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Abstract The running of the non-minimal parameter ξ of
the interaction of the real scalar field and scalar curvature
is explored within the non-perturbative setting of the func-
tional renormalization group (RG). We establish the RG flow
in curved space-time in the scalar field sector, in particular
derive an equation for the non-minimal parameter. The RG
trajectory is numerically explored for different sets of initial
data.

1 Introduction

The renormalization structure in a curved space-time is well
known at both general and perturbative levels. In particular, it
is well known that any theory which is renormalizable in flat
space remains renormalizable in curved space [1] (see also
[2] for a recent review). The necessary elements of the con-
sistent quantum theory in a curved space-time are the purely
gravitational vacuum action, which consists of the Einstein–
Hilbert term with cosmological constant and also of the four
fourth-derivative terms. On top of that, if the theory under
discussion has scalar fields ϕi , new non-minimal terms of
the form ξi j Rϕiϕ j have to be included in the action. The
renormalization group (RG) in curved space-time was intro-
duced in [3–6] (see also [1]) as a useful tool to explore the
scaling properties of the theory.

The renormalization and RG in curved space follow some
important hierarchy, which means that: (i) The RG equations
for the matter fields couplings and masses do not depend
on ξi j and on the parameters of the vacuum action. More

a e-mail: shapiro@fisica.ufjf.br
b e-mail: poliane@fisica.ufjf.br
c e-mail: wipf@tpi.uni-jena.de

general, these equations are not affected by the presence of
external gravitational field.1 (ii) The RG equations for ξi j
depend on the matter fields couplings (but not on the masses
of the fields, in the case of the minimal subtraction scheme of
renormalization), but they do not depend on the parameters
of the vacuum action.
(iii) The RG equations for the parameters of the vacuum
action may depend on the couplings (beyond one-loop
approximation) and on ξi j .

One has to note that the running of ξi j may have some
important applications, especially to inflationary models
such as Higgs inflation [10], because this running is closely
related to the effective potential of the Higgs field in curved
space [1] (see also [9]). The same concerns also other infla-
tionary models, including the ones based on inflation, and
Starobinsky inflation [11] and especially its modified version
[12]. Therefore, it would be quite useful to know whether the
non-minimal parameter can experience a strong running at
some moment of the history of the universe. One of the pos-
sibilities to observe an intensive running of ξ is related to the
non-perturbative effects in the framework of the functional
RG (FRG) approach, developed by Polchinski and Wetterich
[13–15] (see also [16] for a similar original derivation and
[17–20] and [21] for reviews and an introduction to the sub-
ject). In the present Letter we present the FRG equations in
curved space, in a background-independent covariant way
similar to what has been done before for the perturbative RG
in curved space. The FRG approach on a fixed de Sitter back-
ground has been previously considered in [22–24] and [25].2

1 This is not true if gravity is quantized [7,8], but we do not consider
this part here.
2 During the completion of this work the related preprint [28] has been
published.
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The present paper is essentially restricted to the case of a
single scalar and hence to the equation for a single param-
eter ξ . We consider first the local potential approximation
(LPA), dealing with the most simple theory with unbroken
symmetry, and then we explore the more complicated case
with the broken symmetry and wave-function renormaliza-
tion. In fact, the extension of the RG flow for the broken
phase is especially interesting, because the running of the
non-minimal parameter in this case was not sufficiently well
explored even in the perturbative approach. Some potentially
interesting consequences of the RG flow for the non-minimal
parameter are related to the scale dependence of the non-local
parts of the induced gravitational action, which emerge due
to the curvature dependence of the vacuum expectation value
of the scalar field [26].

In the parallel work [27] we will also consider general-
izations like the theory with a more general form f (φ)R of
non-minimal interaction at quantum level and in different
dimensions.

The paper is organized as follows. In Sect. 2 we describe
the general scheme of FRG in a curved space-time and espe-
cially derivation of the RG equation for ξ . Section 3 is devoted
to the numerical analysis of the equation for ξ . Section 4
describes the FRG in the scalar theory with broken symme-
try. Finally, in Sect. 5 we draw our conclusions.

