Eur. Phys. J. C (2015) 75:286
DOI 10.1140/epjc/s10052-015-3487-5

THE EUROPEAN

) CrossMark
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Natural quasi-alignment with two Higgs doublets and RGE

stability

F. J. Botella?, G. C. Branco?***, Anténio M. Coutinho?<, M. N. Rebelo?4, J. I. Silva-Marcos2-

1 Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, 46100 Burjassot, Spain
2 Centro de Fisica Teérica de Particulas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Avenida Rovisco Pais, 1049-001

Lisbon, Portugal

3 Departamento de Fisica, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
4 Theory Group, Physics Department, CERN, 1211 Geneva 23, Switzerland

Received: 23 February 2015 / Accepted: 27 May 2015 / Published online: 26 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In the context of two Higgs doublet models, we
study the conditions required in order to have stable quasi-
alignment in flavour space. We show that stability under the
renormalisation group equations imposes strong constraints
on the flavour structure of the Yukawa couplings associated
to each one of the Higgs doublets. In particular, we find a
novel solution, where all Yukawa couplings are proportional
to the so-called democratic matrix. This solution is rather
unique, since it is the only stable solution which is a good
starting point for reproducing the observed pattern of quark
masses and mixing. We also show that this stable solution can
be obtained by imposing on the Lagrangian a Z3 x Zj flavour
symmetry. Quark masses of the lighter quark generations are
generated through the breaking of this discrete symmetry,
and, at this stage, scalar-mediated flavour-changing neutral-
currents arise, but they are naturally suppressed by the small-
ness of the light quark masses. In this way, we relate Higgs
alignment to the hierarchy of the quark masses through a
discrete family symmetry.

1 Introduction

One of the simplest extensions of the standard model (SM)
consists of the addition of scalar doublets to the SM spec-
trum. Multi-Higgs extensions arise in a variety of frame-
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works, including supersymmetric extensions of the SM, as
well as models with family symmetries. A two Higgs dou-
blet model (2HDM) was first introduced by Lee [1], in order
to achieve spontaneous breaking of the CP symmetry. If no
extra symmetries are introduced, 2HDM:s lead to too large
tree-level scalar-mediated flavour-changing neutral-currents
(FCNCs) [2,3]. In order to avoid these potentially dangerous
currents, various schemes have been proposed:

(i) Glashow and Weinberg [4] have pointed out that one can
avoid FCNCs at tree level by introducing a Z; symmetry
under which the two Higgs doublets transform differ-
ently. The introduction of a Z; symmetry in 2HDMs
prevents the generation of spontaneous CP breaking [5]
unless the symmetry is softly broken [6].

(i) Pich and Tuzon [7] have conjectured the existence of
flavour alignment of the two Yukawa matrices, thus
avoiding FCNCs at tree level. This is an interesting
suggestion, but it has the drawback of being an ad-hoc
assumption, not explained by any symmetry. Further-
more, it has been pointed out that in general this scheme
is not stable under the renormalisation group [8]. There
have been attempts to obtain alignment in various exten-
sions of the SM [9-11].

(iii) Another possibility has been proposed some time ago
[12] by Branco, Grimus and Lavoura (BGL) who have
pointed out that there is a symmetry which, when
imposed on the Lagrangian, constrains the Yukawa cou-
plings in such a way that FCNCs do arise at tree level,
but are entirely determined by the Vcgy matrix, with
no other free parameters. In some of the BGL mod-
els, one has a strong natural suppression of the most
dangerous FCNC, with, for example, the strangeness-
changing neutral currents, proportional to (Vg4 V;‘;)z,
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which implies a very strong natural suppression of the
contribution to the K °~K 9 transition. With this suppres-
sion, the neutral Higgs masses need not be too large.
BGL models have been extended to the leptonic sector
[13], their relation to minimal flavour violation mod-
els has been studied [14] and their phenomenological
implications have been recently analysed [15-17].

This is not a complete list of possible schemes to avoid
large FCNC in 2HDM, some other plausible solutions con-
sist in postulating concrete Yukawa structures, such as the
renowned Cheng and Sher [18] ansatz, or in simply decou-
pling the heavy Higgs states.

