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Abstract We study the role of arbitrary (finite) anticanon-
ical transformations in the field–antifield formalism and the
gauge-fixing procedure based on the use of these transfor-
mations. The properties of the generating functionals of the
Green functions subjected to finite anticanonical transforma-
tions are considered.

1 Introduction

The field–antifield formalism [1,2], summarizing numerous
attempts to find correct quantization rules for various types
of gauge models [3–7], is a powerful covariant quantization
method which can be applied to arbitrary gauge invariant
systems. This method is based on the fundamental princi-
ple of BRST invariance [8,9] and has a rich new geometry
[10]. One of the most important objects of the field–antifield
formalism is an odd symplectic structure called antibracket
and known to mathematicians as the Buttin bracket [11]. In
terms of the antibracket the master equation and the Ward
identity for generating functional of the vertex functions
(effective action) are formulated. It is an important prop-
erty that the antibracket is preserved under the anticanonical
transformations which are dual to canonical transformations
for a Poisson bracket. An important role and rich geometric
possibilities of general anticanonical transformations in the
field–antifield formalism have been realized in the procedure
of gauge fixing [12] (see also [13]). The original procedure
of gauge fixing [1,2] corresponds in fact to a special type
of anticanonical transformation in an action being a proper
solution to the quantum master equation. That type of trans-
formations is capable to yield admissible gauge-fixing con-
ditions in the form of equations of arbitrary Lagrangian sur-
faces (constraints in the antibracket involution) in the field–
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antifield phase space. Thereby, the necessary class of admis-
sible gauges was involved actually. The latter made it possi-
ble to describe in [12] the structure and renormalization of
general gauge theories in terms of anticanonical transforma-
tions. As the authors [12] assumed the use of regularizations
in which δ(0) = 0 in local field theories, they based them-
selves on the use of general anticanonical transformations
in an action being a proper solution to the classical master
equation. In turn, the gauge dependence and the structure of
renormalization of the effective action have been analyzed
by using infinitesimal anticanonical transformations only.

In the present article, we extend the use of anticanon-
ical transformations in the field–antifield formalism from
the infinitesimal level to the finite one, and we explore a
gauge-fixing procedure for general gauge theories, based on
arbitrary anticanonical transformations in an action being a
proper solution to the quantum master equation with fixed
boundary condition. Now it is worthy to notice the differ-
ence between the properties of the classical and quantum
master equations under anticanonical transformations. The
classical master equation is covariant under anticanonical
transformations, as its left-hand side is the antibracket of the
action with itself. In contrast to that, the form of the quan-
tum master equation is not maintained under anticanonical
transformations. One should accompany the anticanonical
transformation by multiplying the exponential of i/h̄ times
the transformed action with the square root of the superjaco-
bian of that anticanonical transformation. We will call such
an operation an anticanonical master transformation and the
corresponding action amaster-transformed action. Thus, one
can say that the form of the quantum master equation is main-
tained under the anticanonical master transformation.

We consider in all detail the relationship between the two
descriptions (in terms of the generating functions and the
generators) for arbitrary finite anticanonical transformations.

Finally, let us notice the study [14], among other recent
developments, where a procedure was found to connect gen-
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erating functionals of the Green functions for a gauge system
formulated in any two admissible gauges with the help of
finite field-dependent BRST transformations.

2 Field–antifield formalism

The starting point of the field–antifield formalism [1] is a the-
ory of fields {A} for which the initial classical action S0(A)

is assumed to be invariant under the gauge transformations
δA = R(A)ξ . Here ξ are arbitrary functions of space-time
coordinates, and {R(A)} are generators of gauge transforma-
tions. The set of generators is complete but, in general, may
be reducible and forms an open gauge algebra so that one
works with general gauge theories. Here we do not discuss
these points, referring to the original papers [1,2]. The struc-
ture of the gauge algebra determines the necessary content
of the total configuration space of fields {ϕi (ε(ϕi ) = εi )}
involving fields {A} of the initial classical system, ghost and
antighost fields, auxiliary fields, and, in the case of reducible
generators, pyramids of extra ghost and antighost fields as
well as pyramids of extra auxiliary fields. To each field ϕi

one introduces an antifield ϕ∗
i , whose statistics is opposite to

that of the corresponding fields ϕi , ε(ϕ∗
i ) = εi + 1. On the

space of the fields ϕi and antifields ϕ∗
i one defines an odd

symplectic structure ( , ) called the antibracket,

(F,G) ≡ F(
←−
∂ ϕi

−→
∂ ϕ∗

i
− ←−

∂ ϕ∗
i

−→
∂ ϕi )G, (2.1)

and the nilpotent fermionic operator �,

� = (−1)εi ∂ϕi ∂ϕ∗
i
, �2 = 0, ε(�) = 1. (2.2)

Here the notation

∂ϕi = ∂

∂ϕi
, ∂ϕ∗

i
= ∂

∂ϕ∗
i

(2.3)

is introduced. In terms of the antibracket and �-operator the
quantum master equation is formulated as

1

2
(S,S) = i h̄�S ⇔ � exp

{
i

h̄
S

}
= 0 (2.4)

for a bosonic functional S = S(ϕ, ϕ∗) satisfying the bound-
ary condition

S|ϕ∗=h̄=0 = S0(A) (2.5)

and being the basic object of the field–antifield quantization
scheme [1,2]. Among the properties of the antibracket and
�-operator we mention the Leibniz rule,

(F,GH) = (F,G)H + (F, H)G(−1)ε(G)ε(H), (2.6)

the Jacobi identity,

((F,G), H)(−1)(ε(F)+1)(ε(H)+1) + cycle(F,G, H) ≡ 0,

(2.7)

the �-operator being a derivative to the antibracket,

�(F,G) = (�F,G) − (F,�G)(−1)ε(F). (2.8)

There exists a generating functional Y = Y (ϕ,�∗), ε(Y ) =
1 of the anticanonical transformation,

�i = ∂�∗
i
Y (ϕ,�∗), ϕ∗

i = Y (ϕ,�∗)←−∂ ϕi . (2.9)

The invariance property of the odd symplectic structure
(2.1) on the phase space of (ϕ, ϕ∗) is dual to the invari-
ance property of an even symplectic structure (a Poisson
bracket) under a canonical transformation of canonical vari-
ables (p, q) (for further discussions of the relations between
Poisson bracket and antibracket; see [15,16]).

The generating functional of the Green functions Z(J ) is
defined in terms of the functional integral as [1,2]

Z(J ) =
∫

Dϕ exp

{
i

h̄
[Se(ϕ) + Jiϕ

i ]
}

= exp

{
i

h̄
W (J )

}
, (2.10)

where

Se(ϕ) = S(ϕ, ϕ∗ = ∂ϕψ(ϕ)), (2.11)

ψ(ϕ) is a fermionic gauge functional, Ji (ε(Ji ) = εi ) are
the usual external sources to the fields ϕi and W (J ) is the
generating functional of the connected Green functions.

To discuss the quantum properties of general gauge theo-
ries, it is useful to consider, instead of the generating func-
tional (2.10), the extended generating functionals Z(J, ϕ∗)
and W (J, ϕ∗) defined by the relations

Z(J, ϕ∗) =
∫

Dϕ exp
{ i

h̄
[S(ϕ, ϕ∗) + Jiϕ

i ]
}

= exp

{
i

h̄
W (J, ϕ∗)

}
(2.12)

where

S(ϕ, ϕ∗) = S(ϕ, ϕ∗ + ∂ϕψ(ϕ)). (2.13)

Obviously, we have

Z(J ) = Z(J, ϕ∗) |ϕ∗=0, W (J ) = W (J, ϕ∗) |ϕ∗=0 .

(2.14)

The action S = S(ϕ, ϕ∗) (2.13) satisfies the quantum master
equation

1

2
(S, S) = i h̄�S ⇔ � exp

{ i

h̄
S
}

= 0. (2.15)

It follows from (2.15) that the Ward identities hold for the
extended generating functionals Z(J, ϕ∗) and W (J, ϕ∗)

Ji∂ϕ∗
i
Z(J, ϕ∗) = 0, Ji∂ϕ∗

i
W (J, ϕ∗) = 0. (2.16)
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Indeed, we have

0 =
∫

dϕ exp

{
i

h̄
Jϕ

} (
� exp

{
i

h̄
S

})

=
∫

dϕ(−1)εi ∂ϕi

[
exp

{
i

h̄
Jϕ

}
∂ϕ∗

i
exp

{
i

h̄
S

}]

− i

h̄
Ji∂ϕ∗

i

∫
dϕ exp

{
i

h̄
(S + Jϕ)

}
=− i

h̄
Ji∂ϕ∗

i
Z(J, ϕ∗)

= − i

h̄
Ji∂ϕ∗

i
exp

{
i

h̄
W (ϕ∗, J )

}
�⇒ Ji∂ϕ∗

i
W (ϕ∗, J ) = 0.