2 FRG for scalar field with non-minimal coupling

The renormalizable theory of a single scalar φ in a curved
space starts from the classical action of the form

S =
∫

x

[
−1

2
φ�gφ + ξ

2
Rφ2 + V (φ)

]
+ Sgrav[g], (1)

where we assumed Euclidean signature and use the notation∫
x ≡ ∫

d4x
√
g(x). Furthermore, Sgrav[g] corresponds to the

vacuum action as described in the Introduction. We expect to
discuss the FRG flow for the vacuum part in a separate article,
so it will not be seriously dealt with in the present Letter or
in [27]. V (φ) is a classical potential, which may be restricted
to the form (1/4!)λφ4 in the case we intend to remain within
the scope of perturbatively renormalizable theories.

As usual in the RG approach, at quantum level all quanti-
ties start to depend on the scale which we identify as k. The
practical use of the FRG approach implies the choice of the
truncation scheme, which we choose in a most simple way,
assuming that the effective average action is

Γk =
∫

x

[
− Zk

2
φ�gφ + ξk

2
Rφ2 + uk(φ)

]
+ Γ

grav
k [g]. (2)

This truncation includes a scale-dependent effective poten-
tial uk , a wave-function renormalization Zk and the running

non-minimal parameter ξk , which does not depend on the
momenta or on the field φ. The invariant cutoff action has
the form

ΔSk = 1

2

∫

x

φRk(−�g)φ, (3)

where

Rk(−�g) = Zkrk(−�g).

Rk is assumed to have the well-known properties of a cutoff
function [17–20]. The anomalous dimension is defined as

ηk = −k∂k Zk

Zk
= −∂t Zk

Zk
, where t = log

k

μ
. (4)

When the scale k runs from the UV-cutoff Λ to the IR, the
dimensionless scale parameter t runs from log(Λ/μ) to −∞.

The Wetterich equation for the scale dependent effective
average action reads [14–16]

∂tΓk[φ] = 1

2
Tr

(
∂t Rk

Γ
(2)
k [φ] + Rk

)
, (5)

where Γ
(2)
k indicates a second variational derivative with

respect to the scalar field and Tr includes the coincidence
limit and covariant integration over the space-time variables.
For the truncation (2) the l.h.s. becomes

∂tΓk =
∫

x

[
−ηk Zk

2
φ�gφ + ∂tξk

2
Rφ2 + ∂t uk(φ)

]

+ ∂tΓ
grav
k [g]. (6)

In order to derive the r.h.s. of (5), we need

Γ
(2)
k = −Zk�g + ξk R + u′′

k (φ), (7)

where prime means simple derivative with respect to scalar
field. The variation of the cutoff function can be cast into the
form

∂t Rk = Zk (∂t rk − ηkrk) . (8)

Then the r.h.s. of the flow equation (5) takes the form

1

2
Tr

(
∂t Rk

Γ
(2)
k [φ] + Rk

)

= 1

2
Tr

[
(∂t − ηk)rk(−�g)

(−�g + rk(−�g)) + ξk Z
−1
k R + Z−1

k u′′
k (φ)

]
.

(9)

Equation (5) with (6) and (9) represents the covariant flow
equation corresponding to the truncation (2). It can be
improved by including higher derivative terms into (6), but
then the calculations of (9) should also be evaluated up to the
corresponding higher order of approximation.
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2.1 Elaborating the Wetterich equation

It proves useful to define

uk(φ) = m2
k

2
φ2 + wk(φ), (10)

such that

u′′
k (φ) = m2

k + w′′
k (φ). (11)

Thus we arrive at the following form of Eq. (9):

1

2
Tr

(
∂t Rk

Γ
(2)
k [φ] + Rk

)
= 1

2
Tr

(
Bk(−�g)

Pk(−�g) + Σk

)
, (12)

where we introduced the abbreviations

Bk(−�g) = (∂t − ηk) rk(−�g), (13)

Pk(−�g) = −�g + rk(−�g) + m2
k

Zk
, (14)

Σk(φ, R) = ξk

Zk
R + 1

Zk
w′′
k (φ). (15)

In order to analyze the flow equation in the truncation (2), we
need to evaluate the expression (12) up to the first order in
scalar curvature, while the terms with derivatives of curvature
and higher powers of the curvature tensor can be disregarded.
This means that we can effectively consider an approximation
with constant R.