In this paper, we reexamine the question of the stability of
flavour alignment under the renormalisation group. Assum-
ing that the Yukawa couplings of the two Higgs doublets are
aligned, i.e., proportional to each other, we study under what
conditions the alignment is maintained by the renormalisa-
tion group. Apart from the conditions already found in Ref.
[8], we find new solutions which can be of great physical
interest. One of these solutions, corresponds to having all
the Yukawa coupling matrices proportional to the so-called
democratic matrix [19-21]. This solution is rather unique,
since on the one hand it is stable under the renormalisation
group equations (RGEs) and on the other hand, it is the only
stable solution which provides a good starting point for repro-
ducing the observed pattern of quark masses and mixing. We
then point out that this flavour democratic solution can be
obtained as a result of a Z3 x Zj flavour symmetry. In the
framework that we propose, flavour alignment is exact in the
limit where only the third family acquires mass. Once the
two light generations acquire a mass, there are small devi-
ations from alignment, which are suppressed by the strong
hierarchy of quark masses. As a result, one obtains in this
framework, a quasi-alignment of the Yukawa couplings, as
a result of the Z3 x Z; symmetry, together with the strong
hierarchy of quark masses.

The paper is organised as follows. In the next section, we
briefly describe the general flavour structure of the 2HDM,
in order to settle our notation. In Sect. 3 we derive all the
solutions for the Yukawa couplings, leading to alignment,
stable under the renormalisation group. In Sect. 4 we show
that the flavour democratic solution can be obtained as a
result of a Z3 x Z} flavour symmetry and propose an ansatz
for the breaking of the Z3 x Zj symmetry. In Sect. 5, we
examine the suppression of scalar-mediated FCNCs in our
framework. In Sect. 6, we perform a numerical analysis,
showing how the pattern of quark masses and mixing can
be obtained in the framework of our ansatz. Finally our
conclusions are contained in Sect. 7. In the appendix we
present a full study of the solutions of the alignment condi-
tions.

@ Springer

2 Yukawa couplings in the general
two-Higgs-doublet-model 2ZHDM)

For completeness and in order to establish our notation we
briefly review the flavour structure of the 2HDM, when
no extra symmetries are introduced in the Lagrangian. The
Yukawa couplings can be written:

Ly =—0Y T1®1d} — 09 Trdrdy — 00 1P yuf
—Q% de)zu% — Lg H]@]l% — L(z Hz@zl% + h.c.
(1

where ®; denote the Higgs doublets and b =in @7, and
[';, ©; and IT; are matrices in flavour space. After sponta-
neous symmetry breaking, the following quark mass matrices
are generated:

1 .
Mg = — ' + 12e'%T)),
V2
1 .
My, = — 121 + v2e” %) (2)

V2

where v,-/ﬁ =| < O|¢?|0 > | and « denotes the relative
phase of the two vacuum expectation values (vevs) of the
neutral components qb? of ®;. The neutral and the charged
Higgs interactions with quarks are of the form

1
Ly (quark, Higgs) = —d? ~ [Mq H* + NJ R +i N9 11d
v
- 1
—uY ~ M, HO+ NOR+iND WY (3)
V2HT

v

+ (WO N % — uNS" ) + e,

where v = ,/ v% + v% ~ 246 GeV, and H° and R are
orthogonal combinations of the fields p;, arising when one
expands [1] the neutral scalar fields around their vevs, ¢? =
%(vj +p;j+in;). Here we should choose H” in such a way
that it has couplings to the quarks which are proportional to
the mass matrices, as can be seen from Eq. (3). Similarly, /
denotes the linear combination of 7 ; orthogonal to the neutral
Goldstone boson. The matrices Ng and NB are given by

1 .
N9 = — (') — v1€T),

V2

1 .
NO = — (19 — vie Q). “4)
V2

The quark mass matrices are diagonalised through
U;L My Ugr = Dy = diag(my, mg, mp),
UJL M, Uygr = D, = diag(my, m¢, my), (@)

and the matrices N((i) and N? in the mass eigenstate basis
transform into

Ui, NQUqr = Na, U}, NOU,g = N,. (6)
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There are similar expressions for the leptonic sector. We do
not introduce neutrino masses since these are not relevant for
our analysis.

