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Abstract We propose a 12-dimensional supergravity
action which describes low-energy dynamics of F-theory.
Dimensional reduction leads the theory to become 11-
dimensional, IIA, and IIB supergravities. Self-duality of the
four-form field in IIB supergravity is understood. It is neces-
sary to abandon 12-dimensional Poincaré symmetry by mak-
ing one dimension compact, which is to be decompactified
in some region of parameter space, such that the physical
degrees of freedom are the same as those of 11-dimensional
supergravity. This makes T -duality explicit as a relation
between different compactification schemes.

1 Introduction

The ideas of Kaluza and Klein (KK) [1,2], generalized to
higher dimensions, are beautiful ones that translate the known
field degrees of freedom and their interactions into geometry
of extra dimensions. Most of the supergravity theories, which
one hopes to have an intimate connection to our world, can be
obtained by dimensional reduction of an 11-dimensional one
[3]. However, it does not directly give type IIB supergravity
in ten dimensions, although their relation is well understood
in the context of string theory.

Eleven-dimensional supergravity is a low-energy descrip-
tion of M-theory [4,5]. It has also been suggested that type
IIB superstring theory is obtained by a reduction of F-theory
on a torus, with its complex structure identified by the axion–
dilaton, and the latter is shown to be T -dual to M-theory [6].
Thus, the effective field theory of F-theory should be 12-
dimensional; however, it is not easy to write down the action.
One crucial difficulty might be that the 12-dimensional mini-
mal fermion with Lorentzian signature (11, 1), which must be
the case for F-theory, should have superpartner components
with spin higher than two in the four-dimensional language,
whose interacting theory would be inconsistent [7]. Another
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obstacle is that, if F-theory is dual to M-theory, there should
be no surplus field degrees of freedom, although the former
is a higher-dimensional theory.

An important hint comes from a careful look at the deriva-
tion of F-theory [6,8,9]. Although it is T -dual to M-theory,
F-theory has one more dimension than the latter. Now, this
extra dimension is a dual dimension to one of the dimension
shared by the two theories. In other words, F-theory has two
redundant dimensions whose radii are inverse to each other.
Although we cannot maintain 12-dimensional Poincaré sym-
metry fully, each of the 10- and 11-dimensional theories
can be symmetric on its own. There is no contradiction if
we cannot see both at once. Therefore, it is natural to keep
both dimensions. In this picture, M-theory looks like a com-
pactification F-theory on a circle, as schematically shown in
Fig. 1.

We propose for the bosonic part a desired 12-dimensional
effective action, whose dimensional reductions lead to those
of all known supergravities in 11 and 10 dimensions, found
in the standard textbooks [10]. Since we follow and make
use of the duality relation between M- and F-theory from
the 11-dimensional supergravity, this theory shall provide
the effective field theory for F-theory.

Supergravity is powerful enough in the sense that many
of the new results here, like the existence of a three-brane
and generalized T -duality, are obtained without referring to
string theory. Of course, the effective field description of F-
theory is timely in realistic model building, because we have
so far borrowed descriptions, for instance of the gauge fields,
from M-theory [11–13].

2 The bosonic action of 12-dimensional supergravity

We start with the fundamental bosonic degrees of freedom of
11-dimensional supergravity: the graviton Gmn and the rank
three antisymmetric tensor fieldCmnp. The latter is promoted
to a four-form field,
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Fig. 1 Relation among superstrings and supergravities (SUGRA). In
12 dimensions, we make T -duality explicit in terms of compactification,
by taking the other routes. The diagonal direction is the zero size limit

Cmnp(x
m) → Cmnpy′(xm, y′),

with total antisymmetrization, for instance Cmny′ p
≡ −Cmnpy′ . Here y′ denotes the twelfth direction. Although
this field is 12-dimensional, we do not introduce any more
degrees of freedom if one of the indices is forced to be on
y′ and the others are 11-dimensional. The graviton is also
regarded as a part of the 12-dimensional one,

ds2 = Gmndxmdxn + r2dy′2. (1)

We suggest a formally 12-dimensional action

S = 1

2κ2
12

∫ (
R ∗1 − 1

2
G5 ∧ ∗G5 + 1

6
C4 ∧ G4 ∧ G4

)
,

(2)

with the 12-dimensional Hodge star operator. The Ricci
scalar R is made of the 12-dimensional metric (1). We will
define κ12 shortly. The presence of the last term was noticed
in Refs. [14,15]. We have defined

C4 = 1

3!Cmnpy′dxm ∧ dxn ∧ dx p ∧ dy′ (3)

≡ C3 ∧ rdy′,
G5 ≡ dC3 ∧ rdy′ ≡ G4 ∧ rdy′. (4)

It is important to note that the indices correspond only to 11-
dimensional coordinates. Therefore the action (2) has at best
11-dimensional Poincaré invariance. Nevertheless this form
is useful, since we may also have ten-dimensional invariance
in which we include y′ and exclude some of the other direc-
tions. There is another loop correction term, having the form
C4 ∧ I8, where I8 is again dependent on the 11-dimensional
metric only, given in Ref. [16].