It is easy to note that the operators Bk and Pk commute.
But for an inhomogeneous field and curvature the space-time-
dependent Σk does not commute with Bk and Pk . But they
commute in the constant curvature and constant φ approxi-
mation, the latter corresponds to the local potential approxi-
mation (LPA).

To simplify notations in what follows we skip the argu-
ments of Bk, Pk , and Σk . Then the expansion of the r.h.s. of
(12) into a power series in Σk gives

Tr

(
Bk

Pk + Σk

)
= Tr

(
Bk

Pk(1 + P−1
k Σk)

)

= Tr

(
Bk P

−1
k

1

1 + P−1
k Σk

)

= Tr Qk,1 − Tr
(
Qk,2Σk

)

+ Tr

(
Qk,2Σk

1

Pk
Σk

)
+ O(Σ3

k ), (16)

where Qk,m = Bk
Pm
k

.

The first term on the r.h.s. isφ-independent and contributes
only to the running in the vacuum sector Γ

grav
k . Until the cut-

off action is specified, Bk and Pk are some unknown functions
of −�g , which should be expanded to first order in the curva-
ture tensor. To this end we shall apply the useful off-diagonal
heat-kernel method, based on Laplace and Mellin transforms,

such that the operators in (16) can be derived from the heat
kernel of the covariant Laplacian. The method is described
in detail in [29–32] (see also [27]), so here we only sketch
the main points of the derivation.

The functions Qk,m of the covariant Laplacian in the Neu-
mann series (16) admit representations in terms of the inverse
Laplace transform,

Qk,m(−�g) =
∫ ∞

0
dt L−1[Qk,m](t) et�g , (17)

where

L[ f ](s) =
∫ ∞

0
dt e−st f (t). (18)

In what follows we shall apply the useful formula [29–32]

1

(4π)d/2

∫ ∞

0
dt t−pL−1[ f ](t)

= 1

(4π)d/2Γ (p)

∫ ∞

0
ds s p−1 f (s). (19)

To evaluate the effective action in the given truncation (dis-
cussed below) we need the coincidence limit of the matrix
elements 〈x |Qk,m |x ′〉. According to (17) we may use the
heat-kernel expansion for small t [33],

〈x |et�g |x〉 = 1

(4π t)d/2

[
a0(x) + ta1(x) + t2a2(x) + · · · ]

(20)

to find a series expansion of 〈x |Qk,m |x〉 in invariant pow-
ers of curvatures and their covariant derivatives. The first
Schwinger–DeWitt coefficients a0, a1, a2, . . . have the form

a0 = 1, a1 = 1

6
R,

a2 = 1

180

(
Rμναβ R

μναβ − RμνR
μν + 6�g R + 5

2
R2

)
.

(21)

In a given truncation scheme we need only a0 and a1, but it is
not difficult to keep also the next terms. Using the regulator
function [34]

rk(s) = (k2 − s)θ(k2 − s), (22)

one can arrive at the explicit expression

Qk,m(s) = 2k2 − (k2 − s)ηk
Mm

k
θ(k2 − s),

Mk = k2 + m2
k

Zk
.

(23)

Let us note that the general review of the functions Qn similar
to the ones defined above can be found in Appendix A of the
review paper on quantum gravity of Ref. [35].
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Inserting the expansion (20) into (17), and using (19) we
obtain

〈x |Qk,m(−�g)|x〉

=
∞∑
n=0

∫ ∞

0
dt L−1[Qk,m](t) 1

(4π t)d/2 an(x)t
n

= 1

(4π)d/2

∞∑
n=0

an(x)

Γ (d/2 − n)

∫ ∞

0
ds Qk,m(s) sd/2−n−1,

(24)

where the identification p = d/2 − n has been used in
Eq. (19) already.

In order to evaluate the integrals over s in Eq. (24), one
can note that Qk,m in (19) are nonzero only on the interval
[0, k2], which gives
∫ ∞

0
ds Qk,m(s)sd/2−n−1

=
(

1 − ηk

d − 2n + 2

)
1

Mm
k

2kd−2n+2

d/2 − n
. (25)

After integration we arrive at the result

〈x |Qk,m(−�g)|x〉 = 2

(4π)d/2

1

Mm
k

×
∑
n

(
1 − ηk

d − 2n + 2

)
an(x) kd−2n+2

Γ (d/2 − n + 1)
. (26)

As we have already mentioned, for our purposes it is suffi-
cient to consider the n = 0, 1 terms in the last series. Expand-
ing the r.h.s. of the flow equation (16) in powers of φ and the
curvature up to the first order, in four dimensions we meet

1

2
Tr Qk,1(−�g)

= 1

32π2 Mk

∫

x

[
k6

(
1 − ηk

6

)
+ k4

3

(
1 − ηk

4

)
R + . . .