3 Stability of the aligned 2HDM under RGE
The aligned two Higgs doublet model (A2HDM) is defined

at tree level by the following relations involving the matrices
introduced in Eq. (1):

I'h=d-T';
Q=u-Q (7
I, =e-IT

where d, u and e are constants. In this section we analyse
the stability of the A2ZHDM under the RGEs. The one loop
RGEs for the Yukawa couplings are [8,22]

DI'y = arly

2
+ 3 [31e(rery + @fe) + Te(mn] + £z) | 1y
=1

2
: i1 1
+> (—zsz,sz,grl + Tl Ty + -9 Ty + frlrfrk> :
=1

2 2
®)
Dy = ag
2 .
+ 3 [Br(uef + rfr) + (s + i) | @
=1
2
i 1 | Lo of
+> (—2F1Fk§21 QR+ ST + -0 Qk) ,
— 2 2
©))

DIT; = anlli
2
+ 3 [3re(rery + o) + Te(menf + £/2) |
=1
2 1 1
¥ ¥ f i
+; (—zzlzknl + I T+ o 5 %) T + ST nk> ,

(10)

where D = 1672/ (d/dp) and p is the renormalisation
scale. The coefficients ar, aq and ay are given by

9 5 ,
ar = —8g2 — Zg2 - 5¢5 (11)
9 17 ,
ag = —8g2 — Zgz -5¢5 (12)
9 2 15 /2
=——gt—— 13
an 18 78 (13)

where g;, ¢ and g’ are the gauge coupling constants of
SU@B)¢, SU®2)r and U(1)y, respectively. The alignment
relations given by Eq. (7) guarantee the absence of Higgs-

mediated FCNCs at tree level because both matrices My and
Ny are proportional to I'y. Similarly both M, and N, are
proportional to 21 and M;, N; to I1;. In general, these rela-
tions are broken at one loop level. From Egs. (8)—(10) one
can easily derive

DTy)—d-DTy)
= (u* —d) (1 + ud) {3Tr (Q{Ql) _ 29191] r,

e~ (1+ea)Tr (M) T, (14)
D () —u-D (@)
= (d* —u) (1 + ud) {3Tr (rjn) - 2r1r” Q
+ (e —u) (1 + eu) Tr (njnl) Q, (15)
D (ITz) —e - D (I1y)
=3(d—e) (1 +d%)Tr (rjrl) m,
43t —e) (1 +eu) Tr (szjszl) ;. (16)

In order to enforce Eq. (7) at one loop level it is easy to realise
that it is sufficient to impose

DT2)—d-D(T) Iy, (17
D () —u-D(2)) xR, (18)
D (I1y) —e-D(Iy) o My; (19)

in fact the proportionality constants on the r.h.s. are the run-
ning! of d, u and e. Therefore, Eq. (16) does not impose any
constraint: at one loop level the charged lepton sector remains
aligned and there are no FCNC:s in the leptonic sector. This
result agrees with the findings of Refs. [23,24].

In Eqgs. (14) and (15) the pieces that can break the align-
ment in the quark sector are the terms: €2 QI I'and I'y FIQl
respectively.” In order to have alignment at one loop level —
fulfilling Egs. (17) and (18) — there are two types of solutions:

. W*—d)(1+ud)=0
2. QT = ArTy and T T]Q = AoQ). With Ar and
Ag complex numbers.

Solutions of type 1 include the usual 2HDM with natural
flavour conservation, where the up and down quarks receive
contributions from only one Higgs doublet. It is well known
that this can be achieved through the introduction of a Z»

! The authors of Ref. [8] impose the condition that the rh.s. of
Egs. (14)—(16) be equal to zero. This amounts to imposing alignment
at one loop level and imposing additionally that there is no running of
the parameters u, d and e.

2 1t can be readily seen that Qlﬂil"l [ MMM;LMd and F]FIﬂl x
My M; M, . Itis worth emphasizing that these structures are precisely the
ones obtained in [23,24], which produce FCNCs at one loop level and
break the alignment. Note that this radiatively induced misalignment is
in general very small as also argued in [25,26].

