
Eur. Phys. J. C (2015) 75:207
DOI 10.1140/epjc/s10052-015-3412-y

Regular Article - Theoretical Physics

Hamiltonian analysis of interacting fluids

Rabin Banerjee1,a, Subir Ghosh2,b, Arpan Krishna Mitra1,c

1 S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098, India
2 Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata 700108, India

Received: 23 January 2015 / Accepted: 14 April 2015 / Published online: 12 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Ideal fluid dynamics is studied as a relativistic
field theory with particular stress on its hamiltonian structure.
The Schwinger condition, whose integrated version yields
the stress tensor conservation, is explicitly verified both in
equal-time and light-cone coordinate systems. We also con-
sider the hamiltonian formulation of fluids interacting with an
external gauge field. The complementary roles of the canon-
ical (Noether) stress tensor and the symmetric one obtained
by metric variation are discussed.

1 Introduction

Fluid dynamics as an applied science has a long history, but its
generalization as a relativistic theory and its subsequent anal-
ysis as a relativistic field theory is a relatively recent develop-
ment. The Euler formulation of the fluid system in terms of
the density ρ(x) and velocity fields vi (x) (in a non-relativistic
framework) is suitable for this purpose [1–3]. The hydrody-
namic equations are essentially the local conservation laws
supplemented by the constitutive relations that express the
stress tensor in terms of the fluid variables. These notions are
extended to the relativistic case by introducing a comoving
velocity uμ normalized as uμuμ = 1.

A lagrangian version of fluid dynamics is plagued with
obstructions due to the presence of a Casimir operator, the
vortex helicity (see Jackiw et al. [4,5] for a modern per-
spective). The problem can be cured by the introduction of
Clebsch variables [6–8] designed in such a way that the vortex
helicity becomes a surface contribution and does not obstruct
the lagrangian formulation. An extension of these ideas in a
relativistic context has also been dealt with. But all these
studies are concerned with a free (or at best self-interacting)
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fluid and an in-depth hamiltonian analysis of a relativistic
fluid with external gauge interactions remains unexplored.

Let us elaborate on our work from this perspective. We
have presented a systematic and detailed analysis of an ideal
relativistic fluid in the hamiltonian framework. Subsequently
this analysis is generalized to include interaction with an
external gauge field. Previous works in this direction are [9–
11]. Introduction of the Clebsch variables reduces the system
to a first order one: a constraint system in the Dirac formalism
[12] (see also [13]). We study both systems in Dirac’s frame-
work. The relevant constraints are identified and the systems
are found to be second class. The modified symplectic struc-
ture is the same in both cases. Our analysis reveals that the
relativistic Eulerian fluid model poses an intriguing example
of a Hamiltonian constraint system. This becomes manifest
especially when gauge interactions are taken into account.

The crux of the problem is the construction of the stress
tensor. There are two conventional formalisms for deriving
the stress tensor. The canonical Tμν is obtained via Noether
prescription and the symmetric �μν is obtained by metric
variation. For the free theory both definitions agree. However,
in the presence of interaction, Tμν and �μν do not match. The
former generates the correct equations of motion for all the
dynamical variables but does not yield the correct conserva-
tion law of the stress tensor. The latter, on the other hand,
satisfies the correct conservation law, but it fails to generate
the correct equation of motion for one of the fluid variables.
At the same time we show an interesting connection between
Tμν and �μν . A simple modification of Tμν yields the cor-
rect conservation law. Furthermore, the modified version is
shown to be identical to �μν . This provides an internal con-
sistency. We stress that these are new observations that were
not revealed in the literature that dealt with fluid models.