(2.17)

The generating functional of the vertex function (effective
action) is defined via the Legendre transformation


(ϕ, ϕ∗) = W (J, ϕ∗) − Jϕ, ϕi

= ∂Ji W (J, ϕ∗), ∂ϕ∗
i
W (J, ϕ∗)

= ∂ϕ∗
i

(ϕ, ϕ∗), ∂Ji = ∂

∂ Ji
(2.18)

with the properties

Ji = −
(ϕ, ϕ∗)←−∂ ϕi = −(−1)εi 
i ,


i = 
i (ϕ, ϕ∗) = ∂ϕi 
(ϕ, ϕ∗). (2.19)

It follows from (2.17) and (2.19) that the Ward identity for
the effective action holds,



←−
∂ ϕi ∂ϕ∗

i

 = 0 �⇒ 1

2
(
, 
) = 0, (2.20)

which has the form of the classical master equation in the
field–antifield formalism.

As pointed out for the first time in [12], the gauge-fixing
procedure in the field–antifield formalism (2.13) can be
described in terms of a special type of anticanonical transfor-
mation (2.9). Indeed, let us consider the anticanonical trans-
formations of the variables (ϕ, ϕ∗) with the specific generat-
ing function

Y = Y (ϕ,�∗) = �∗
i ϕ

i − ψ(ϕ). (2.21)

We have

�i = ϕi , ϕ∗
i = �∗

i − ∂ϕi ψ(ϕ), (2.22)

so that the transformed action S̃ = S̃(ϕ, ϕ∗)

S̃(ϕ, ϕ∗) = S(�,�∗) = S(ϕ, ϕ∗ + ∂ϕψ(ϕ)) (2.23)

coincides with (2.13). In particular, this fact made it pos-
sible to study effectively the gauge dependence and struc-
ture of renormalization of general gauge theories [12]. In
what follows we explore a gauge-fixing procedure in the
field–antifield formalism as an anticanonical transformation
of general type with the only requirement for anticanoni-
cally generalized action: the supermatrix of the second field
derivatives of this action must be non-degenerate. An essen-
tial difference in this point with the approach used in [12]

is that we work with a general setting for an action (2.13)
which satisfies the quantum master equation (not the classi-
cal master equation as in [12]).

3 Infinitesimal anticanonical transformations

As the first step in our study of anticanonical transformations
in the field–antifield formalism, we consider the properties
of the main objects subjected to infinitesimal anticanonical
transformations. In the latter case, the generating functional
Y reads

Y = Y (ϕ,�∗) = �∗
i ϕ

i + X (ϕ,�∗), ε(X) = 1. (3.1)

The functional X is considered as the infinitesimal one. Then
the anticanonical transformations of the variables,

�i = ϕi + ∂�∗
i
X (ϕ,�∗), ϕ∗

i = �∗
i + ∂ϕi X (ϕ,�∗),

(3.2)

can be written down to the first order in X as

�i = ϕi + ∂ϕ∗
i
X (ϕ, ϕ∗) + O(X2),

�∗
i = ϕ∗

i − ∂ϕi X (ϕ, ϕ∗) + O(X2),
(3.3)

or, in terms of the antibracket (2.1),

�i = ϕi + (ϕi , X) + O(X2),

�∗
i = ϕ∗

i + (ϕ∗
i , X) + O(X2).

(3.4)

The anticanonically transformed action S̃,

S̃ = S̃(ϕ, ϕ∗) = S(�,�∗) = S + (S, X) + O(X2) (3.5)

does not satisfy the quantum master equation to the first
approximation in X ,

1

2
(S̃, S̃) − i h̄�S̃ = i h̄(S,�X) + O(X2) 	= 0. (3.6)

Consider now the superdeterminant of the anticanonical
transformation

J (ϕ, ϕ∗) = J (Z) = sDet [Z̄ A(Z)
←−
∂ B], (3.7)

where

Z̄ A = (�i ,�∗
i ), Z A = (ϕi , ϕ∗

i ), ∂A = ∂

∂Z A
. (3.8)

To the first-order approximation in X , J reads

J =exp{2�X} + O(X2)=exp

{
i

h̄
(−2i h̄�X)

}
+O(X2).

(3.9)

In contrast to the notation used in [17,18], now we refer
to S′ = S′(ϕ, ϕ∗) constructed from S = S(ϕ, ϕ∗) via the
anticanonical master transformation,
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S′ = S′(ϕ, ϕ∗) = S(�(ϕ, ϕ∗),�∗(ϕ, ϕ∗))

−i h̄
1

2
lnJ (ϕ, ϕ∗), (3.10)

as the master-transformed action.
Note that, by itself, the anticanonical master transforma-

tion can be defined without reference on solutions of the
quantum master equation. Namely, let us define a transfor-
mation of the form1

exp

{
i

h̄
G ′

}
= exp{−[F,�]} exp

{
i

h̄
G

}
, (3.11)

where G, F (ε(G) = 0, ε(F) = 1) are arbitrary functions
of ϕ, ϕ∗, and [ , ] stands for the supercommutator. Then we
can prove (see Appendices C and D) the relation

G ′ = exp{ad(F)}G + i h̄ f (ad(F))�F,

f (ad(F))�F = −1

2
lnJ , ad(F)(. . .) = (F, (. . .)),

(3.12)

which repeats Eq. (3.10). In (3.12) the notation f (x) =
(exp x − 1)x−1 is used.

The action S′ (3.10) to the first order in X

S′ = S + (S, X) − i h̄�X + O(X2) (3.13)

does satisfy the quantum master equation

1

2
(S′, S′) − i h̄�S′ = O(X2). (3.14)

Note that, due to the results of [17,18], the action (3.10)
by itself satisfies the quantum master equation in the case
of arbitrary anticanonical transformation, as well (see, also
[13,19]).

Let us consider the generating functionals constructed
with the help of the master-transformed action S′ to the first
order in X . We have

Z ′ = Z ′(J, ϕ∗) =
∫

dϕ exp

{
i

h̄
(S′ + Jϕ)

}

= exp

{
i

h̄
W ′(J, ϕ∗)

}

= exp

{
i

h̄
W (J, ϕ∗)

}(
1 + i

h̄
δW (J, ϕ∗)

)
, (3.15)


′(ϕ, ϕ∗) = W ′(J, ϕ∗)− Jϕ=
(ϕ, ϕ∗) + δ
(ϕ, ϕ∗),
δ
(ϕ, ϕ∗) = δW (J (ϕ, ϕ∗), ϕ∗). (3.16)

1 In the present article, we only consider the case in which the generator
F is a function; the case of an operator-valued F was studied in [20].

Therefore

Z ′ − Z = δZ = i

h̄
exp

{
i

h̄
W (J, ϕ∗)

}
δW (J, ϕ∗)

= i

h̄
exp

{
i

h̄
W (J, ϕ∗)

}
δ
(ϕ, ϕ∗)

= i

h̄

∫
dϕ[(S, X) − i h̄�X ] exp

{
i

h̄
(S + Jϕ)

}

=
∫

dϕ exp

{
i

h̄
Jϕ

}
�

(
X exp

{
i

h̄
S

})

= − i

h̄
Ji∂ϕ∗

i

[
X̃(J, ϕ∗) exp

{
i

h̄
W (J, ϕ∗)

}]

= exp

{
i

h̄
W (J, ϕ∗)

}[
− i

h̄
Ji∂ϕ∗

i
X̃(J, ϕ∗)

]
, (3.17)

where

X̃(J, ϕ∗)=exp

{
− i

h̄
W (J, ϕ∗)

}∫
dϕX exp

{
i

h̄
(S+ Jϕ)

}
.

(3.18)

When deriving (3.17), the Ward identity for W (J, ϕ∗) (2.17),
the quantum master equation for S(ϕ, ϕ∗) (2.15), and the
following identities:

i h̄ exp

{
i

h̄
S

}
�X = i h̄�

(
X exp

{
i

h̄
S

})

+(S, X) exp

{
i

h̄
S

}
, (3.19)

exp

{
i

h̄
Jϕ

}
�

(
X exp

{
i

h̄
S

})

= (−1)εi ∂ϕi

[
exp

{
i

h̄
Jϕ

}
∂ϕ∗

i

(
Xe

i
h̄ S

)]

− i

h̄
Ji∂ϕ∗

i

(
X exp

{
i

h̄
(S + Jϕ)

})
, (3.20)

are used. Rewriting (3.17) for a variation of the effective
action 
 = 
(ϕ, ϕ∗), we obtain

δ
(ϕ, ϕ∗) = −Ji∂ϕ∗
i
X̃(J, ϕ∗) = (−1)εi 
i∂ϕ∗

i
X (ϕ, ϕ∗)

−(−1)εi 
i [∂ϕ∗
i
J j (ϕ, ϕ∗)] ∂J j X̃(J, ϕ∗)

∣∣∣
J=J (ϕ,ϕ∗)

,

(3.21)

where

X (ϕ, ϕ∗) = X̃(J, ϕ∗)
∣∣∣
J=J (ϕ,ϕ∗)

. (3.22)

One can rewrite Eq. (3.21) in terms of 
 = 
(ϕ, ϕ∗) as

δ
(ϕ, ϕ∗) = 

←−
∂ ϕi ∂ϕ∗

i
X − 


←−
∂ ϕ∗

i
∂ϕiX

= (
,X ) = −(X , 
). (3.23)

This result is proved in Appendix A. Equation (3.23) means
that any infinitesimal anticanonical master transformation of
the action S (3.5) with a generating functional X induces
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an infinitesimal anticanonical transformation in the effective
action 
 (3.23) with a generating functional X , provided the
generating functional of the Green functions is constructed
via the master-transformed action. An important goal of our
present study is a generalization of this fact (for the first time
found among the results of [12]) to the case of an arbitrary
(finite) anticanonical transformation.