@ Springer
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symmetry. Here, we are not interested in this class of well
known solutions. We are interested in the class of solutions
of type 2, and in the appendix we study the complete set
of matrices 21 and I'; that obey to the conditions required
for this class of solutions. We show in the appendix that if
one requires stability under the RGE and at the same time
Yukawa structures which are, in leading order, in agreement
with the observed pattern of quark masses and mixing, then
one is lead to a unique solution, where the matrices €21 and
'y are of the form

Qr=clA; Ty=clA (20)
with A the democratic mass matrix:
1 11
A=1111 2D
1 11

This solution corresponds to the limit where only the top and
bottom quarks acquire mass, while the two first generations
are massless. The up and down quarks are aligned in flavour
space, so the Vcgm matrix equals the identity. The other
stable solutions of type 2 correspond to non-realistic cases
like for example having all up or down quarks massless or
two up or two down quark masses degenerate or with a Vcxm
very far from the identity matrix.

It is remarkable that the so-called democratic mass matrix
is stable under RGE and that precisely this stability also
enforces what could be called “quark alignment” in the sense
that we also have a proportionality among I'; and €2;.

4 Natural quasi-alignment of Yukawa couplings

In this section we search for the minimal symmetry which
when imposed on the Lagrangian, leads to the stable solu-
tion described in the previous section, corresponding to the
democratic Yukawa couplings of Eq. (20). Before describing
this symmetry, it is worth to analyse another type of align-
ment which is verified experimentally, the so-called up—down
alignment in the quark sector.

4.1 The up—down alignment in the quark sector

In the quark sector, flavour mixing is small. This means
that there is a weak basis (WB) where both M, and M,
are close to the diagonal form. Experiment indicates that
not only flavour mixing is small, but there is also up—down
flavour alignment in the quark sector in the following sense.
We can choose, without loss of generality, a WB where
M, = diag(m,, m., m;). Of course, this is just a choice of
ordering, with no physical meaning. Small mixing implies
that in this WB M, is almost diagonal. In principle, since
the Yukawa couplings Y;, and Yy are not constrained in the

@ Springer

SM, there is equal probability of M, being close to My =
diag(mgy, mg, mp). corresponding to up—down alignment, or
being close, for instance, to My = diag(mp, mg, my) in
which case there is up—down misalignment. It is clear that
in the SM, assuming small mixing and hierarchical quark
masses, the probability of obtaining up—down alignment is
only 1/6. Given a set of arbitrary quark mass matrices M,
and M, one can derive necessary and sufficient conditions
to obtain small mixing and up—down alignment, expressed in
terms of WB invariants [27]. Since the experimentally veri-
fied up—down alignment is not automatic in the SM, one may
wonder whether there is a symmetry which leads to up—down
alignment. In the next subsection, we propose a symmetry
which leads to up—down alignment in the quark sector and
when extended to a 2HDM leads to a natural alignment of
the two Higgs doublets in flavour space.

4.2 Z3 x Z’ symmetry and the two Higgs alignment

We introduce the Z3 x Z) symmetry under which the quark
left-handed doublets Q(L , the right-handed up quarks u%i and

the right-handed down quarks dgi transform in the following
way:

0 T 0
or, Pij QL./’
0 0
MR,' —> Pij uRj,

d%i —> Pij d%j, (22)

where Z3 corresponds to P = 1+ E; and Zg toP =1+E;
with

1 -1 0
w—1
E1=—2 -1 1 0];
0O 0 O
1 1
o111
-1 -1 2

and w = 3. The Higgs doublets transform trivially under
Z3 x Z%. The above symmetry leads to the following form for
the Yukawa matrices: I'; = c? A Q= c?A, corresponding
to the stable solution of Eq. (20). This can easily be checked
since AE] = AE, = 0. We thus conclude that the symmetry
of Egs. (22) and (23) leads to the alignment of the two Yukawa
coupling matrices, with a democratic flavour structure. Note
that this solution also guarantees an up—down alignment in
the quark sector, as defined in the previous subsection.

In order to give mass to the first two quark generations, the
Z3 x Z symmetry has to be broken. This breaking will also
lead to Higgs-mediated FCNCs, but these couplings will be
suppressed by the smallness of the quark masses. In order to
illustrate how a realistic pattern of quark masses and mixing
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can be obtained, we shall assume that the breaking of the
Z3 x Z5 symmetry occurs in two steps. In the first step the
symmetry Z3 x Z} is broken into just one of the Z3 and the
second generation acquires mass and finally in the last step
the masses of the quarks u# and d are generated. In the first
step the symmetry Z3 x Z} is broken to Z3 generated by
P = 1+ E;. One can check that