]
.

(27)

It is easy to see that these terms contribute only to the purely
gravitational terms and hence are irrelevant for the running
of ξ .

The second-order contribution is

1

2
Tr

[
Qk,2(−�g)Σk

] = 1

32π2 M2
k

∫

x

[
k6

(
1 − ηk

6

)
Σk

+k4

3

(
1 − ηk

4

)
RΣk + · · ·

]
,

(28)

where we again disregarded higher powers of the curvature.
The derivation of the third term in the expansion (16)

requires some commutations of Σk with P−1
k , e.g.,

1

2
Tr

(
Qk,2Σk

1

Pk
Σk

)

= 1

2
Tr

(
Qk,2Σk

(
Σk − 1

Pk

[
Pk,Σk

]) 1

Pk

)

= 1

2
Tr

(
Qk,3Σ

2
k

)
− 1

2
Tr

(
Qk,3Σk

1

Pk

[
Pk,Σk

])
. (29)

The last term containing the commutator of Pk and Σk gives
rise to a running of the wave-function renormalization and
will be dealt with in Sect. 4. It does not contribute to the
running ofuk and ξk and thus can be neglected for the moment
being. Thus we arrive at

1

2
Tr

(
Qk,3(−�g)Σ

2
k

)

= 1

16π2

1

M3
k

∑
n

k6−2n

Γ (3 − n)

(
1 − ηk

6 − 2n

)
tr (anΣ

2
k )

= 1

32π2 M3
k

∫

x

[
k6

(
1 − ηk

6

)
Σ2

k

+k4

3

(
1 − ηk

4

)
R Σ2

k + · · ·
]
. (30)

In the last expression we omitted most purely gravita-
tional contributions (not all, since for example RΣk con-
tains still a term ∝ R2) and terms beyond the truncation
scheme (2). Similarly, one obtains for constant field and
curvature

1

2
Tr

(
Qk,2Σk

(
P−1
k Σk

)m−1
)

= 1

2
Tr

(
Qk,m+1Σ

m
k

)

= 1

32π2 M1+m
k

∫

x

[
k6

(
1 − ηk

6

)
Σm

k (31)

+k4

3

(
1 − ηk

4

)
R Σm

k + · · ·
]

. (32)

In what follows we ignore the purely gravitational contribu-
tion Γ

grav
k [g] in Eq. (6) and related RG flows. We expect to

consider this subject in a separate article.

2.2 RG flow for couplings and non-minimal parameter

Inserting (27)–(31) into (16) and using the definition (15)
yields

1

2
Tr

(
∂t Rk

Γ
(2)
k [φ] + Rk

)

= 1

32π2Mk

∫

x

[
k6

(
1 − ηk

6

)
+ k4

3

(
1 − ηk

4

)
R

]
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×
[

1 − ξk R + w′′
k

Zk Mk
+

(
ξk R + w′′

k

ZkMk

)2

−
(

ξk R + w′′
k

ZkMk

)3

+ · · ·
]

− 1

2Z2
k

Tr

(
Qk,3w

′′
k (φ)

1

Pk

[
Pk, w

′′
k (φ)

])
+ · · ·, (33)

where terms containing R2 and R3 go beyond the truncation
scheme and must be omitted.

One can assume that the classical potential for the scalar
field at the cutoff is an even function. It follows from the
flow equation (33) that the scale dependent effective potential
remains even at all scales. Let us further assume that the Z2

symmetry is not spontaneously broken. Then the minimum
of the effective potential is at φ = 0 and we may expand wk

in (10) as

wk(φ)=
∞∑
n=2

1

(2n)! λ(2n)k φ2n = 1

24
λ4kφ

4+ 1

720
λ6kφ

6+· · · ,

(34)

where λ(2n)k are scale-dependent coefficients. Their running
is determined by the FRG equations, which will be now
derived, along with the one for ξk .