The equation of motion and the Bianchi identity of C4
follow:

dG4 = 0, d∗G5 = −1

2
G4 ∧ G4. (5)

Exchanging the role of the two, we also have a dual field
strength

∗G5 ≡ dC6 − 1

2
C3 ∧ G4, (6)

which defines a six-form C6. In components, the dual field
strength to G5 is defined as

(∗G5)lmnpqrs = 1

4!
√−Gεlmnpqrs

tuvwy′Gtuvwy′ , (7)

where the indices are raised by the metric (1).
Note that we have converted the 11-dimensional field C3

to the 12-dimensional field

Cmnpy′(xm, y′) = r(xm, y′)Cmnp(x
m), (8)

using the metric (1). They should not be treated as inde-
pendent degrees of freedom, otherwise we cannot match the
equation of motion with the 11-dimensional one.

The four-form structure (8) suggests that there is a sourc-
ing three-brane wrapped on the y′-direction, becoming the
M2-brane of M-theory [17]. When a dimension is com-
pact, this wrapping behavior should not be strange, since
in the decompactification limit it becomes a D3-brane along
the y′-direction, which we are familiar with. Also we may
understand that its magnetic five-brane transverse to the y′-
direction becomes the M5-brane of M-theory.

We consider in this letter only the bosonic degrees of free-
dom. The fermonic part will be dealt with elsewhere [17].

3 Reduction to 11-dimensional supergravity

The action (2) is meaningful only if we take the y′-direction
as a circle with a radius 2πr , measured in a length unit �.
Dimensional reduction gives us the KK tower of the fields
C4,Gmn, r with masses

M2
k = k2�−2〈r〉−2. (9)

All of them shall play an important role later in decompact-
ification, but we keep the zero modes only for the moment.
We can show that the kinetic terms of the graviton and the
three-form field become the standard form of 11-dimensional
supergravity. The last term in (2) is∫

C4 ∧ G4 ∧ G4 = −
∫
S1
rdy′ ∧

∫
M10,1

C3 ∧ G4 ∧ G4.

The 11-dimensional coupling κ11 may reversely define the
coupling κ12

2π�〈r〉
2κ2

12

= 1

2κ2
11

, (10)

with the scale r is to be fixed shortly.
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Table 1 Identification of ten-dimensional fields. Two subtables respec-
tively show IIA and IIB fields. Indices are nine-dimensional and y′
denotes the twelfth direction. Componentwise Cmnpy′ = rCmnp as
in (3). After decompactifying the y′ or y directions ten-dimensional
Poincaré covariance is recovered

10D Field Type (9+1)D Components 12D Components

A1 RR {Aμ, Ay} {aμ, τ1}
A3 RR {Aμνρ, Aμνy} {r−1Cμνρy′ , r−1Cμνyy′ }
B2 NSNS {Bνμ, Bμy} {r−1Cμνxy′ , r−1Cμxyy′ }
b1 KK bμ bμ

A4 RR Aμνρy′ r−1Cμνρy′

A2 RR {Aμν, Aμy′ = −Ay′μ} {r−1Cμνyy′ , aμ}
A0 RR A τ1

B2 NSNS {Bνμ, Bμy′ = −By′μ} {r−1Cμνxy′ , bμ}
K1 KK Kμ r−1Cμxyy′

4 Reduction to IIB supergravity

Next, we compactify two more dimensions on a torus. It has
a complex structure, τ = τ1+iτ2, and we take the coordinate
x, y such that we identify x + τ y ∼ x + τ y + 2π� ∼ x +
τ y + 2πτ�. Still we keep the y-direction orthogonal to the
other directions, as in (1). The most general metric is

ds2 = L2 (
dx + τ1dy + (aμ − τ1bμ)dxμ

)2

+L2τ 2
2

(
dy − bμdxμ

)2 + r2dy′2 + g′
μνdxμdxν .

(11)

From now on, fields and their Greek indices are nine-
dimensional. Here, {aμ, τ1}, bμ are ten- and nine-dimensio-
nal Lorentz vectors promoting the S1 isometries of x- and
y-directions, respectively, to U (1) gauge symmetries.