4 Finite anticanonical transformation

Consider an arbitrary (finite) anticanonical transformation
described by a generating functionalY = Y (ϕ,�∗), ε(Y ) =
1,2

ϕ∗
i = Y (ϕ,�∗)←−∂ ϕi , �A = ∂�∗

i
Y (ϕ,�∗). (4.1)

Let Y have the form

Y (ϕ,�∗) = �∗
i ϕ

i + a f (ϕ,�∗), ε( f (ϕ,�∗)) = 1, (4.2)

wherea is a parameter. Then the solution of (4.1) up to second
order in a can be written as

�i = ϕi + a f
←−
∂ ϕ∗

i
− a2(−1)(εi+1)(ε j+1)

f
←−
∂ ϕ∗

j

←−
∂ ϕ∗

i

−→
∂ ϕ j f + O(a3), (4.3)

�∗
i = ϕ∗

i − a∂ϕi f + a2(−1)εi (ε j+1)

f
←−
∂ ϕ∗

j

←−
∂ ϕi

−→
∂ ϕ j f + O(a3), (4.4)

where f ≡ f (ϕ, ϕ∗). Let us denote

Z A = {ϕi , ϕ∗
i }, Z̄ A = {�i ,�∗

i }, ε(Z̄ A)= ε(Z A)= εA,

(4.5)

and

F = F(ϕ, ϕ∗; a) = − f (ϕ, ϕ∗)
+ a

2
f (ϕ, ϕ∗)←−∂ ϕ∗

j

−→
∂ ϕ j f (ϕ, ϕ∗). (4.6)

Then we have

Z̄ A = Z̄ A(Z; a) = exp{aad(F)}Z A + O(a3), (4.7)

where ad(F) means the left adjoint of the antibracket

ad(F)(. . .) = (F(Z; a), (. . .)). (4.8)

We call F in (4.6) a generator of the anticanonical trans-
formation to the second order. It should be noticed that the
generator of an anticanonical transformation does not coin-
cide with the generating functional of this transformation
already to the second order. A natural question arises: Does
a generator exist for a given anticanonical transformation,
actually? To answer this question, we begin with the claim

2 Note that any anticanonical transformation can be described in terms
of a generating functional.

that an operator exp{ad(F)} generates an anticanonical trans-
formation. Indeed, let Z A be anticanonical variables so that
the antibracket (2.1) can be presented in the form

(H(Z),G(Z)) = H(Z)
←−
∂ AE

AB−→
∂ BG(Z),

(Z A, Z B) = E AB, ∂A = ∂

∂Z A
, (4.9)

where E AB is a constant supermatrix with the properties

EBA = −(−1)(εA+1)(εB+1)E AB, ε(E AB) = εA + εB + 1.

(4.10)

Then the transformation

Z A → Z̄ A(Z) = exp{adF(Z)}Z A (4.11)

is anticanonical,

(Z̄ A(Z), Z̄ B(Z)) = Z̄ A(Z)
←−
∂ C E

CD−→
∂ D Z̄

B(Z) = E AB .

(4.12)

To prove this fact we introduce a one-parameter family of
transformations

Z̄ A(Z , a) = exp{aad(F)}Z A, Z̄ A(Z , 0) = Z A, (4.13)

and the quantities Z̄ AB(Z , a),

Z̄ AB(Z , a)=(Z̄ A(Z , a), Z̄ B(Z , a)), Z̄ AB(Z , 0)=E AB .

(4.14)

It follows from the definitions (4.13) and (4.14) that the rela-
tions

d

da
Z̄ A(Z , a) = (F(Z), Z̄ A(Z , a)),

d

da
Z̄ AB(Z , a) = ((F(Z), Z̄ A(Z , a)), Z̄ B(Z , a))

+ (Z̄ A(Z , a), (F(Z), Z̄ B(Z , a)) (4.15)

= (F(Z), (Z̄ A(Z , a), Z̄ B(Z , a)) = (F(Z), Z̄ AB(Z , a))

= ad(F(Z))Z̄ AB(Z , a) (4.16)

hold, where the Jacobi identity (2.7) for antibrackets is used.
A solution to Eq. (4.16) has the form

Z̄ AB(Z , a) = exp{aad(F(Z))}Z̄ AB(Z , 0)

= exp{aad(F(Z))}E AB = E AB, (4.17)

and the transformation (4.11) is really anticanonical. The
inverse to this statement is valid as well: an arbitrary set of
anticanonical variables Z̄ A(Z) can be presented in the form

Z̄ A(Z) = exp{ad(F(Z))}Z A (4.18)

with some generator functional F(Z), ε(F(Z)) = 1. In
Appendix B, a proof of this fact is given.

Consider now a master-transformed action S′ = S′(ϕ, ϕ∗)
(3.10). It was pointed out in [14] that there are presentations
of S′ in the following forms:
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exp

{
i

h̄
S′

}
= exp{−[F,�]} exp

{
i

h̄
S

}
, (4.19)

or

S′ = exp{ad(F)}S + i h̄ f (ad(F))�F, (4.20)

where S = S(ϕ, ϕ∗), and F = F(ϕ, ϕ∗) is a genera-
tor functional of an anticanonical transformation, f (x) =
(exp(x) − 1)x−1. In accordance with (3.10), the first term in
the right-hand side in (4.20) describes an anticanonical trans-
formation of S with an odd generator functional F , while the
second term is a half of a logarithm of the Jacobian (3.7) of
that transformation, up to (−i h̄). In Appendix D, we give a
proof of the latter statement.

Now we are in a position to study the properties of generat-
ing functionals of Green functions subjected to an arbitrary
anticanonical transformation. We start with the generating
functionals of Green and connected Green functions,

Z ′ = Z ′(J, ϕ∗) =
∫

dϕ exp

{
i

h̄
(S′(ϕ, ϕ∗) + Jϕ)

}

= exp

{
i

h̄
W ′(J, ϕ∗)

}
, (4.21)

where S′ is defined in (4.19). The constructed generating
functionals (4.21) obey the very important property of inde-
pendence of F for physical quantities on-shell.3 Indeed, for
infinitesimal δF the variation of Z ′ (4.21),

δZ ′ = − i

h̄

∫
dϕ[(S, δF) − i h̄(�δF)]

× exp

{
i

h̄
(S(ϕ, ϕ∗) + Jϕ)

}

= i

h̄
JA∂ϕ∗

A

[
δ F̃(J, ϕ∗) exp

{
i

h̄
W (J, ϕ∗)

}]
, (4.22)

is proportional to the external sources J . Due to the equiv-
alence theorem [21], it means that the Green functions cal-
culated with the help of the generating functionals Z(J, ϕ∗)
and Z ′(J, ϕ∗) give the same physical answers on-shell. In
deriving (4.22), the result of the calculation (3.17) is used
and the notation

δ F̃(J, ϕ∗) = Z−1(J, ϕ∗)∫
dϕ δF(ϕ, ϕ∗) exp

{
i

h̄
(S(ϕ, ϕ∗) + Jϕ)

}
(4.23)

is introduced.
In the case of finite anticanonical transformations, we con-

sider the following anticanonically generalized action S′′:

3 Note that in gauge theories the “on-shell” includes a definition of the
physical state space.

exp

{
i

h̄
S′′(ϕ, ϕ∗)

}

= exp{−[F(ϕ, ϕ∗) + δF(ϕ, ϕ∗),�]} exp

{
i

h̄
S(ϕ, ϕ∗)

}
,

(4.24)

where δF = δF(ϕ, ϕ∗) is an infinitesimal functional. The
following representation holds:

exp{−[F(ϕ, ϕ∗) + δF(ϕ, ϕ∗),�]}
= exp{−[δF(ϕ, ϕ∗),�]} exp{−[F(ϕ, ϕ∗),�]}, (4.25)

where δF(ϕ, ϕ∗) is defined by the relation

exp{−ad(F(ϕ, ϕ∗))−ad(δF(ϕ, ϕ∗))} exp{−ad(F(ϕ, ϕ∗))}
= exp{−ad(δF(ϕ, ϕ∗))}. (4.26)

In Appendix C, a proof of Eqs. (4.25) and (4.26) is given.
Due to (4.25), we can present the action S′′ in the form

exp

{
i

h̄
S′′(ϕ, ϕ∗)

}
= exp{−[δF(ϕ, ϕ∗),�]}

× exp

{
i

h̄
S′(ϕ, ϕ∗)

}
. (4.27)

Although we need here the infinitesimal functional
δF(ϕ, ϕ∗), the representation (4.27) by itself is valid for arbi-
trary functional δF . In turn, the representation (4.27) allows
us the use of the previous arguments concerning the case of
infinitesimal anticanonical transformations and for the state-
ment that the generating functionals Z ′′ and Z ′ constructed
with the help of the actions S′′ and S′, respectively, give the
same physical results.

