

(
J θ − 2b

B0
I θ

) (
Aθ

0

A0
− 3Bθ

0

B0
+ Cθ

0

C0

)

+ 2b

B0
I θθ + I θ

((
a

A0

)θ

+
(

c

C0

)θ

−3

(
b

B0

)θ
))}}]

,1

+
[

1

r2 I B4
0

{
J ′θ +

(
b

B0

)θ

I ′ + J θ

(
B ′

0

B0
+ 1

r

)

−
(

b

B0

)′
I θ

}]

,2

]

×I B4
0 − e

B ′
0

B0
+ A′

0

A0

[
J ′′ + J θθ

r2 − 2b

B0

(
I ′′ + I θθ

r2

)

+
(
J ′ − 2b

B0
I ′

) (
C ′

0

C0
− 2B ′

0

B0
+ 1

r

)

+ I ′
((

c

C0

)′
−

(
b

B0

)′)

+ 1

r2

{
I θ

((
c

C0

)θ

− 2

(
b

B0

)θ
)

+
(
J θ − 2b

B0
I θ

) (
Cθ

0

C0
− 2Bθ

0

B0

)}]

+
(

(aA0)
′

A2
0

− 2b

B0

A′
0

A0

)

×
(

αR2
0B

2
0

2
+ I ′′ + I ′

(
C ′

0

C0
− 2B ′

0

B0
+ 1

r

)

+ I θθ

r2 + I θ

r2

(
Cθ

0

C0
− 2Bθ

0

B0

))

−
{

αR2
0B

2
0

2
+ I ′

(
A′

0

A0
+ C ′

0

C0
− B ′

0

B0
− 1

r

)

+ I θθ

r2 + I θ

r2

(
Aθ

0

A0
+ Cθ

0

C0
− 3Bθ

0

B0

)}

×
((

a

A0

)′
+ 3

(
b

B0

)′
+

(
c

C0

)′)

−
(
A′

0

A0
+ C ′

0

C0
+ 3B ′

0

B0
+ 1

r

)

×
{
I ′

((
a

A0

)′
−

(
b

B0

)′
+

(
c

C0

)′)

+
(
A′

0

A0
− B ′

0

B0
+ C ′

0

C0
− 1

r

) (
J ′ − 2b

B0
I ′

)

+ 1

r2

(
J θθ +

(
J θ − 2b

B0
I θ

)

×
(
Aθ

0

A0
− 3Bθ

0

B0
+ Cθ

0

C0

)
+ 2b

B0
I θθ

+ I θ

((
a

A0

)θ

+
(

c

C0

)θ

− 3

(
b

B0

)θ
))}

−
[((

a

A0

)θ

+
(

c

C0

)θ

+ 4

(
b

B0

)θ
)

×
(
I ′θ + Bθ

0

B0
I ′ + I θ

(
B ′

0

B0
+ 1

r

))

×
(
Aθ

0

A0
+ 4Bθ

0

B0
+ Cθ

0

C0

)(
Bθ

0

B0
J ′ − J ′θ − I ′

(
b

B0

)θ

− J θ

(
B ′

0

B0
+ 1

r

)
+ I θ

(
b

B0

)′)]
1

r2

−
(
B ′

0

B0
+ 1

r

) [
B2

0

A2
0

D̈

D
J − J ′′ + 2b

B0
I ′′

− I ′
((

a

A0

)′
−

(
b

B0

)′
+

(
c

C0

)′)

−
(
J ′ − 2b

B0
I ′

)(
A′

0

A0
+ C ′

0

C0
− B ′

0

B0

)

+ 1

r2

(
I θ

((
a

A0

)θ

+
(

c

C0

)θ

−
(

b

B0

)θ
)

−
(
J θ − 2b

B0
I θ

)(
Aθ

0

A0
− Bθ

0

B0
+ Cθ

0

C0

))]

+
(

b

B0

)′ [ LB2
0

2
+ I ′

(
A′

0

A0
+ C ′

0

C0
− B ′

0

B0

)