We identify the fields of IIB supergravity as in Table 1.
They have either all indices nine-dimensional or one compo-
nent fixed to be y′. Consider, for example, the reduction from
Gαβγ yy′ to Hαβγ = 3∂[αBβγ ], given in (31) in the appendix.1

Neglecting the normalization, there are two possible expres-
sions,

Hαβγ + 3b[αHβγ ] = Hαβγ + 6K[α∂βbγ ] (12)

up to a total derivative which is a gauge transformation of B2.
The left-hand side is the result of dimensional reduction of the
ten-dimensional IIA field {H (10)

μνρ , H (10)
μν ≡ H (10)

μνy } coupled
to the KK field bμ, whereas the right-hand side looks as

dimensional reduction of the IIB field {H (10)
μνρ , (db)(10)

μν ≡
H (10)

μνy′ } coupled to the KK field Kμ = r−1Cμxyy′ under the
metric [19]

ds2
10 = r2(dy′ + Kμdxμ)2 + g′

μνdxμdxν . (13)

1 We are using the standard antisymmetric tensor notation [18].

In the latter picture, the vectors aμ and bμ become com-
ponents Aμy′ and Bμy′ , respectively, of rank two Neveu–
Schwarz Neveu–Schwarz (NSNS) and Ramond–Ramond
(RR) tensors. We already have the KK tower of the fields
(9) completing the fields Bμν, bμ, Kμ, g′

μν, r to be ten-
dimensional. This is a crucial necessary condition to recover
ten-dimensional Poincaré symmetry and fully covariant
interactions. In low-energy theory, this is a possible way to
see the presence of extra dimensions, if we admit that the
gravitational interactions are not observable.

The RR four-form is obtained as

Aμνρy′ ≡ r−1Cμνρy′ , Fμνρσ y′ ≡ r−1Gμνρσ y′ (14)

with one of the indices fixed to be y′. We can perform dimen-
sional reduction, as in (30) in the appendix (with a different
nine-dimensional metric) and perform decompactification in
the y′ direction with the help of the one-form K1 as above.
The corresponding part of the second term in (2) gives the
kinetic term for

F (10)
5 − 1

2
A(10)
2 ∧ H (10)

3 + 1

2
B(10)
2 ∧ F (10)

3 . (15)

Remember that one of the indices is fixed to be y′ for every
term in (15). To avoid confusion later, we name this F̃w(10)

5 .

Due to the fixing of the component in (15) we do not
have complete ten-dimensional four-form. The other part
may come from another 12-dimensional field (6). The only
possible nine-dimensionally covariant four-form can be

Aμνρσ ≡ Cμνρσ xy, Fμνρστ ≡ (d A)μνρστ . (16)

Due to the 12-dimensional structure in (7), the fields in (16)
cannot have any index on y′. The left-hand side of the duality
relation (7) becomes the dC6 − 1

2C3 ∧G4 as in (6), with two
components fixed to be x and y. By expansion and decom-
pactification, we obtain precisely the same expression as (15),
up to normalization, with all the indices nine-dimensional.
Hence we may call the result as L−2τ−1

2 F̃wo(10)
5 .

Expressing the duality relation (7) in a local Lorentz frame
by ten-dimensional fields, we have

F̃wo(10)
5 L−2τ−1

2 = r∗10 F̃
w(10)

5 , (17)

with the ten-dimensional Hodge operation ∗10. The different
components of F5 have the different origins, therefore the
Lorentz symmetry is not trivial. For the covariance we need
the same coefficient

r = L−2τ−1
2 . (18)

This means that the three radii in the x, y, y′ directions are
inverse among themselves, so there is no point in the mod-
uli space where we have all the 12 dimensions noncompact.
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Moreover, this graviton component r(xm, y′), which was
the only surplus component compared to the gravity mul-
tiplet in the 11-dimensional supergravity, now turns out to be
redundant and expressed in terms of the other existing fields
L(xm, y′) and τ2(xm, y′) in this multiplet. Therefore we have
the identical degrees of freedom to those of 11-dimensional
supergravity. This explains how the difficulty of the maximal
dimensional problem in the beginning is circumvented.

Therefore we have arrived at the self-duality condition
for the fully covariant ten-dimensional four-form field via its
modified field strength F̃ (10)

5 , re-expressed using Eq. (17),

F̃ (10)
5 ≡ F̃w(10)

5 + F̃wo(10)
5 = ∗10 F̃

(10)

5 . (19)

We emphasize that this self-duality condition (19) is thedefin-
ing relation of half the components of the four-form field in
(16).