The next point of our study is connected with the behav-
ior of generating functionals subjected to an arbitrary anti-
canonical transformation. Consider a one-parameter family
of functionals Z ′(J, ϕ∗; a),

Z ′(a) = Z ′(J, ϕ∗; a)=
∫

dϕ exp

{
i

h̄
(S′(ϕ, ϕ∗; a) + Jϕ)

}

= exp

{
i

h̄
W ′(J, ϕ∗; a)

}
, (4.28)

exp

{
i

h̄
S′(ϕ, ϕ∗; a)

}

= exp{−a[F(ϕ, ϕ∗),�]} exp

{
i

h̄
S(ϕ, ϕ∗)

}
, (4.29)

so that

Z ′(1) = Z ′. (4.30)
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Taking into account (3.17) and (4.29), we derive the relation

∂aZ ′(a) = i

h̄
Z ′(a)∂aW

′(J, ϕ∗; a) = i

h̄
Z ′(a)∂a
(ϕ, ϕ∗; a)

= −
∫

dϕ exp

{
i

h̄
Jϕ

}
[F(ϕ, ϕ∗),�] exp

{
i

h̄
S′(ϕ, ϕ∗; a)

}

= −
∫

dϕ exp

{
i

h̄
Jϕ

}
�

(
F(ϕ, ϕ∗) exp

{
i

h̄
S′(ϕ, ϕ∗; a)

})
.

(4.31)

By repeating similar calculations which lead us from
(3.17) to (3.23) due to Eqs. (3.19), (3.20), and (A.1)–(A.7),
we obtain

∂a
(ϕ, ϕ∗; a) = (F(ϕ, ϕ∗; a), 
(ϕ, ϕ∗; a)), (4.32)

F(ϕ, ϕ∗; a) = 1

Z ′(J, ϕ∗; a)

∫
dϕ̃F(ϕ̃, ϕ∗)

× exp

{
i

h̄
(S′(ϕ̃, ϕ∗; a) + J ϕ̃)

}∣∣∣∣
J=J (ϕ,ϕ∗;a)

. (4.33)

We will refer to (4.32) as the basic equation describing the
dependence of the effective action on an anticanonical trans-
formation in the field–antifield formalism. In Sect. 5, we
present a solution to this equation.

5 Solution to the basic equation

In what follows below, we will use a short notation for all
quantities depending on the variables ϕ, ϕ∗,


(ϕ, ϕ∗; a)≡ 
(a), 
(ϕ, ϕ∗)≡ 
, F(ϕ, ϕ∗; a)≡F(a)

(5.1)

and so on. Then the basic equation (4.32) is written as

∂a
(a) = (F(a), 
(a)) = ad(F(a))
(a). (5.2)

We will study solutions to (5.2) in the class of regular
functionals in a, by using a power series expansion in this
parameter. In the beginning, let us find a solution to this
equation to the first order in a, presenting 
(a) and F(a) in
the form


1(a) ≡ 
(a) = 
 + a
1|1 + O(a2), (5.3)

F1(a) ≡ F(a) = 1

a
F1|1(a) + O(a), F1|1(a) = aF1|1.

(5.4)

A straightforward calculation yields the following result:


1|1 = (F1|1, 
) = ad(F1|1)
. (5.5)

Introduce the notation U1(a) = F1|1(a) = aF1|1 and the
functional 
2(a) by the rule


2(a) = exp{−ad(U1(a))}
1(a). (5.6)

The dependence of 
2(a) on a is described by the equation

∂a
2(a) = (F2(a), 
2(a)) (5.7)

where

F2(a) = [exp{−aad(F1|1)}F1(a) − F1|1]. (5.8)

It follows from (5.6) that the functional 
2(a) coincides with

 up to the second order in a,


2(a) = 
 + O(a2) = 
 + a2
2|2 + O(a3). (5.9)

In turn, the functional F2(a) vanishes to the first order in a,

F2(a) = O(a) = 2

a
F2|2(a) + O(a2), F2|2(a) = a2F2|2.

(5.10)

To the second order in a, the solution to (5.7) reads


2|2 = (F2|2, 
). (5.11)

Then the functional 
̃3(a) constructed by the rule


̃3(a) = exp{−ad(F2|2(a))}
2(a) (5.12)

coincides with 
 up to the third order in a


̃3(a) = 
 + O(a3). (5.13)

Introduce the functional 
3(a),


3(a) = exp{−ad(U2(a))}
1(a),

U2(a) = F1|1(a) + F2|2(a). (5.14)

Note that 
3(a) coincides with 
̃3(a) up to the third order in
a,


3(a) = 
̃3(a) + O(a3) = 
 + O(a3)

= 
 + a3
3|3 + O(a4), (5.15)

so that we have


3(a) = exp{−ad(F2|2(a))}
× exp{−ad(F1|1(a))}
1(a) + O(a3)

= exp{−ad(F2|2(a))}
2(a) + O(a3) (5.16)

due to the relation (B.4). It follows from (5.15) that

∂a
3(a) = 3a2
3|3 + O(a3). (5.17)

On the other hand, we have

∂a
3(a) = (F3(a), 
3(a)) = ad(F3(a))
3(a), (5.18)

where

ad(F3(a))=− exp{−ad(U2(a))}∂a exp{ad(U2(a))}
− exp{−ad(U2(a))}ad(F1(a)) exp{ad(U2(a))},

(5.19)
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the operators on the right-hand side of (5.19) have certainly
the form of the ones of ad, see Eqs. (C.12), (C.15), and (C.7),
(C.8). By using (C.4), (C.9), we derive from (5.19) and (5.18)

ad(F3(a)) = −2

a
ad(F2|2(a))

+ exp{−ad(F2|2(a))}ad(F2(a))

× exp{ad(F2|2(a))} + O(a2)

= 3

a
ad(F3|3(ϕ, ϕ∗; a)) + O(a3),

ad(F3|3(a)) = a3ad(F3|3), (5.20)


3|3 = (F3|3, 
). (5.21)

Suppose that on the nth step of our procedure we have
obtained the following relations:


n(a) = exp{−ad(Un−1(a))}
1(a) = 
 + O(an)

= 
 + an
n|n + O(an+1), Un−1(a)

=
n−1∑
k=1

Fk|k(a) ≡ F[n−1|n−1](a), (5.22)

∂a
n(a) = (Fn(a), 
n(a)), (5.23)

Fn(a)=O(an)= n

a
Fn|n(a)+O(an+1), Fn|n(a)=anFn|n,

(5.24)


n|n = (Fn|n, 
). (5.25)

We set

Un(a) = F[n|n](a). (5.26)

Then we have

exp{−ad(Fn|n(a)}
n(a) = 
 + O(an+1),


n+1(a) = exp{−ad(Un(a))}
1(a)

= exp{−ad(Fn|n(a))}
n(a) + O(an+1) (5.27)

= 
 + O(an+1) = 
 + an+1
n+1|n+1 + O(an+2).