For wk in (34) the last term in (33) has the form φ2(∂2φ2+
. . . ) and is beyond the truncation (2). As a result the wave
function is not renormalized. Note that for a non-even cut-off
potential with a φ3 term, or for the flow in the broken phase,
in which the even potential uk is expanded about a nonzero
mean field, there is a wave-function renormalization, as we
shall see in Sect. 4. One may note that this situation does not
depend on the presence of the curved background and can
be already observed in scalar field theories in flat space-time
[17–21].

One can compare the φ-dependent terms in the expression
(33) with Eqs. (6) and (34). In this way we arrive at the trun-
cated flow equation for the scalar field theory non-minimally
coupled to gravity,

−ηk Zk

2
φ�gφ + ∂tξk

2
Rφ2 + φ2

2
∂tm

2
k

+φ4

24
∂tλ4k + φ6

720
∂tλ6k = − 1

M2
k

1

32π2Zk

[
k6

(
1 − ηk

6

)

×
(

1

2
λ4k φ2 + 1

24
λ6k φ4

)
+ k4

3

(
1 − ηk

4

)
R λ4k

φ2

2

]

+ 1

M3
k

1

32π2Z2
k

{
k6

(
1 − ηk

6

) [
ξk R λ4k φ2 + 1

4
(λ4k)

2 φ4

+ 1

24
λ4kλ6k φ6

]}
− 1

M4
k

1

32π2Z3
k

{
k6

(
1 − ηk

6

) λ3
4k

8
φ6

}

+ · · · . (35)

Now, we can compare coefficients on both sides of this equa-
tion:

– For the kinetic term φ�gφ we observe that Zk = constant
or ηk = 0, hence there is no wave-function renormaliza-
tion for an even potential in the symmetric phase. One
can fix then Zk = ZΛ = 1 at all scales k. Then, in partic-
ular, Mk = k2 +m2

k , and we denote Dk = (
k2 +m2

k

)−1

for the sake of convenience.
– For the mass term the RG equation can easily be obtained

from (35),

∂tm
2
k = − 1

32π2 k6 D2
k λ4k . (36)

– For the first two interaction terms we have, with Zk ≡ 1,

∂tλ4k = − k6

32π2 D2
k

(
λ6k − 6Dkλ

2
4k

)
, (37)

∂tλ6k = −k6 D2
k

32π2

(
λ8k − 30Dkλ4kλ6k + 90D2

kλ
3
4k

)
.

(38)

In order to keep our consideration simple, we shall trun-
cate the Taylor expansion for the potential by disregard-
ing all coefficients starting from λ8,k , including setting
λ8,k = 0 in Eq. (38).

– Finally, the non-minimal term φ2R yields, for Zk ≡ 1,

∂tξk = k6D2
k

16π2

(
Dk ξk − 1

6k2

)
λ4k . (39)

In a perfect agreement with the general features of the
perturbative RG in a curved space-time (as described in the
Introduction), the equations for the couplings λ4k and λ6k do
not depend on ξk , while the FRG equation for ξk depends on
the couplings. At the same time, different from the minimal-
subtraction based RG, here the β-functions for both cou-
plings and non-minimal parameter do depend on the running
mass of field mk . In this respect the FRG equations resemble
the physical, momentum-subtraction-based RG, developed
for the interacting scalar field in a curved space-time in [36],
but the mass dependence in the present FRG equations is
much stronger.

3 FRG flow for couplings, mass and ξ

The RG equations (36)–(39) should be explored numerically.
To this end we introduce the dimensionless quantities

mt = mk

k
, Dt = 1

1 + m2
t
,

λ4t = λ4k, λ6t = k2λ6k, λ8t = k4λ8k, . . . (40)
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1.6667

1.6670

1.6673

1.6676

1.6679 10ξt

0.0

5.0

10.0

15.0

m2
k

0.490

0.495

0.500 λ4k

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0.0

0.1

0.2

0.3 103λ6k

Fig. 1 Flow of the non-minimal parameter ξt and couplings
m2

k , λ4k , λ6k (in units of μ) with t = log(k/μ) in the unbroken phase.
The initial data at the cutoff Λ = μe5 are m2 = μ2, λ4 = 0.5, λ6 = 0,
and ξ = 1/6

which are supposed to depend on the dimensionless parame-
ter t = log (k/μ), defined in (4). Then the equations become

∂tm
2
t = −2m2

t − 1

32π2 D2
t λ4t , (41)

∂tλ4t = − 1

32π2 D2
t

(
λ6t − 6Dtλ

2
4t

)
, (42)

∂tλ6t = 2λ6t − 1

32π2 D2
t

(
λ8t − 30Dtλ4tλ6t + 90D2

t λ
3
4t

)
.