We have made a detailed study of the Schwinger condi-
tion both in equal-time and light-cone coordinates. Its role in
conservation laws on which the dynamics of fluids is based
is discussed. The fact that the Schwinger condition holds for
classical fluids is a new observation.
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It may be mentioned that the recent idea of a fluid–gravity
correspondence [14,15] has brought, to the forefront, the
theoretical study of fluid dynamics from a high energy and
gravitational physics perspective. The basic premise is that
relativistic or non-relativistic fluid dynamics can reproduce
the low energy behavior of systems in local thermal equi-
librium in a universal way. Indeed, this is an offshoot of
the AdS/CFT correspondence [16] that paves the way for
studying strongly coupled systems from their weakly coupled
analogs in one dimension higher. Generically one exploits the
AdS/CFT correspondence to study strongly correlated con-
densed matter systems as boundary conformal theories from
results obtained in weakly coupled classical gravity theories
in one higher dimension. However, the mutual exchange of
ideas can work both ways in the fluid–gravity correspon-
dence: fluid systems can yield results relevant in e.g. black
hole physics, Hawking radiation [17], while gravitational
physics can provide new ideas in the context of viscous flu-
ids and turbulence, to name a few. All these considerations
require a systematic study of the fluid system as a field the-
ory in the Euler scheme, which is essentially a hamiltonian
framework. Our analysis in this paper is geared toward this
direction providing some new results and fresh insights.

The paper is organized as follows: In Sect. 2 the relativis-
tic fluid model in terms of Clebsch variables is introduced in
an equal-time coordinate system. The symplectic structure is
derived in the hamiltonian formalism and the Schwinger con-
dition is verified. Section 3 deals with the fluid in light-cone
coordinate system. The dynamics and light-cone Schwinger
condition are discussed. The interacting fluid system is ana-
lyzed in Sect. 4. The paper ends with our conclusions in
Sect. 5.

2 Relativistic fluid mechanics in equal-time coordinates

We are going to describe the dynamics of a relativistic ideal
fluid in this section. Usually this dynamics is expressed by
the conservation of the stress tensor,

∂μ�μν = 0, (1)

which is further supplemented by the constitutive relation

�μν = −ημν Prel + (εrel + Prel)uμuν, (2)

which gives the stress tensor in terms of the relativistic fluid
variables, the pressure Prel , the energy density εrel , and the
comoving velocity uμ satisfying uμuμ = 1.

However, we start with a manifestly Lorentz covariant
lagrangian density by introducing a generalized scalar poten-
tial function f (

√
jμ jμ) as for instance done by [5]. Here jμ

is the current Lorentz vector jμ = (ρ, j) satisfying the con-
tinuity equation

∂μ jμ = 0, (3)

so that if necessary one may couple it to background gauge
field. The appropriate lagrangian density is given by

L = −ημν jμaν − f ; ημν = diag(1,−1,−1,−1) (4)

where aμ is defined in terms of three scalar Clebsch variables
θ, α, β [6–8],

aμ = ∂μθ + α∂μβ. (5)

We shall subsequently show that the energy-momentum ten-
sor derived from this lagrangian density will satisfy (1) and
(2), while the current entering (4) satisfies (3).

We take (4) as the lagrangian density of an ideal rela-
tivistic fluid [5]. It is worthwhile to point out here a contrast
between the Lagrangian (point particle) and Euler (field the-
oretic) frameworks of fluid mechanics. In the former one
has constraints so that not all coordinates xμ are indepen-
dent, whereas no such constraint is present in the latter. Since
effectively the (Lagrangian) velocity is replaced by aμ, aμ

is explicitly written in terms of three (and not four) degrees
of freedom θ, α, β. (For a discussion of this point see [7,8].)
Furthermore, the reason to introduce Clebsch variables has
also been discussed in the Introduction.

The expanded form of the lagrangian (4), with jμ jμ = n2,
is

L = −ρ∂0θ − j i∂iθ − ρα∂0β − j iα∂iβ − f (n). (6)

In the above we have defined ρ = j0. Our prescription is the
following: the variables associated with time derivatives like
ρ, α, β, θ are treated as dynamical whereas j i are regarded
as auxiliary variables. From the lagrangian (6), the equations
obtained by varying β, α, ρ, and jμ are, respectively,1

jμ∂μα = 0, (7)

jμ∂μβ = 0, (8)

θ̇ + αβ̇ + ρ

n
f ′(n) = 0, (9)

jμ = − n

f ′(n)
aμ = − n

f ′(n)
(∂μθ + α∂μβ). (10)

Note that a variation of θ reproduces the current conservation
law (3). We stress that the status of the last equation (10) is
distinct from the previous ones (7–9). Its time component is
just (9). Now, (7), (8), and (9) represent genuine equations of
motion since these involve the velocities.2 The space compo-
nent of (10), on the contrary, is more like a constraint than an

1 A prime of a function indicates differentiation, thus f ′(n) = d f (n)
dn .

2 For a second order system the true equations of motion involve
the accelerations, but for a first order system, like(6), these equations
involve the velocities.
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equation of motion, since it is bereft of any velocity term. Not
surprisingly this equation is obtained by varying ji , which is
regarded as an auxiliary variable. It needs to be interpreted
carefully and a specific prescription is required (this we will
provide later) for its application.