(5.28)

In a similar manner, we derive the equation for 
n+1(a)

∂a
n+1(a) = (Fn+1(a), 
n+1(a)), (5.29)

where

ad(Fn+1(a)) = − exp{−ad(Un(a))}∂a exp{ad(Un(a))}
+ exp{−ad(Un(a))}ad(F1(a)) exp{ad(Un(a))}. (5.30)

By the same reasons used at the previous stages, we conclude
that

ad(Fn+1(a)) = −n

a
ad(Fn|n(a))

+ exp{−ad(Fn|n(a))}ad(Fn(a))

× exp{ad(Fn|n(a))} + O(an)

= n + 1

a
ad(Fn+1|n+1(a)) + O(an+1),

Fn+1|n+1(a) = an+1Fn+1|n+1, (5.31)


n+1|n+1 = (Fn+1|n+1, 
), (5.32)


(a) = exp{ad(Un(a))}
n+1(a)

= exp{ad(Un(a))}
 + O(an+1). (5.33)

Finally, by applying the induction method, we find that a
solution to the basic equation (5.2) can be presented in the
form


(a) = exp{ad(U (a))}
, (5.34)

which is nothing but an anticanonical transformation of 


with a generator functional U (a) defined by the functional
F(a) in (5.2) as

U (a) =
∞∑
k=1

Fk|k(a). (5.35)

In this proof, we have found a possibility to express the rela-
tion between U (a) and F(a) in the form

F(a) = − exp{ad(U (a))}∂a exp{−ad(U (a))}. (5.36)

In turn, the relation (5.36) can be considered as a new rep-
resentation of the functional (4.33). Let us notice that the
functional U (a) in (5.34) depends on the functional F(a)

only and does not depend on the choice of an initial data
for 
(a). Equations (5.34)–(5.36) just represent the impor-
tant relationship between the ordinary exponential and the
path-ordered one.

Let us state again that the dependence of the effective
action on a finite anticanonical transformation with a gener-
ating functional Y (ϕ,�∗; a) is really described in terms of
an anticanonical transformation with a generator functional
U (ϕ, ϕ∗; a). As an anticanonical transformation is a change
of variables in 
, in particular, it means that, on-shell, the
effective action does not depend on gauges introducing with
the help of anticanonical transformations.

6 Discussions

In the present article, we have explored a conception of a
gauge-fixing procedure in the field–antifield formalism [1,2],
based on the use of anticanonical transformations of general
type. The approach includes an action (master-transformed
action) constructed with the help of the anticanonical mas-
ter transformation and being non-degenerate. The master-
transformed action is a sum of two terms: one is an action
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subjected to an anticanonical transformation and the other
is a term connected with a logarithm of a superdeterminant
of this anticanonical transformation. This action satisfies the
quantum master equation [13,19] (see also Appendix D). The
generating functionals of the Green functions constructed via
the master-transformed action obey the important property
of the gauge independence of physical quantities on-shell,
and they satisfy the Ward identity. We have found that any
(finite) anticanonical master transformation of an action leads
to the corresponding anticanonical transformation of effec-
tive action (generating functional of vertex functions) pro-
vided the generating functional of Green functions is con-
structed with the help of an anticanonical master action. We
have proved the existence of a generator functional of an anti-
canonical transformation of the effective action. This result
is essential when proving the independence of the effective
action of anticanonical transformations on-shell and, on the
other hand, it may supplement in a non-trivial manner the
representation of anticanonical transformations in the form
of a path-ordered exponential [13].
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Appendix A: Infinitesimal variation of effective action

Here we prove the possibility to present Eq. (3.21) in the
form (3.23). To do this, we introduce the matrix of the second
derivatives of 
, 
i j , and its inverse, Mi j ,


i j ≡ ∂ϕi ∂ϕ j 
 = (−1)εi ε j 
 j i ,

ε(
i j ) = εi + ε j , (A.1)

Mi j
 jk = δik, ε(Mi j ) = εi + ε j ,

M ji = (−1)εi ε j+εi+ε j Mi j . (A.2)

From the Ward identity (2.20) written in the form


i

i∗ = 0, 
i∗ = 


←−
∂ ϕ∗

i
, 
i = ∂ϕi 
, (A.3)

it follows that the relations

(−1)ε j εk+εk
k

k∗
j = (−1)ε j 
k∗


k j ,


k∗
j = ∂ϕ j ∂ϕ∗

k

 (A.4)

hold. By taking these relations into account, we have

(−1)εk
k[∂ϕ∗
k
J j (ϕ, ϕ∗)] = −(−1)ε j+εk
k∂ϕ∗

k
∂ϕ j 


= −(−1)ε j εk+εk
k

k∗
j = −(−1)ε j 
k∗


k j (A.5)

and

∂ϕkX = [∂ϕk J j (ϕ, ϕ∗)]∂J j X̃ = −(−1)ε j 
k j∂J j X̃

�⇒ ∂J j X̃(J, ϕ∗)
∣∣∣
J=J (ϕ,ϕ∗)

= −(−1)ε j M jk∂ϕkX (ϕ, ϕ∗).

(A.6)

Therefore

(−1)εk
k[∂ϕ∗
k
J j (ϕ, ϕ∗)] ∂J j X̃(J, ϕ∗)

∣∣∣
J=J (ϕ,ϕ∗)

= 
k∗

k j M

jk∂ϕkX (ϕ, ϕ∗) = 

←−
∂ ϕ∗

k
∂ϕkX . (A.7)

Substituting (A.7) in (3.21), we have derived (3.23) for a
variation of 
.

Appendix B: Generator of anticanonical transformation

Here we give a proof that any anticanonical transformation
can be described by the corresponding generator ad(F) in
the sense of (4.18). Firstly, we note that if Z̄ A

l (Z), l = 1, 2,
are anticanonical variables,

(Z̄ A
1 (Z), Z̄ B

1 (Z)) = (Z̄ A
2 (Z), Z̄ B

2 (Z)) = E AB, (B.1)

then the compositions of these variables, Z̄ A
12(Z) =

Z̄ A
1 (Z̄2(Z)) and Z̄ A

21(Z) = Z̄ A
2 (Z̄1(Z)), are anticanonical

as well. Indeed, we have

(Z̄ A
12(Z), Z̄ B

12(Z)) = Z̄ A
12(Z)

←−
∂ C E

CD−→
∂ D Z̄

B
12(Z)

= Z̄ A
1 (Z̄2)

←−
D 2|M [Z̄ M

2 (Z)
←−
∂ C E

CD−→
∂ D Z̄

N
2 (Z)]−→D 2|N Z̄ B

1 (Z̄2)

= Z̄ Z
1 (Z̄2)

←−
D 2|M EMN−→

D 2|N Z̄ B
1 (Z̄2)=E AB , D2|A = ∂

∂ Z̄ A
2

.

(B.2)

In particular, the variables Z̄ A
12(Z) = exp{adF(Z)}Z̄ A

1 (Z)

are anticanonical if Z̄ A
1 (A) are anticanonical variables.

Indeed, we have

Z̄ Z
12(Z)= Z̄ Z

1 (Z̄2(Z)), Z̄ A
2 (Z)=exp{adF(Z)}Z A. (B.3)

Secondly, the next remark is obvious

exp{ad(F[n](Z; a))} exp{ad(Fn+1(Z; a))}
= exp{ad(F[n+1](Z; a))} + O(an+2),

F[k](Z; a) =
k∑

l=1

Fl(Z; a), Fl(Z; a) = al Fl(Z). (B.4)

Now let Z̄ A(Z; a) ≡ Z̄ A
1 (Z; a) = Z A + aZ A

1|1(Z) +
O(a2) be anticanonical variables with a generating func-
tionalY (ϕ,�∗; a) ≡ Y1(ϕ,�∗; a) = �∗

i ϕ
i−a f1|1(ϕ,�∗)+
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O(a2). Taking into account (4.2)–(4.4) and (4.6)–(4.8), we
have

Z A
1|1(Z) = (F1|1(Z), Z A), F1|1(Z) = f1|1(ϕ, ϕ∗) �⇒

(B.5)

Z̄ A
1 (Z; a) = exp{ad(F1|1(Z; a))}Z A + O(a2). (B.6)

Then we introduce (anticanonical) variables Z̄ A
2 (Z; a),

Z̄ A
2 (Z; a) = exp{−ad(F1|1(Z; a))}Z̄ A

1 (Z; a)

= Z A + a2Z A
2|2(Z) + O(a3), (B.7)

with the corresponding generating functional

Y2(ϕ,�∗; a) = �∗
i ϕ

i − a2 f2|2(ϕ,�∗) + O(a3). (B.8)

As a result, we have

Z A
2|2(Z) = (F2|2(Z), Z A), F2|2(Z) = f2|2(ϕ, ϕ∗) �⇒

(B.9)

Z̄ A
2 (Z; a) = exp{ad(F2|2(Z; a))}Z A + O(a3) �⇒ (B.10)

Z̄ A
1 (Z; a) = exp{ad(F1|1(Z; a))}Z̄ A

2 (Z; a)

= exp{ad(F1|1(Z; a))} exp{ad(F2|2(Z; a))}Z A + O(a3)

= exp{ad(F[2|2](Z; a))}Z A + O(a3), (B.11)

where the relation (B.4) is used.
Suppose that a representation of anticanonical variables

Z̄ A
1 (Z; a) does exist in the form

Z̄ A
1 (Z; a) = exp{ad(F[n|n](Z; a))}Z A + O(an+1),

ad(F[n|n](Z; a)) =
n∑

k=1

ad(Fk|k(Z; a)). (B.12)

Introduce the (anticanonical) variables Z̄ A
n+1(Z; a),

Z̄ A
n+1(Z; a) = exp{−ad(F[n|n](Z; a))}Z̄ A

1 (Z; a)

= Z A + an+1Z A
n+1|n+1(Z) + O(an+2). (B.13)

The corresponding generating functional Yn+1(ϕ,�∗; a) has
the form

Yn+1(ϕ,�∗; a)=�∗
i ϕ

i −an+1 fn+1|n+1(ϕ,�∗)+O(an+2).