The ten-dimensional Einstein–Hilbert term is obtained as
∫
T 2

R∗1 = (2π�)2
√−G ′r−1R(10)d

9x ∧ dy′ + · · · , (20)

where G ′ = g′r2 is the determinant of the ten-dimensional
metric (13), with which the Ricci scalar R(10) is calculated.
Note that τ2 = g−1

IIB, if we require that L should be absent
from the IIB supergravity action. Careful investigation shows
that rescaling g′

μν ≡ L−1gμν and gy′y′ ≡ Lg′
y′y′ = L3τ2 can

pull out the overall factor r , which should be absorbed by the
coupling

1

2κ2
IIB

= (2π�)2〈r〉
2κ2

12

= 2π�

2κ2
11

. (21)

The rescaling should also rescale the coordinate periodicity
as

� → L−1/2� ≡ �s. (22)

Finally, dimensional reduction of the last term in (2) gives

1

2κ2
IIB

∫
F (10)
5 ∧ B2∧F3 = 1

2κ2
IIB

∫
F̃w(10)
5 ∧ B(10)

2 ∧F (10)
3 ,

(23)

again with one index fixed to be y′ for F (10)
5 and F̃ (10)

5 . For
the equality, we used the relation F3∧F3 = 0 and performed
integration by parts. Again F̃w(10)

5 can be exchanged by the
covariant one (19). The remaining expansions give the kinetic
terms for the IIB supergravity action in the standard form
[10,17].

5 Reduction to IIA supergravity

We may decompactify the y-direction in (11) using the KK
field bμ. Decompactification takes place in the same way.
For example, Eq. (32) in the appendix, after the decompact-
ification, gives the reduction of Gmnpq to ten-dimensional
fields,

L2(F4 − A1 ∧ H3), (24)

with one of the indices fixed on y, whereas Eq. (30) pro-
vides the remaining components. The A1 is again the KK
gauge field decompactifying the x-direction. This gives IIA
supergravity. We identify ten-dimensional couplings 〈L〉3 =
g2

IIA ≡ 〈e2�〉. It is straightforward to have the type IIA super-
gravity action, because we know it is also obtained by further
compactification of the 11-dimensional supergravity action
along the x-circle.

In the unit (22) we can naturally convert between IIA and
IIB theories in ten dimensions. The relation between the two
radii from (11) now becomes the familiar T -duality relation,

Ry = L3/2τ2�s, Ry′ = L−3/2τ−1
2 �s = �2

s /Ry . (25)

Without referring to string theory, we can perform T -duality
via two different compactifications, as in Fig. 1. In partic-
ular, Eq. (18) also allows us to interpret the KK tower of
fields above Eq. (9) as ones arisen by wrapped M2-branes
on the torus, whose mass is proportional to the dimensionless
volume of the torus L2τ2 [19–21]. This will also be useful
in describing physics around the self-dual radius where the
two theories are not so much distinct, or in a strong coupling
regime of one theory. Gauge theories coming from ‘seven-
brane’ loci, on which the ‘fibered’ torus becomes singular
[6,11,22], cannot be described by this action because they
are phenomena of M2-branes wrapped on the singularities.
Rather, this action describes the bulk physics in terms newly
defined native F-theory fields and potentials.
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Appendix

We briefly summarize the technical details of dimensional
reduction taking into account the metric. We have tensors in
components in a local Lorentz frame, after the rescaling (22):
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Cαβγ y′ = L3/2(Aαβγ y′ − 3a[αBβγ ] + 3b[αAβγ ]
− 6a[αbβKγ ]), (26)

Cαβxy′ = Bαβ + 2b[αKβ], (27)

Cαβyy′ = τ−1
2 (Aαβ − τ1Bαβ + 2a[αKβ]
−2τ1b[αKβ]), (28)

Cαxyy′ = L−3/2τ−1
2 Kα. (29)

For convenience we have fixed some of the coordinates. We
have the corresponding field strengths

Gαβγ δy′ = L2(Fαβγ δy′ − 4a[αHβγ δ]
+ 4b[αFβγ δ] + 12a[αbβHγ δ]), (30)

Gαβγ xy′ = L1/2(Hαβγ + 3b[αHβγ ]), (31)

Gαβγ yy′ = L1/2τ−1
2 (Fαβγ − τ1Hαβγ + 3a[αHβγ ]

− 3τ1b[αHβγ ]), (32)

Gαβxyy′ = L−1τ−1
2 Hαβ. (33)

Here Hαβ ≡ 2∂[αKβ] and the derivative operator acts all the
fields on the right.

The above relations are nine-dimensional and are to be
lifted to ten-dimensional ones. For instance, we may rewrite
the right-hand side of (30) in terms of differential forms,

L2
(
F5 − 1

2
(A2 ∧ H3 − B2 ∧ F3 + A3 ∧ H2 − K1 ∧ F4)

)
.

(34)

This is a nine-dimensional relation with one component
fixed to be on y′. After decompactification, we have a ten-
dimensional relation,

L1/2τ−1
2

(
F (10)
5 − 1

2
A(10)
2 ∧ H (10)

3 + 1

2
B(10)
2 ∧ F (10)

3

)
,

(35)

with the y′-component still fixed. There were two changes:
The overall normalization has changed by the metric factor

L−3/2τ−1
2 from the y′-dependence, and the couplings with

K1 completed the covariant ten-dimensional fields.
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