Let us now develop a hamiltonian formulation. Being first
order in the time derivatives the system is a constraint sys-
tem and has a nontrivial symplectic structure, which can be
identified with the Dirac brackets of the variables in a hamil-
tonian formalism [12]. The first step is to define the conjugate
momenta for the dynamical variables, which are

πθ = ∂L
∂θ̇

= −ρ; πα = ∂L
∂α̇

= 0;

πβ = ∂L
∂β̇

= −ρα, πρ = ∂L
∂ρ̇

= 0. (11)

They yield four primary constraints

�1 = πθ + ρ ≈ 0; �2 = πα ≈ 0;
�3 = πβ + ρα ≈ 0; �4 = πρ ≈ 0. (12)

Using the canonical Poisson brackets of the generic form3

{q(x), πq(y)} = δ(x − y), we can easily show that the con-
straint algebra does not close, indicating that they form a set
of four second class constraints [12]. In a generic system with
n second class constraints �i , i = 1, 2, . . . n, the modified
symplectic structure (or Dirac brackets) are defined in the
following way:

{A, B}∗ = {A, B} − {A,�i }{�i ,� j }−1{� j , B}, (13)

where {�i ,� j } is the invertible constraint matrix. From now
on we will only use Dirac brackets but for notational simplic-
ity we will refer to them as {, } instead of {, }∗. The nonvan-
ishing Dirac brackets are explicitly listed below

{ρ(x), θ(y)} = δ(x − y); {α(x), θ(y)} = −α

ρ
δ(x − y);

{α(x), β(y)} = δ(x − y)
ρ

. (14)

Incidentally (14) gives rise to two independent canonical
pairs (ρ, θ) and (α, ρβ). The canonical hamiltonian density
for the fluid corresponding to (6) is

H = παα̇ + πθ θ̇ + πββ̇ + πρρ̇ − L
= j i∂iθ + j iα∂iβ + f (n). (15)

Using the Dirac brackets (14) the hamiltonian equation of
motion for ρ is

∂0ρ = {ρ, H}, H =
∫

Hd3x, (16)

3 Here x denotes the space components xi .

and we find

ρ̇ = −∂i j
i , (17)

yielding the current conservation law (or, in fluid dynamics
terminology, the continuity equation), obtained earlier (3). In
the same way we can find equations of motion for α, β,

α̇ = {α, H}; β̇ = {β, H}, (18)

from which we recover

ρα̇ = − j i (∂iα) ⇒ jμ∂μα = 0 (19)

and

ρβ̇ = − j i (∂iβ) ⇒ jμ∂μβ = 0. (20)

These equations are the same as the Euler–Lagrange equa-
tions of motion (7) and (8). Finally, from θ̇ we find

θ̇ = {θ, H} = −αβ̇ − ρ

n
f ′(n). (21)

This is the same as (9) and it is equivalent to the time compo-
nent of (10). In our case, the space components of (10) just
correspond to the equation for the nondynamical variable j i .

At this point let us pause to note the status of the identity
(10). On one hand the ji variables are not involved in the
symplectic structure (14) and so should trivially commute
with all degrees of freedom, but on the other hand they are
directly related to the dynamical variables through (10) and
in fact yield non-zero brackets, e.g.

{ ji (x), ρ(y)} = − n

f ′(n)
{(∂iθ + α∂iβ)(x), ρ(y)}

= n

f ′(n)
∂iδ(x − y).

It is clear therefore that directly using ji or replacing it by
the identity (10) will yield distinct results in the calculation
of brackets. This necessitates a specific prescription, which
will soon be elaborated.