(B.14)

By the usual manipulations, we find

Z A
n+1|n+1(Z) = (Fn+1|n+1(Z), Z A), Fn+1|n+1(Z)

= fn+1|n+1(ϕ, ϕ∗), (B.15)

Z̄ A
n+1(Z; a) = exp{ad(Fn+1|n+1(Z; a))}Z A + O(an+2),

(B.16)

Z̄ A
1 (Z; a) = exp{ad(F[n|n](Z; a))}Z̄ A

n+1(Z; a)

= exp{ad(F[n|n](Z , a))} exp{ad(Fn+1|n+1(Z; a))}Z A

+O(an+2) = exp{ad(F[n+1|n+1](Z; a))}Z A+O(an+2).

(B.17)

Applying the induction method, we have proved that an arbi-
trary set of anticanonical variables Z̄ A(Z) can be really rep-
resented in the form (4.18).

Appendix C: Some useful formulas

Consider a set of differential operators ad(A(Z)),

ad(B(Z)), . . ., ε(A(Z)) = 1, ε(B(Z)) = 1, . . . applied to
any functional M(Z) of anticanonical variables Z = (ϕ, ϕ∗)
as the left adjoint of the antibracket. If a multiplication oper-
ation is introduced as the commutator, then this set can be
considered as a Lie superalgebra. Indeed, due to the symme-
try properties and the Jacobi identity for the antibracket, we
have

[ad(A(Z)), ad(B(Z)] = ad(A(Z))ad(B(Z))

−ad(B(Z))ad(A(Z)) = ad(CA|B(Z)), (C.1)

CA|B(Z) = (A(Z), B(Z)), ε(CA|B(Z)) = 1, (C.2)

or, in more detail, by application to M(Z),

(A(Z), (B(Z), M(Z))) − (B(Z), (A(Z), M(Z)))

(A(Z), (B(Z), M(Z))) + (B(Z), (M(Z), A(Z)))

= −(M(Z), (A(Z), B(z))) = ((A(Z), B(Z)), M(Z))

= ad(CA|B(Z))M(Z). (C.3)

Note that the operators under consideration give a good
example of odd first-order differential operations which are
not nilpotent, (ad(A(Z)))2 	= 0.

It is obvious that

exp{ad(An+1(a))} exp{ad(A[n](a))}
= exp{ad(A[n+1](a))} + O(an+2), (C.4)

A[n](a) =
n∑

k=1

Ak(a), Ak(a) = ak Ak (C.5)

[see, also (B.4)].
Taking into account a series expansion

exp{ad(A(Z))}ad(B(Z)) exp{−ad(A(Z))}
= ad(B(Z)) + [ad(A(Z)), ad(B(Z))]

+ 1

2! [ad(A(Z)), [ad(A(Z)), ad(B(Z))]] + . . . , (C.6)

using relations similar to (C.1)–(C.3) and the Jacobi identity
for the antibracket, we deduce the identity

exp{ad(A(Z))}ad(B(Z)) exp{−ad(A(Z))}=ad(DA|B(Z)),

DA|B(Z) = B(Z) + (A(Z), B(Z)) (C.7)

+ 1

2! (A(Z), (A(Z), B(Z))) + . . .

= exp{ad(A(Z))}B(Z),

ε(DA|B(Z)) = 1. (C.8)
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The useful identity

X = X (Z; a) = exp{ad(A(Z; a))}∂a exp{−ad(A(Z; a))}
= −ad(DA(Z; a)), (C.9)

DA(Z; a) = f (ad(A(Z; a)))∂a A(Z; a), (C.10)

f (x)=(exp(x)−1)x−1, ε(A(Z; a))=1, ε(DA(Z; a))=1,

(C.11)

holds, as well. Indeed, let us introduce the operator X (t),

X (t) = X (Z; a; t) = exp{tad(A(Z; a))}∂a
× exp{−tad(A(Z; a))}, X (0) = 0, X (1) = X. (C.12)

Then we have

∂t X (t) = − exp{tad(A(Z; a))}ad(∂a A(Z; a))

× exp{−tad(A(Z; a))} = −ad(C∂a A(Z; a; t)), (C.13)

C∂a A(Z; a; t) = exp{tad(A(Z; a))}∂a A(Z; a). (C.14)

In deriving (C.13) and (C.14), the identities (C.7) and (C.8)
are used. Using initial data for X (t), it follows from (C.13)
that

X (t) = −tad(D∂a A(Z; a; t)),
D∂a A(Z; a; t) = f (tad(A(Z; a)))∂a A(Z; a). (C.15)

We will use the following convention and notation for
applying the operators R and R̂,

F(R)A(Z)(. . .) = [F(R)A(Z)](. . .), F(R̂)A(Z)(. . .)

= F(R)[A(Z)(. . .)], (C.16)

where F(R) = F(x)|x=R , A(Z) is a function, and (. . .)

means an arbitrary quantity.
Consider a first-order differential operator

N (Z)∂ ≡ N A(Z)∂A, ∂A = ∂

∂Z A
, ε(N A(Z)) = ε(Z A),

(C.17)

where N A(Z) are some functionals of Z . Let

Z̄ A(Z) ≡ exp{N (Z)∂}Z A, (C.18)

then we have

exp{N (Z)∂̂}Z A exp{−N (Z)∂̂}
=

∑
k=0

1

k! [N (Z)∂̂, [N (Z)∂̂, . . . [N (Z)∂̂, Z A] . . .]]k times

=
∑
k=0

1

k! [N (Z)∂]k Z A = exp{N (Z)∂}Z A = Z̄ A(Z)

(C.19)

where the relation

[N (Z)∂̂, M(Z)] = N (Z)∂M(Z) (C.20)

is used. In general

exp{N (Z)∂̂}g(Z) exp{−N (Z)∂̂}
= exp{N (Z)∂}g(Z) = g(Z̄). (C.21)

Consider a more general differential operator than in
(C.18),

L(a) = exp{aM(Z) + aN (Z)∂̂} (C.22)

where M(Z) is a functional of Z and a is a parameter. We
prove that there is a representation of this operator in the form

L(a) = H(Z , a) exp{aN (Z)∂̂} (C.23)

where H(Z , a) is a functional. Indeed, it follows from (C.22)
and (C.23) that

H(Z , a) = exp{aM(Z) + aN (Z)∂̂} exp{−aN (Z)∂̂}.
(C.24)

By differentiating H(Z , a) with respect to a, one gets the
relation

dn

dan
H(Z , a)

= exp{aM(Z) + aN (Z)∂̂}hn exp{−aN (Z)∂̂}, (C.25)

where

hn = (M(Z) + N (Z)∂̂)hn−1 − hn−1N (Z)∂̂,

h0 = 1, h1 = M(Z). (C.26)

Suppose that hk, 0 ≤ k ≤ n are some functionals, then

hn+1 = M(Z)hn + N (Z)∂̂hn − hnN (Z)∂̂

= M(Z)hn + N (Z)∂hn (C.27)

is a functional, as well. The latter means that all a-derivatives
of H(Z , a) taken at a = 0 are some functionals too and, as
a consequence, H(Z , a) is a functional.

Now we can derive a representation for H(Z , a). We start
with the equation

d

da
H(Z , a)

= exp{aM(Z) + aN (Z)∂̂}M(Z) exp{−aN (Z)∂̂},
(C.28)

which can be rewritten as

d

da
H(Z , a)

= H(Z , a)(exp{aN (Z)∂̂}M(Z) exp{−aN (Z)∂̂})
= (exp{aN (Z)∂}M(Z))H(Z , a) (C.29)
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where the relation (C.21) is used. Integrating this equation
leads to

H(Z) = H(Z , 1) = exp[ f (x)M(Z)],
f (x) = exp(x) − 1

x
, x = N (Z)∂. (C.30)

Finally, we have

exp{M(Z) + N (Z)∂̂} = exp[ f (x)M(Z)] exp{N (Z)∂̂},
x = N (Z)∂. (C.31)

Appendix D: Master-transformed actions

Here we present a set of properties concerning master-
transformed actions.

Firstly, we prove that an action S′ constructed by the rule
(4.19) from S, being a solution to the quantum master equa-
tion, satisfies the quantum master equation, as well. To do
this, we consider a functional X (Z) and the transformation
X (Z) → X ′(Z) = X (Z , 1) of the form

exp

{
i

h̄
X (Z , a)

}

= exp{−a[F(Z), �̂]} exp

{
i

h̄
X (Z)

}
, X (Z , 0) = X (Z).