− I θ

r2

(
Aθ

0

A0
− Bθ

0

B0
+ Cθ

0

C0

)
− I ′′

]

+ C ′
0

C0

[
J ′′ − 2b

B0
I ′′ + I ′

((
a

A0

)′
−

(
2b

B0

)′)

+
(
J ′ − 2b

B0
I ′

)(
A′

0

A0
− B ′

0

B0
+ 1

r

)

+ 1

r2

{
J θθ +

(
J θ − 2b

B0
I θ

) (
Aθ

0

A0
− 2Bθ

0

B0

)
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+ I θ

((
a

A0

)θ

− 2

(
b

B0

)θ
)

− 2b

B0
I θθ

}]

+
(

(cC0)
′

C2
0

− 2b

B0

C ′
0

C0

) [
I ′

(
A′

0

A0
− 2B ′

0

B0
+ 1

r

)

− I θ

r2

(
Aθ

0

A0
− 2Bθ

0

B0

)
+ αR2

0B
2
0

2
+ I ′′ + I θθ

r2

]

− D̈B2
0

DA2
0 I

(
J ′ − A′

0

A0
J − b

B0
I ′

)
, (5.2)

Z3p = I r2B4
0

[[
1

r2 I B4
0

{
J ′θ +

(
b

B0

)θ

I ′

+ J θ

(
B ′

0

B0
+ 1

r

)
−

(
b

B0

)′
I θ

}]
,1

+ D̈B2
0

DA2
0 I

(
Aθ

0

A0
J + b

B0
I θ − J θ

)

+
[

1

I r2B4
0

{
D̈B2

0

DA2
0

J − J ′′ + 2b

B0
I ′′ +

(
2b

B0
I ′

− J ′) (
A′

0

A0
+ C ′

0

C0
− B ′

0

B0

)
− I ′

((
a

A0

)′
−

(
b

B0

)′

+
(

c

C0

)′)
+ 1

r2

((
2b

B0
I θ − J θ

)

×
(
Aθ

0

A0
− Bθ

0

B0
+ Cθ

0

C0

)

− I θ

((
a

A0

)θ

+
(

c

C0

)θ

−
(

b

B0

)θ
))}]

,2

]

− e
Bθ

0

B0
+ Aθ

0

A0

[
J ′′ + J θθ

r2 − 2b

B0

(
I ′′ + I θθ

r2

)

+
(
J ′ − 2b

B0
I ′

) (
C ′

0

C0
− 2B ′

0

B0
+ 1

r

)

+ I ′
((

c

C0

)′
−

(
b

B0

)′)

+ 1

r2

{
I θ

((
c

C0

)θ

−2

(
b

B0

)θ
)

+
(
J θ − 2b

B0
I θ

)

×
(
Cθ

0

C0
− 2Bθ

0

B0

)}]
+

(
(aA0)

θ

A2
0

− 2b

B0

Aθ
0

A0

)

×
(

αR2
0B

2
0

2
+ I ′′ + I ′

(
C ′

0

C0
− 2B ′

0

B0
+ 1

r

)
+ I θθ

r2

+ I θ

r2

(
Cθ

0

C0
− 2Bθ

0

B0

))
−

(
b

B0

)θ
{

αR2
0B

2
0

2

+ I ′
(
A′

0

A0
+ C ′

0

C0
− B ′

0

B0
+ 1

r

)
+ I θθ

r2

+ I θ

r2

(
Aθ

0

A0
+ Cθ

0

C0
− 3Bθ

0

B0

)}

− Bθ
0

B0

{
I ′

((
a

A0

)′
−

(
b

B0

)′

+
(

c

C0

)′)
+

(
A′

0

A0
− B ′

0

B0
+ C ′

0

C0
− 1

r

)

×
(
J ′ − 2b

B0
I ′

)
+ 1

r2

(
J θθ −

(
2b

B0
I θ − J θ

)