(43)

Furthermore, the FRG equation for ξ(t) in terms of the new
variable has the form

∂tξt = 1

16π2 D3
t

(
ξt − 1

6 Dt

)
λ4t . (44)

It is easy to see that in the massless limit Dt → 1 this equation
reproduces the main features of the one-loop RG equation in
the minimal-subtraction scheme, as is well known from [1,3].

The numerical analysis of these equations shows that the
RG flow can be pretty different from the one for the pertur-
bative one-loop RG running, mainly due to the mass depen-
dence. As one can see from the plots presented at Fig. 1,
the (dimensionful) mass grows quickly when one flows from
the cutoff scale in the UV at t = 5 (corresponding to a cut-
off value Λ = e5μ) to the IR at t = 0, which corresponds
to k = μ. As we have already noted above, in the non-
perturbative FRG approach there is a sixth-power IR decou-
pling, which is very strong compared to the usual quadratic
decoupling in the perturbative Appelquist and Carazzone the-
orem [37]. As a result, in the case under discussion one can
observe that the running for all couplings and in particular
ξt actually freezes at values t � 1 or equivalently at scales
k � μ · e.

0.834

0.836

0.838

0.840

0.842 10ξt

1.250

1.251

1.252

1.253

1.254

1.255 10ξt

2.081

2.082

2.083
10ξt

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

2.494

2.496

2.498

2.500 10ξt

Fig. 2 Running of the non-minimal parameter ξt with t = log(k/μ)

for the same initial couplings as in Fig. 1, but with different initial values
ξ in the vicinity of the conformal coupling ξc = 1/6. Clockwise from
top ξc − 2δ, ξc − δ, ξc + δ, and ξc + 2δ with δ = 1/24

Figure 2 shows the running of the non-minimal parameter
ξt for the same initial potential as in Fig. 1, but for varying
initial ξ -values of at the UV-cutoff. Depending on the initial
value the parameter may increase or decrease during the flow
toward the infrared. But, in all considered cases, the values in
the UV and IR are not very different. In the flows investigated
(only some are displayed in the figure) the relative change
was only about one percent.

4 Broken symmetry and FRG flow for anomalous
dimension

As we already know, in the LPA truncation (2) there is no RG
running for the anomalous dimension ηk for even potentials.
At the same time, such running is present in scalar theory
beyond one loop and it would be interesting to observe it
within the FRG approach. One of the possibilities is related
to theories with broken symmetries. This means we shall
introduce the negative mass-squared in the classical action
(1) and implement this information into the effective average
action (2) by imposing the corresponding boundary condition
at the cutoff scale k = Λ. Then the effective potential of the
scalar field is not convex at intermediate scales and this must
be taken into account, for in this case one has to consider
oscillations near the non-symmetric minima of this potential.

In curved space the spontaneous symmetry breaking meets
serious complications, because the position of such a min-
imum is not constant for a non-constant curvature. The sit-
uation was explored in detail in [26] and it was shown
that the non-localities emerge in such a theory even at
low orders in curvature. However, since our intention here
is to consider relatively simple cases, let us consider the
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zeroth-order approximation and, correspondingly, assume
that the position of the minimum of the potential is homo-
geneous and curvature-independent, denoted by φ0,k , such
that u′′

k (φ0,k) = m2
k ≥ 0 is the (physical) mass in the broken

phase. Then one has to expand the effective potential as

uk = λ0k +
∑
n≥2

λnk

n! (φ − φ0k)
n, (45)

with small φ −φ0k and scale-dependent minimum φ0k . Then

u′′
k = λ2,k +

∑
n≥3

λn,k

(n − 2)! (φ − φ0k)
n−2

≡ m2
k + w′′

k . (46)

One can easily note that these definitions of m2
k and wt are

different from the previous ones, because the expansion is
performed in the spontaneously broken phase. However, in
the new notations Eqs. (13) and (15) have almost the same
form as before in the old notations. But in the broken phase
odd powers of φ − φ0k appear such that many more terms
arise in the power series expansion of the rhs of the flow
equation. When one calculates the lhs of the flow equation
one must take into account that the minimum φ0k of the scale
dependent potential flows.