(D.1)

The transformation (D.1) has the property

� exp

{
i

h̄
X (Z)

}
= 0 �⇒ � exp

{
i

h̄
X (Z , a)

}
= 0. (D.2)

Indeed, let us introduce a functional

Y (Z , a) = � exp

{
i

h̄
X (Z , a)

}
,

Y (z, 0) = � exp

{
i

h̄
X (Z)

}
. (D.3)

Then we have

d

da
Y (Z , a) = −�̂ ([F(Z),�]) exp

{
i

h̄
X (Z , a)

}

= −�̂F(Z)Y (Z , a) (D.4)

where the nilpotency of � operator is used. Integrating this
equation gives

Y (Z , a) = exp{−a�̂F(Z)}Y (Z , 0) �⇒ (D.5)

� exp

{
i

h̄
X (Z , a)

}
= exp{−a�̂F(Z)}� exp

{
i

h̄
X (Z)

}
.

(D.6)

Secondly, to prove the presentation of (4.20), we consider
(D.1) in more detail. Note that

[F(z),�] = (�F(Z)) − ad(F(Z)), (D.7)

and we have the following identification of (D.7) with the
functions M(Z) and the operator N A(Z)∂A from (C.23):

M(Z) = −�F(Z), N A(Z)∂A = ad(F(Z)). (D.8)

It follows from (C.31) that

X ′ = exp{ad(F(Z))}X + i h̄ f (ad(F(Z)))�F. (D.9)

In the right-hand side in (D.9), the first term is an anticanon-
ical transformation with finite fermionic generator F , while
the second term is a half of a logarithm of the Jacobian of
that transformation, up to (−i h̄). It is obvious that the inverse
statement holds as well: the validity of the relation (D.9)
implies Eq. (D.1).

Now we show that the equality holds of

exp{−[F2(Z) + F1(Z),�]}
= exp{−[F2(Z),�]} exp{−[F1(Z),�]}, (D.10)

where F2(Z) is determined by the relation

exp{[ad(F2(Z)) + ad(F1(Z))]}
exp{−ad(F1(Z))} = exp{ad(F2(Z))}. (D.11)

The existence of Eqs. (D.10) and (D.11) means that transfor-
mations generated by exp{−[F(Z),�]} and exp{ad(F(Z))}
obey a group property.

Consider anticanonical transformations generated by the
fermionic functions F1(Z), F1(Z) + F2(Z), and F2(Z)

Z̄ A
1 (Z) = exp{ad(F1(Z))}Z A, Z̄ A

2 (Z)

= exp{[ad(F2(Z)) + ad(F1(Z))]}Z A, (D.12)

Z̄ A
2 (Z) = exp{ad(F2(Z))}Z A. (D.13)

Then, due to (D.11), we have

Z̄ A
2 (Z) = exp{ad(F2(Z))}

exp{ad(F1(Z))}Z A = Z̄ A
1 (Z̄2(Z)). (D.14)

For a given action S(Z), the relations

S1(Z) = exp{ad(F1(Z))}S(Z) = S(Z̄1(Z)), (D.15)

S2(Z) = exp{[ad(F2(Z)) + ad(F1(Z))]}S(Z) = S(Z̄2(Z))

= S(Z̄1(Z̄2(Z)) = exp{ad(F2(Z))}S1(Z) (D.16)

hold. Using the chain rule and multiplication rule for superde-
terminants, one obtains for the logarithm of the superdeter-
minant of the anticanonical transformation (D.14)
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ln sDet [Z̄ A
2 (Z)

←−
∂ B]

= ln sDet [ Z̄ A
1 (Z̄2)

←−
∂ Z̄C

2

∣∣∣Z̄C
2 →Z̄C

2 (Z)
(Z̄C

2 (Z)
←−
∂ B]

= ln sDet [(Z̄ A
1 (Z̄2)

←−
∂ Z̄B

2
)(Z)]

+ ln sDet [Z̄ A
2 (Z)

←−
∂ B]

= exp{ad(F2(Z))} ln sDet [(Z̄ A
1 (Z)

←−
∂ B)]

+ ln sDet [Z̄ A
2 (Z)

←−
∂ B]. (D.17)

Consider the action S′
2 constructed from an action S with the

help of anticanonical master transformation with the gener-
ator functional F1 + F2 (D.12). We obtain

S′
2(Z) = S2(Z) − i h̄

2
ln sDet [Z̄ A

2 (Z)
←−
∂ B] (D.18)

where S2(Z) is defined by the first equality in (D.16), and
Z̄ A

2 is given by the second equality in (D.12). It follows from
(D.17) and (D.18) that

S′
2(Z)=exp{ad(F2(Z))}

(
S1(Z)− i h̄

2
ln sDet [Z̄ A

1 (Z)
←−
∂ B]

)

− i h̄

2
ln sDet [Z̄ A

2 (Z)
←−
∂ B]

= exp{ad(F2(Z))}S′
1(Z) − i h̄

2
ln sDet [Z̄ A

2 (Z)
←−
∂ B],

(D.19)

where S′
1 is the master-transformed action S under the anti-

canonical transformation of variables Z with the generator
functional F1(Z), and, as a result, S′

2 is presented as a master-
transformed action S′ corresponding to the anticanonical
master transformation of Z with the generator functional F2,
i.e., in the form of successive anticanonical master transfor-
mations. From (D.19) we deduce the relations

exp{−[F2(z) + F1(Z),�]} exp

{
i

h̄
S(Z)

}

= exp{−[F2(Z),�]} exp

{
i

h̄
S′

1(Z)

}

= exp{−[F2(Z),�]} exp{−[F1(Z),�]} exp

{
i

h̄
S(Z)

}

(D.20)

being valid for arbitrary functional S(Z). The latter proves
the relation (D.10).

Finally, we give a proof of the relation

1

2
ln sDet [Z̄ A←−

∂ B]
= − f (ad(F))�F, Z̄ A = exp{ad(F)}Z A, (D.21)

used in the representation of the master-transformed actions
(3.10) and (4.20). To do this, we introduce a one-parameter
family of anticanonical transformations

Z̄ A(a) = exp{aad(F)}Z A, (D.22)

and the corresponding set of logarithms of superdeterminants

D(a) = ln sDet [Z̄ A(a)
←−
∂ B]. (D.23)

Consider anticanonical transformations with an infinitesimal
variation of the parameter a,

Z̄ A
2 = Z̄ A(a + δa) = exp{(a + δa)ad(F)}Z A, (D.24)

and functionals

D(a + δa)= ln sDet [Z̄ A
2
←−
∂ B] = ln sDet [Z̄ A(a + δa)

←−
∂ B].

(D.25)

Taking into account the Eqs. (D.10), (D.11), (D.12), and
(D.13), we have the following identification:

F1 = aF, F2 = δaF, F2 = δaF (D.26)

and the representations up to the second order in δa

exp{ad(F)2} = 1 + δaad(F) + O((δa)2),

Z̄ A
2 = Z A + δaF

←−
∂ C E

CA + O((δa)2), (D.27)

ln sDet [Z̄ A
2

←−
∂ B] = δa sTr [F←−

∂ C E
CA←−

∂ B] + O((δa)2)

= −2δa�F + O((δa)2). (D.28)

From (D.27), (D.28), and (D.17) follows the differential
equation for D(a),

∂aD(a) = ad(F)D(a) − 2�F, D(0) = 0. (D.29)

Let us seek a solution to this equation in the form

D(a) = exp{aad(F)}D1(a), D1(0) = 0. (D.30)

Then we obtain

∂aD1(a) = −2 exp{−aad(F)}�F (D.31)

and

D1(a) = −2a exp{−aad(F)} f (aad(F))�F + C,

C = D1(0) = 0. (D.32)

Finally, we find

D(a) = −2a f (aad(F))�F, ln sDet [Z̄ A←−
∂ B]

= D(1) = −2 f (ad(F))�F. (D.33)

Appendix E: Factorization of the Jacobian of anticanon-
ical transformation

For the sake of completeness of our study of anticanonical
transformations, let us present here a simple proof of the fac-
torization property of the grand Jacobian of an anticanoni-
cal transformation within the field–antifield formalism [1,2].
The result is known at least since Ref. [18] of Batalin and
Vilkovisky, although the proof was omitted therein.
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We will proceed with the use of antisymplectic Darboux
coordinates Z A in the form of an explicit splitting into fields
φi and antifields φ∗

i ,

Z A = {φi , φ∗
i }, ε(Z A) = εA, ε(φ∗

i ) = ε(φi ) + 1, (E.1)

so that

(Z A, Z B) = E AB, ε(E AB) = εA + εB + 1, (E.2)

where E AB is a constant invertible antisymplectic metric with
the following block structure:

E AB =
(

0 I
−I 0

)
(E.3)

and the antisymmetry property

E AB = −(−1)(εA+1)(εB+1)EBA. (E.4)