×
(
Aθ

0

A0
− 3Bθ

0

B0
+ Cθ

0

C0

)

+ 2b

B0
I θθ + I θ

((
a

A0

)θ

+
(

c

C0

)θ

−3

(
b

B0

)θ
))}

− 1

r2

[((
a

A0

)′
+

(
c

C0

)′
+

(
b

B0

)′)

×
(
I ′θ + Bθ

0

B0
I ′ + I θ

(
B ′

0

B0
+ 1

r

))

−
(
A′

0

A0
+ 4B ′

0

B0
+ C ′

0

C0

) (
Bθ

0

B0
J ′ − J ′θ − I ′

(
b

B0

)θ

− J θ

(
B ′

0

B0
+ 1

r

)
+ I θ

(
b

B0

)′)]

+
(
Aθ

0

A0
+ 3Bθ

0

B0
+ Cθ

0

C0

) [
B2

0

A2
0

D̈

D
J + 2b

B0
I ′′

− I ′
((

a

A0

)′
−

(
b

B0

)′
+

(
c

C0

)′)

− J ′′ −
(
J ′ − 2b

B0
I ′

) (
A′

0

A0
+ C ′

0

C0
− B ′

0

B0

)

− 1

r2

((
J θ − 2b

B0
I θ

) (
Aθ

0

A0
− Bθ

0

B0

+ Cθ
0

C0

)
− I θ

((
a

A0

)θ

+
(

c

C0

)θ

−
(

b

B0

)θ
))]

+
((

a

A0

)θ

+
(

c

C0

)θ

+ 3

(
b

B0

)θ
)[

αR2
0B

2
0

2
+ I ′

(
A′

0

A0
+ C ′

0

C0
− B ′

0

B0

)

− I θ

r2

(
Aθ

0

A0
− Bθ

0

B0
+ Cθ

0

C0

)
− I ′′

]

− Cθ
0

C0

[
J ′′ − 2b

B0
I ′′ + I ′

((
a

A0

)′
−

(
2b

B0

)′)

+
(
J ′ − 2b

B0
I ′

) (
A′

0

A0
− B ′

0

B0
+ 1

r

)
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+ 1

r2

{(
J θ − 2b

B0
I θ

) (
Aθ

0

A0
− 2Bθ

0

B0

)

+ I θ

((
a

A0

)θ

− 2

(
b

B0

)θ
)

+ J θθ − 2b

B0
I θθ

}]
+

(
(cC0)

θ

C2
0

− 2b

B0

Cθ
0

C0

)

×
[

αR2
0B

2
0

2
+ I ′

(
A′

0

A0
− 2B ′

0

B0
+ 1

r

)

+ I ′′ + I θθ

r2 − I θ

r2 r

(
Aθ

0

A0
− 2Bθ

0

B0

)]
, (5.3)

Z4 = A2
0

2

(
B0C0

bC0 − cB0

)

×
[

2

B2
0

{
A′

0C
′
0

A0C0

(
a′

A′
0

− a

A0
+ c′

C ′
0

− c

C0

)
+ A′′

0

A0

×
(
a′′

A′′
0

− a

A0

)
+ B ′′

0

B0

(
b′′

B ′′
0

− b

B0

)

+ C ′′
0

C0

(
c′′

C ′′
0

− c

C0

)
− 1

r

(
a

A0
− b

B0
− c

C0

)′

− 2B ′
0

B0

(
b

B0

)′
+ 2

r2

{
2Bθ

0

B0

(
b

B0

)θ

+ Aθθ
0

A0

(
aθθ

Aθθ
0

− a

A0

)
+ Bθθ

0

B0

(
bθθ

Bθθ
0

− b

B0

)

+ Cθθ
0

C0

(
cθθ

Cθθ
0

− c

C0

)
+ Aθ

0C
θ
0

A0C0

×
(
aθ

Aθ
0

− a

A0
+ cθ

Cθ
0

− c

C0

)}}
− e − 2bR0

B0

]
.

(5.4)
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