Fj:cj(A+gdA); Qj=ct(A+e,A);

A

Il
- o o
- oo

1
1 (24
1

are invariant under this Z3 symmetry. Note that A £1 = 0. At
this stage the second generation acquires mass. Finally, the
lightest quarks, «# and d acquire mass through a small pertur-
bation, proportional to Sd,u, which breaks this Z3 symmetry.
We assume that

Fo=cd (A+ead+3484), (25)
while
T =c (A+eqA); (26)
with equivalent expressions for the up sector. Here
0 0 1 00 1
B,=1000]; Bs=|000 (27)
1 01 1 0 n

where 7 is some complex number with modulus of order one.
The symmetry is broken, and neither B, nor B, are invariant
under the Z3 x Z} symmetry.

5 Suppression of scalar-mediated FCNC

In order to study the suppression of a scalar-mediated FCNC,
it is useful to start by analysing the parameter space in our
framework.

5.1 The parameter space

From Egs. (2), (25) and (26) it follows that, in leading order,

3 . 3 .
mp = —|c‘liv1 + cgvge’“|; m; = —=|cjvi + cyvae Y]

V2 V2
(28)
Writing v = ,/v? + v = v1v/1 + 12, with
r=2 (29)
v

we obtain in leading order the following relations:

|cf—|—cg tei“| B \/_Eﬂ

cf + ¢ te”io| _ ﬁﬂ
1412 3 v’ ’

1+12 3w
(30)

which impose restrictions on the allowed parameter space. A
priori, we do not assume any conspiracy between parameters
and take + = O(1). It is then clear from Eq. (30) that the
ci are generically of order one, while c? are smaller and
may assume values of order O(:'nL’I’). This is an important
ingredient which, as we shall see, will play a role in the
evaluation of the strengths of the FCNCs and the allowed
parameter space for the Higgs masses.

Next we give the structure of the flavour-changing neutral
Yukawa couplings. To this aim, it is useful to express the

quark mass matrices in Eq. (2) in terms of the perturbations
given in Egs. (25) and (26):

d ;i
_ _ _cste -~
My = % (C‘li—l—cglem) [A+es A+84B4] 8a = ctcdreie 8.

My = % (el +chre™™®) [Atey A+8,B.1

cite 'Y o

My g, —ia u-
citeyte

€Y

u =

Then we derive the expressions for the matrices which
couple to the Higgs scalars in Egs. (3) and (4). In the basis
where the up and down quark matrices are diagonal, the
matrices Ny and N,, of Eq. ( 6) become

_ vl 2\ i 7t
Nd—th—ﬁ(l-‘rt)e UdLF2UdR,
V1 N g ot
Nu=tDu—ﬁ(1+z)el“Uu’L92UuR 32)

where we have used Egs. (4) and (6) with Eq. (2). Finally,
from Eq. (32) combined with Egs. (25) and (31) we find

d d ia d 2
_ cjt—ce v C(VI+t F
Na = tricgiem Da =5 =7 8a Uy, Ba Usy (33)
N, — c‘]‘t—clz‘e”:“ D, — Lcﬁ'm s UT B U
u cf—i—cgte*“" u \/E t u ur, u upR

where Dy =diag(mg, mg, mp) and D, = diag(my, m¢, my).

The crucial point is that in our scheme these matrices have
an extra suppression factor, proportional to 8,4 ,. Using the
expressions given in Egs. (31) and (27), and computing the
trace, the second invariant and the determinant for the squared
quark mass matrices H, 4 = (M M T) one can find that in
leading order

u,d’

8a=+/3/2M = 0 (33)

mgs nmp

Su=+/3/2ul = 0 (13)

me my

(34)

where A = 0.2 is of the order of the Cabibbo angle.

@ Springer
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From Eq. (31) it follows that in leading order Uy, =
U,, =Ugp = U, = F, where

V2 16 133
F==|-1/V2 1N6 1/V3 (35)
0 —2/v6 1/V3

is the matrix that diagonalises the exact democratic limit A.
Thus, taking into account Eq. (27), the matrix contributions
from U;L By Ugy, and U,IL B, U,, are both of order one.
One can thus conclude that:

— for the down sector, with the assumptions made after Eq.
(30), we have a total suppression factor of O (’r"n—f) -0 (A3)

— for the up sector, we have a suppression factor of O (AS )
or smaller depending on the value that we choose to
assume for c‘l‘, but which, as explained, it is reasonable
to take of order one.