Let F = F(Z) be a fermion generator of an anticanonical
transformation,

Z A → Z̄ A(t) = exp{tad(F)}Z A,

Z̄ A(t = 0) = Z A, Z̄ A = {�i ,�∗
i }. (E.5)

Z̄ A satisfies the Lie equation

d

dt
Z̄ A = (F̄, Z̄ A)Z̄ , (E.6)

where F̄ = F(Z̄) = F(Z).
Let us consider the (grand) Jacobian, J (t), of the anti-

canonical transformation (E.5),

J (t) = sDet [Z̄ A(t)
←−
∂ B], (E.7)

together with its logarithm

ln J (t) = sTr ln[Z̄ A(t)
←−
∂ B]. (E.8)

By using (E.6) and the relations

(Z̄ A←−
∂ C )(ZC←−

∂ B̄) = δAB , (Z A←−
∂ C̄ )(Z̄C←−

∂ B) = δAB ,

(E.9)

which are valid for any invertible transformation Z A →
Z̄ A, together with the formula for a δ-variation,

δ sTr ln M = sTr M−1δM, (M−1)ACM
C
B = δAB , (E.10)

we derive the equation for ln J :

d

dt
ln J = sTr

[
(Z A←−

∂ C̄ )
d

dt
(Z̄C←−

∂ B)

]

= (−1)εA (Z A←−
∂ C̄ )( ˙̄ZC←−

∂ A)

= (−1)εA (Z A←−
∂ C̄ )((F̄, Z̄C )

←−
∂ A)

= −(−1)εC (
−→
∂ C̄ Z

A)
−→
∂ A(Z̄C , F̄)

= −(−1)εC
−→
∂ C̄ (Z̄C , F̄) = −2�̄F̄, (E.11)

where the operators �, �̄ are defined4 by

� = �Z = 1

2
(−1)εA∂A(Z A, . . .)

= 1

2
(−1)εA∂AE

AB∂B,

�̄ = �Z̄ = exp{ad(t F)}� exp{ad(−t F)}. (E.12)

Here ∂A and ∂ Ā denote the partial Z A- and Z̄ A-derivative,
respectively.

Now, let Jφ be the Jacobian in the sector of fields,

Jφ(t) = sDet [�i (t, φ, φ∗)←−∂ j ], (E.13)

together with its logarithm,

ln Jφ(t) = sTr ln[�i (t, φ, φ∗)←−∂ j ], (E.14)

where ∂i denotes the partial φi -derivative. In what follows
below, the symbols ∂k̄ and ∂∗k̄ , with barred indices, will be
used to denote the partial �k- and �∗

k -derivatives, respec-
tively. To get the t-derivative of ln Jφ , one needs the inverse

to the matrix �i←−∂ j .
Let us consider an anticanonical transformation in the sec-

tor of fields,

φi → �i = �i (t, φ, φ∗). (E.15)

Let us resolve that equation for initial fields φi , with t and
φ∗
i kept fixed,

φi = φi (t,�, φ∗), (E.16)

so that

φi (t,�(t, φ, φ∗), φ∗) ≡ φi . (E.17)

It follows from (E.17) that the relation

(φi (t,�, φ∗)←−∂ k̄)(�
k(t, φ, φ∗)←−∂ j ) = δij (E.18)

holds, because the initial fields φi are inverse functions to
�i (t, φ, φ∗) at the fixed values of t and φ∗

i . From now on,
the variables �i ,�∗

i are considered as functions of t , φi , φ∗
i ,

while the fields φi are functions of t , �i , φ∗
i , so that the short

notation will be used naturally,

φi (t,�, φ∗) = φi , �i (t, φ, φ∗) = �i ,

�∗
i (t, φ, φ∗) = �∗

i . (E.19)

Now, we derive the following equation for ln Jφ :

d

dt
ln Jφ = −�̄F̄ − 1

2
(−1)εk F̄

←−
∂ ∗k̄←−∂ ∗m̄

×[(�∗
m
←−
∂ i )(φ

i←−∂ k̄) − (k ↔ m)(−1)εkεm ]. (E.20)

4 Notice that in (E.11) we mean just the second equality (E.12) so as to
define the transformed operator �̄. That definition is maintained by the
two following motivations: it respects both the nilpotency property and
the multiplicative composition �G = �̄Ḡ, Ḡ = G(Z̄ ), with arbitrary
function G = G(Z).
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In turn, let us consider the quantity

Tjk = (�∗
j
←−
∂ i )(φ

i←−∂ k̄) − (�∗
k
←−
∂ i )(φ

i←−∂ j̄ )(−1)ε j εk .

(E.21)

Then, by multiplying (E.21) subsequently from the right by
the two Jacobi matrices accompanied with a special sign fac-
tor, we have

Tjk(�
k←−∂ l)(�

j←−∂ m)(−1)ε j εl

= (
−→
∂ l�

∗
j )(�

j←−∂ m) − (m ↔ l)(−1)εmεl . (E.22)

The latter can be rewritten in the form

Tjk(�
k←−∂ l)(�

j←−∂ m)(−1)ε j εl

= (
−→
∂ l�

∗
j )(�

j←−∂ m) − (
−→
∂ l�

j )(�∗
j
←−
∂ m). (E.23)

Now, let us introduce the quantity

L AB = (
−→
∂ A Z̄

C )ECD(Z̄ D←−
∂ B), (E.24)

where EAB is the inverse to E AB , with the following block
structure:

EAB =
(

0 −I
I 0

)
, ε(EAB) = εA + εB + 1 (E.25)

and the antisymmetry property

EAB = −(−1)εAεB EBA. (E.26)

Notice that the field–field components of (E.24),

Li j = (
−→
∂ i�

∗
k)(�

k←−∂ j ) − (
−→
∂ j�

k)(�∗
k
←−
∂ i ), (E.27)

do coincide with (E.23). By taking the relation

(Z A, Z B)Z̄ = (Z A←−
∂ C̄ )ECD(

−→
∂ D̄ Z

B) = E AB (E.28)

into account, we have

E AC LCB = (Z A, ZC )Z̄ LCB

= (Z A←−
∂ C̄ )ECD(

−→
∂ D̄ Z

E )(
−→
∂ E Z̄

F )EFG(Z̄G←−
∂ B)

= (Z A←−
∂ C̄ )ECDδFDEFG(Z̄G←−

∂ B)

= (Z A←−
∂ C̄ )(Z̄C←−

∂ B) = δAB . (E.29)

The latter implies5

L AB = EAB, Li j = 0. (E.30)

Thus, we obtain the equation for the Jacobian Jφ in the sector
of fields,

d

dt
ln Jφ = −�̄F̄ . (E.31)

In the same way, we derive the equation

d

dt
ln Jφ∗ = −�̄F̄ (E.32)

5 The same result follows via t-differentiation of (E.21) and the use of
the Lie equation (E.6).

for the Jacobian Jφ∗ in the sector of antifields,

Jφ∗(t) = sDet [�∗
i (t, φ, φ∗)←−∂ ∗ j ], ln Jφ∗(t)

= sTr ln[�∗
i (t, φ, φ∗)←−∂ ∗ j ]. (E.33)

It follows from (E.11), the initial data (E.5), (E.31), and
(E.32) that

Jφ = Jφ∗ = J 1/2, (E.34)

and, finally, we have the factorization property,

J = Jφ Jφ∗ . (E.35)

It seems to be rather useful to mention here the main prop-
erties of the grand Jacobian J of anticanonical transforma-
tions, within the field–antifield formalism. Let Z A → Z̄ A

be an anticanonical transformation with a fermion generator
F .

Consider Eq. (E.11) as rewritten in the form

d

dt
ln J 1/2 = −�̄F̄, (E.36)

where the �̄-operator is defined in (E.12). A formal solution
to (E.36) has the form

ln J 1/2 = −[(exp{ad(t F)} − 1)/ad(F)]�F. (E.37)

It follows immediately from (E.12) that

d

dt
�̄ = exp{ad(t F)}[ad(F),�] exp{ad(−t F)} =

= ad(− exp{ad(t F)}�F) = d

dt
ad(ln J 1/2), (E.38)

which implies6

�̄ = � + ad(ln J 1/2). (E.39)

That is just the transformation property of the � operator
under anticanonical transformation. Further, it follows from
(E.36) that

�̄
d

dt
(ln J 1/2) = 0. (E.40)

By substituting (E.39), we get

d

dt

[
1

2
(ln J 1/2, ln J 1/2) + � ln J 1/2

]
= 0, (E.41)

which implies

� exp{ln J 1/2} = �(J 1/2) = 0. (E.42)

That is just the antisymplectic counterpart to the Hamiltonian
Liouville theorem [13,18].

6 The same result follows from (E.12) and the use of the anticanonical
invariance of E AB .
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