To illuminate the various issues let us now proceed to
verify the Schwinger condition, which is a prerequisite for a
relativistic field theory. Quite surprisingly, we will find that
there are subtleties involved even in the free fluid theory, and
serious complications arise in the interacting theory of a fluid
with an external gauge field, to be treated in a later section.
The problem is centered around the implementation of the
space component of the relation (10) and the construction
of the symmetric energy-momentum (or stress) tensor �μν

required to formulate the Schwinger condition.
The stress tensor is obtained from L in a straightforward

way [5]:

�μν = − 2√−g

∂S

∂gμν
= −Lημν + jμ jν√

j2
f ′

(√
j2

)
. (22)
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From (4) and (10) the above expression for the stress tensor
can be written as

�μν = −ημν[n f ′(n) − f (n)] + jμ jν
n

f ′(n), (23)

which has the expected structure (2). By comparison it is
easy to obtain the identifications

Prel = n f ′(n) − f (n), εrel + Prel = n f ′(n), jμ = nuμ.

(24)

The hamiltonian density from �μν is given by

�00 = ji ji
n

f ′(n) + f (n). (25)

To rewrite �00 in terms of the Clebsch variables, we use (10),

ji = − n

f ′(n)
(∂iθ + α∂iβ), (26)

and we can recover the canonical form of the hamiltonian
obtained earlier (15), provided we replace only one of the j i

in the quadratic term, leading to

�00 = j i (∂iθ + α∂iβ) + f (n). (27)

We stress that only this prescription will lead to the canoni-
cal expression for the hamiltonian computed earlier (which
generated the correct dynamical equations). This is further
corroborated by constructing the momentum density,

�0i = j0 ji
n

f ′(n) = −ρ(∂iθ + α∂iβ), (28)

where, once again, the same prescription of replacing ji is
exploited. It is straightforward to show that �0i acts as the
proper translation generator. Below we explicitly demon-
strate this for α:
{
α,

∫
dx̄�0i

}
=

{
α,

∫
−ρ(∂iθ + α∂iβ)

}

= −(∂iρ)
α

ρ
+ ∂i (ρα)

ρ
= ∂iα. (29)

Likewise one may proceed for the other variables.
It is important to note that, like �00, �0i also agrees with

the result obtained from the canonical stress tensor obtained
via the Noether prescription in (4). We have

Tμν = ∂L
∂(∂μθ)

∂νθ + ∂L
∂(∂μβ)

∂νβ + ∂L
∂(∂μα)

∂να

+ ∂L
∂(∂μρ)

∂νρ − ημνL
= − jμ∂νθ − α jμ∂νβ − ημνL. (30)

The T0i component is given by

T0i = −ρ∂iθ − αρ∂iβ, (31)

which reproduces (28).

Indeed, following our prescription of replacing jν in (22)
in favor of the Clebsch variables by exploiting(10) imme-
diately shows the exact equivalence between �μν(22) and
Tμν(30).

As is well known the definition of Noether charges may
differ by local counter-terms. By appropriate manipulations
it is, however, possible to abstract both Tμν and �μν from
Noether’s theorem [18]. However, it must be realized that in
general Tμν and �μν are not identical. Indeed, by their very
definitions (30) and (22), respectively, it is seen that, while
�μν is symmetric, Tμν is not. For gauge theories the differ-
ence is proportional to the Gauss constraint so that Tμν and
�μν agree on the physical subspace. The present theory is
not a gauge theory as it is bereft of any first class constraint.
Nevertheless we find that in the present case Tμν and �μν are
identical provided we interpret jμ in favor of Clebsch vari-
ables(10), as already discussed. This interpretation is impor-
tant and also plays a significant role in the derivation of the
Schwinger condition discussed in the next subsection. In the
interacting case, to be considered in Sect. 4, however, there is
a difference between Tμν and �μν in spite of this particular
interpretation of jμ. But, by improving Tμν (which is similar
to Belinfante’s prescription), it becomes identical to �μν .

2.1 Conservation laws in the hamiltonian formulation
and Schwinger condition

The analysis of fluids done here strongly rests on the con-
servation laws (1) and (3) for the stress tensor and current,
respectively. It would be worthwhile to obtain these relations
in a hamiltonian approach. That would also clarify the role
and utility of the Schwinger condition.