6 Numerical analysis

The matrices of Eq. (31) may be explicitly written

1 1 l1+e436
M, =c, 1 1 I+e¢ ;
l+e+8 1+e 1+e+$6
1 1 14+e+36
My = cq 1 1 l+e¢ , (36)
14+e+8 1+e¢ 1+8+n8d
where we have introduced c¢; = %(cf + Cgt em) and

cy = \”—}2(&1‘ +c5t e~1%). Although these two coefficients
are in general complex, and since the physically meaningful
matrices are those defined as H = M M, both coefficients
may be taken as real for our numerical exercise. If one then
parametrises the remaining variables as

e=emexp(icy), 8=238nexp(ids),
n=nmexp(iny), (37)

one is left with 12 real parameters that compose the quark
mass matrices in our scheme.

In order to check if this parameter space could accommo-
date the flavour sector, a numerical survey was made where
we looked for one combination that could fit the observed
values of the quark masses given at the scale of the Z boson
mass [28], the moduli of the entries of the CKM matrix [29],
the strength of CP violation /cp and sin 28 and y [29], with
B and y being two of the angles of the unitarity triangle.
A simple run of all 12 parameters produced a “reference
point”:

@ Springer

Up sector Down sector

c 5673 0.89
em 16x1072 011
e —56x1073 041

Sm 8.1x107* 2.2 x 1072
S  m+032 2.26

M — 4.99

nf — T+ 0.62

which yields the output values:

D, = diag(0.00204, 0.05824, 2.85356) GeV,

D, = diag(0.00114, 0.61736, 171.684) GeV,
0.9745 0.2244 0.0036
|Verm| = | 02243 0.9737  0.0415 |, (38)

0.0087 0.0407 0.9991
|Icp| = 3.0 x 1077,
sin2 = 0.69,
y = 69.3°.

It should be noted that the 12 parameters fix not only Vckm
and the quark mass spectrum, but also the strengths of all the
FCNC couplings. In order to evaluate the numerical stability
of this reference point, we performed a numerical check,
varying the input parameters randomly around the values
that produced the reference point above; the new results were
then combined in the scatter plots shown in Fig. 1 where the
reference point is highlighted. In order to obtain an estimate
of the lower bound for the flavour-violating Higgs masses,
we consider the contribution to K°~K" mixing. Apart from
the SM box diagram one now has a new physics contribution
arising from the scalar-mediated FCNC tree-level diagrams
thus making the total transition amplitude equal to M, =
M + MYF, Ref. [16] with

2
NP S mwm
MY = 3

2
m
il ()
H=R.I 96 v=my, mg1 + my2

x Cy(H) — 1+11<—> Ca(H) ¢,
Mgl + mg2

(39)
where
Ci(R) = [(Nq2ql)* + quq2]2a
C2(R) = [(Ng2g1)" — qqu]za (40)
and
CiD) = = [(Ngza1)* = Ngrg2]’
Co(D) = = [(N2g1))" + Ngrg2]’ - @1)
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0.000033 "
0.000032 [

0.000031 [

[ Icp |

[o
0.00003 [
0.000029 [

0.000028 |-

074
02k

0.70 -

Sin[24]

.68

0.66

0.64 | . .0 B
I, S S S S S T S S S S S ST S S S SR S
0.00340  0.00345 0.00350 0.00355 0.00360 0.00365 0.00370

|Vub|

Fig. 1 We present scatter plots showing |Icp| versus sin 28 and sin 28 versus |V,;| obtained by varying randomly the input parameters around

the reference point

1200F

1000 -

my / GeV

400 |

200+ 1

200 400 600 800 1000 1200
nmeg / GeV

Fig. 2 Plot showing the allowed region for m; and mpg, taking into
account the constraint on Amg

The indices ¢ and g; refer to the valence quarks of the meson
M, and N is N, or N4, depending on the meson system
considered.