Thus, we continue by inserting the expansions (45) and
(46) into the FRG equation with scale-dependent wave-
function renormalization, in pretty much the same way as we
did before. Finally, changing over to dimensionless quantities
(40) and to dimensionless fields according to

χ = k−1Z1/2
k φ, χ0k = k−1Z1/2

k φ0k (47)

one can arrive at the FRG equations in the broken phase. To
simplify the notation we use the following abbreviations:

At = 1

32π2

(
1 − ηt

6

)
, Gn = λn

1 + m2
t
. (48)

The running of the (cosmological) constant λ0t is given by

∂tλ0t + 4λ0t = At Dt , (49)

and since it does not feed back into the running of the remain-
ing couplings it will be discarded. Comparing terms linear in
χ − χ0t yields the running of the mean field,

∂tχ0t +
(

1 + ηt

2

)
χ0t = At Dt

G3

m2
t
. (50)

This flow equation ensures that χ0t remains a minimum of
the scale dependent potential at all scales. In writing the flow
equations for the dimensionless couplings m2

t , λ3t , . . . , λ6t

in an expansion up to order 6 we use the flow equation (50)
to simplify the resulting expressions. This way one arrives at

(
∂t + 2 − ηt

)
m2

t = At Dt

(
λ3t

m2
t
G3 − G4 + 2G2

3

)
, (51)

(
∂t + 1 − 3

2
ηt

)
λ3t

= At Dt

(
λ3t

m2
t
G4 − G5 + 6G3G4 − 6G3

3

)
, (52)

(
∂t − 2ηt

)
λ4t = At Dt

(
λ3t

m2
t
G5 − G6 + 6G2

4

+ 8G3G5 − 36G2
3G4 + 24G4

3

)
, (53)

(
∂t−1− 5

2
ηt

)
λ5t = At Dt

(
λ3t

m2
t
G6 + 20G4G5+10G3G6

− 90G3G
2
4 − 60G2

3G5 + 240G3
3G4 − 120G5

3

)
, (54)

(
∂t − 2 − 3ηt

)
λ6t = At Dt

(
20G2

5 + 30G4G6 − 90G3
4

−360G3G4G5 − 90G2
3G6 + 1080G2

3G
2
4 + 480G3

3G5

−1800G4
3G4 + 720G6

3

)
. (55)

In the two last flow equations the terms containing λ7t and
λ8t are omitted in the sixth-order polynomial approximation.

On top of that, in curved space one meets the new equation
for the non-minimal parameter,

(
∂t − ηt

)
ξt = Dt

16π2

[(
1 − ηt

6

) (
G4 − 3G2

3

)
Dtξt

−1

6

(
1 − ηt

4

) (
G4 − 2G2

3

)]
. (56)

In order to explore the system of equations (51)–(56) we need
an additional equation which defines the scale dependence
of ηt . In order to obtain this dependence – in our truncation
it is induced by the last term in (29) or equivalently the last
term in (33) – one has to remember that the running of all
couplings and of Zk (which defines ηt ) does not depend on
the presence of the curved space background. As a result we
can use the well-known flat-space result for ηt derived in [21,
38] and recently explored in [39]. In terms of dimensionless
quantities the result for the anomalous dimension reads

ηt = 1

32π2

[
u′′′
t (χ0t )

]2

[
1 + u′′

t (χ0t )
]4 = 1

32π2

λ2
3t

(1 + m2
t )

4
, (57)

where χ0t is the scale-dependent position of the minimum
of the potential. Clearly, in the truncation scheme consid-
ered, the renormalization of the wave function only happens
in the broken phase with nonzero coefficient λ3t . It follows
from (50) that symmetry can only be broken if λ3t in the
UV is nonzero, and this must be taken into account for by a
numerical analysis of the system of equations (51)–(56).

The numerical results of such an analysis are presented
at Figs. 3 and 4. The first plot of Fig. 3 shows the scale
dependence of the minimizing value of the field φ0k in the
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0 1 2 3 4 5

1.5

2.0

2.5

3.0

3.5 φ0k

Fig. 3 Flow of the (dimensionful) minimum of the effective potential
as a function of t = log(t/μ). For φ0Λ ≈ 3.5μ (and the same initial
parameters as in Fig. 4) the system remains in the broken phase for all
scales k
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0.842 10ξt
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k
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0.3
103λ6k

Fig. 4 Running of the non-minimal parameter ξt and couplings
m2

k , λ3k , . . . , λ6k (in units of μ) as functions of t = log(k/μ). The
initial data at the cutoff scale k = Λ = μe5 are m2 = μ2, λ4 =
0.5, λ3 = μ, λ5 = λ6 = 0, and ξ = 1/6

broken phase. As expected, the minimum of the potential are
driven closer to the origin by the quantum fluctuations. For
the chosen initial parameters at the cutoff Λ = μe5

φ0 ≈ 3.5μ, m2 = μ2, λ3 = μ,

λ4 = 0.5, λ5 = λ6 = 0. (58)

the system stays in the broken phase for all scales. This can
also be seen from the running of the couplings shown in
Fig. 4. The coupling λ3k decreases rapidly when one moves
from the UV to the IR. At the same time the higher couplings

λ5k and λ6k acquire nonzero values, although they remain
small in the IR.

We solved the flow equations with vanishing ηt . Of
course, one should choose the anomalous dimension self-
consistently. But since at the scale k = μ we have λ3 ≈
0.0189 and m2 ≈ 15.2, the first guess for the anomalous
dimension

ηk=μ ≈ 1

32π2

λ2
3μ

(1 + m2
μ)4 ≈ 1.6 × 10−11 (59)

yields a tiny value in the infrared. Thus, we assume that ηt =
0 is a very good approximation.

In order to induce more dramatic qualitative changes in the
flow of the non-minimal parameter, we considered other sets
of initial parameters in the UV. For initial parameters which
can be integrated to the infrared we did not observe a strong
running of ξ . Thus we conclude that the qualitative form of
the flow of ξt is not very sensitive to the initial parameters.

5 Conclusions

We have constructed and explored the FRG equations for a
real scalar field in a curved space-time background, includ-
ing the non-minimal parameter ξ of the non-minimal inter-
action between scalar field and curvature. The β-functions
obtained within the very simple truncation scheme (2) repro-
duce several important features of the standard perturbative
renormalization group, including what one can prove to be
the non-perturbative universal properties of the RG flows.
First of all, the FRG equations follow the well-known hier-
archy of renormalization in curved space, as described by
the points (i)–(iii) in the Introduction. Furthermore, the FRG
trajectory for ξ corresponds to the equation which is linear
in ξ , exactly as it should be at both perturbative and non-
perturbative levels. In the massless case, the β-function for
ξ has the conformal fixed point ξ = 1/6, which is typical for
the one-loop case [1]. In our opinion, this may be the result of
the restricted form of the truncation (2), because higher-loop
corrections involve powers of log(φ) in both potential and
kinetic sectors, which are beyond the given approximation.
It would be interesting to explore the inclusion of such terms
in an FRG analysis; we expect to do this in a future work.

The most remarkable aspect of the RG flow for a massive
theory is a strong sixth-power decoupling in the IR. As a
result the running of all couplings and ξ actually stops very
soon on the way from the cutoff scale in the UV down to
the IR. We conclude that the desirable strong running of ξ

cannot be achieved in the framework of scalar theory. At the
same time, there are chances to achieve such an effect in the
mixed theory with different mass scales, especially through
the quantum effects of relatively light or massless particles.
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An interesting extension of the RG flow in the theory with
the non-minimal parameter is related to the broken phase,
when one can also observe the wave-function renormaliza-
tion and its effect on the RG trajectories for couplings and
ξ . We have found that, regardless of the more complicated
form of the RG flow, the qualitative form of the flow for ξ

remains the same, in the sense that the numerical effect of
the scale dependence is quite small in the scalar theory. One
of the consequences is that the scale dependence in the non-
local part of the induced action of gravity in the theory with
spontaneous symmetry breaking will be also small. However,
as discussed in [2], any form of scale dependence may have
a significant impact on the induced cosmological constant
term and especially on its non-local extensions. Therefore,
the problem of the running of ξ from UV to IR deserves
further detailed studies, especially in more general theories,
which involve several mass scales.
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