In this framework it is a good approximation to use the
matrix F’ for both Uy, and Uy, . Using the values we obtained
for 64 and taking, as already discussed, ¢+ >~ 1 and cf o~

g %, the new physics contribution to M 1K2 becomes solely

dependenton fx,mg,mgandmj.In KO—EO,both MIK2 and
r 1Kz are relevant for the mass difference Am g . Itis reasonable
to impose the constraint that M {\IZP in the neutral kaon system
does not exceed the experimental value of Amg. Adopting
as input values the PDG experimental determinations of fx,
mg and Amg [30], one is left with combinations of mp
and m; where our model respects the inequality M %P K <
Ampg. The region plot that we have obtained is presented
in Fig. 2. It is clear that in this framework the masses of
the flavour-violating neutral Higgs can be below the TeV
scale, so that they could be discovered at the next run of the
LHC.

7 Conclusions

We have studied in detail, in the framework of 2HDM, the
question of stability of alignment, under the renormalisation
group. It was shown that there are new stable solutions, apart
from those found in Ref. [8]. Stability under the RGE puts
very strict restrictions on the flavour structure of the Higgs
Yukawa couplings. If one imposes the stability conditions
and at the same time requires that the flavour structure is
in agreement with the observed pattern of quark masses and
mixing, then one is lead to a unique solution, where all Higgs
flavour matrices are proportional to the so-called democratic
matrix. We have also shown that these flavour structures lead-
ing to stable alignment can be obtained by imposing on the
Lagrangian a Z3 x Z/ symmetry. In the limit where this sym-
metry is exact, only the third generation of quarks acquires
a mass. Non-vanishing masses for the two first generations
are obtained through the breaking of the discrete symmetry
which in turn generates scalar-mediated FCNCs which are
suppressed by the smallness of the light quark masses.

It should be pointed out that the proposed framework does
not automatically imply a natural suppression of CP violat-
ing effects such as edms [31,32]. In this respect this frame-
work has the same features as the standard aligned model of
Ref. [7].

The scenario presented in this paper provides a natural
framework for the alignment hypothesis and establishes a
possible intriguing link between stability of alignment in
2HDM and the observed pattern of quark masses and mixing.
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Appendix: Solutions to the alignment conditions

The solutions to the alignment conditions
QT =Arly; TiTQp = 209 (42)

can be obtained by the following steps. First we define the
Hermitian matrices

Hr =T\, Hg = (43)

Itis easy to show that A1 and Lg, are real. This can be achieved

by multiplying the first equation by its Hermitian conjugate

and inserting the second equation (and vice versa) to get

hoHg = Iar|* Hr, (44)
2

ArHE = |ag|” He: (45)

it follows from these equations that both A, and A should be

real since one has two identities among Hermitian matrices.
Now multiplying each of the Eq. (42) on the right by I‘-]I' and

QJ{, respectively, we get
HoHr = ArHr; HrHq = AgHq, (46)

and taking Hermitian conjugates

HrHg = ArHr; HqoHr = AqHg; 47
therefore,
ArHr = AgHg, (48)

and we conclude that

[Hr, Hol =0, (49)
implying that Vcxkv = [ up to permutations of rows or
columns. Denoting the usual bi-unitary diagonalisation pro-
cedure by

I ZVEDFVFT; Q4 IVEZDQVI?T, (50)

from Eq. (49) we conclude that we can always choose the
unitary matrices VLF and VLS2 equal to each other,

vi=v (51)

@ Springer

and the alignment conditions can easily be reduced to con-
ditions among the diagonal matrices Dr and Dg. From
Eq. (46), it then follows that

D3 Dr = ArDr; DEDg = rqDq. (52)

It can be checked that there are only two types of solutions.
Those with Ar and Aq different from zero (solutions 1-3)
and the remaining ones (solutions 4, 5).

1. Dr = aP3; and Dg = a P3 and changes of Pz by P, or
P;.

2. Dr =a (I — P)) and Dg = o (I — Py) and changes of

P by P, or Ps.

DI‘ =al and DQ =al.

Dr = 0 and Dg, arbitrary and vice versa.

5. Dr =aP;and Dg =« (I — P;)

W

where P; stand for the projection operators
(Pi) jx = 8ijSik- (53)

Solutions 2—4 cannot be good approximations to the actual
quark spectra due to the implied degeneracy. Solution 5 gives
rise to Vckwm matrix very different from the identity matrix.
Only solution 1 provides, in leading approximation the cor-
rect pattern of quark masses and mixing. In a suitable weak
basis, this solution can be written as a democratic matrix A.
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