Let us begin by considering the algebra of �00 with j0,

{ j0(x),�00(y)} = { j0(x), j i (∂iθ + α∂iβ)(y) + f (n)(y)}.
(32)

The only nontrivial bracket of j0 (or ρ) is with the θ variable.
Using (14) we obtain

{ j0(x),�00(y)} = j i (y)∂ y
i δ(x − y), (33)

which reproduces the expected algebra. Its integrated ver-
sion immediately yields (3). To see this, consider the above
algebra by integrating over y,
{
j0(x),

∫
d3y�00(y)

}
=

∫
d3y j i (y)∂ y

i δ(x − y). (34)

Recalling that
∫
d3y�00(y) is the hamiltonian we obtain, by

dropping a surface term,

∂0 j0 = −∂i j
i , (35)

thereby reproducing (3).
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We now consider the algebra of �00 with itself. This alge-
bra is the famous Schwinger condition whose integrated ver-
sion would yield (1), similar to the above derivation of (3).
We have

{�00(x),�00(y)} = { j i (∂iθ + α∂iβ)(x) + f (n)(x),

× j k(∂kθ + α∂kβ)(y) + f (n)(y)}. (36)

Exploiting the basic brackets (14) we find

{�00(x),�00(y)} =
[
ji (x) f ′(x)ρ(x)

n(x)

+ ji (y) f ′(y)ρ(y)

n(y)

]
∂x
i δ(x − y). (37)

Recalling the identification of ji in terms of the Clebsch vari-
ables (26), we obtain

{�00(x),�00(y)} = − [(ρ(∂iθ + α∂iβ)(x)

+ρ(∂iθ + α∂iβ)(y)] ∂x
i δ(x − y). (38)

The expression on the right side is now expressed in terms
of �0i by using (28),

{�00(x),�00(y)} = (�0i (x) + �0i (y))∂
(x)
i δ(x − y), (39)

which is the Schwinger condition [19].
Let us now consider its integrated version,

{
�00(x),

∫
d3y�00(y)

}

=
∫

d3y(�0i (x) + �0i (y))∂
(x)
i δ(x − y), (40)

which simplifies, after dropping surface terms, to
∂0�00 = ∂i�0i , (41)

which is just the time component of (1)

∂μ�μ0 = 0. (42)

Likewise the space component of (1) may be obtained
from the other Schwinger conditions that involve the algebra
between �00 − �0i and �0i − �0 j . It is useful to mention
that, at an intermediate stage, we have to use the relation

uμ(∂νuμ − ∂μuν) f
′ + (gμν − uμuν)∂

μn f ′′ = 0, (43)

which may also be verified explicitly. This is the relativistic
generalization of the Euler equation as noted by [5]. Although
in non-relativistic fluid mechanics the Euler equation is fre-
quently used, quite surprisingly the relativistic Euler equation
is not very familiar.

It is perhaps pertinent to mention that the Schwinger con-
dition was originally proposed in the context of relativistic
quantum field theory. This was an alternative route to estab-
lish the conservation of the stress tensor as well as the valid-
ity of the Poincaré algebra. Nevertheless, it has also found

applications in discussing analogous features in the context
of classical field theory [20,21]. The point is that, while the
validity of the Schwinger condition is not mandatory in the
classical context, any deviation must be such that the inte-
grated version leads to the conservation law (1). In the present
case we find that the Schwinger condition holds exactly. This
is a new finding in the context of classical fluids.

It is useful to recall that the Schwinger condition was
derived for the symmetric stress tensor �μν defined in (22).
Since the proof relies on this symmetry it does not, in general,
hold for Tμν defined in (30). The nice point of our analysis is
that, subject to the interpretation of jμ discussed previously,
it is possible to recast Tμν in a symmetric form that is identi-
cal to �μν . This appears to be a unique characteristic of the
theory of classical fluids developed here.

There are important physical implications of the Schw-
inger condition for classical fluids. The first point to note
is that the conservation law (1) is the fundamental equa-
tion on which the dynamics of fluids is based. Establishing
the Schwinger condition automatically implies (1). Next, the
role of the Clebsch variables will be illuminated. As dis-
cussed previously, one of the ji in �00(25) has to be elim-
inated in favor of these variables to get (27), which repro-
duces the equations of motion for the basic variables. It is
now found that exploiting precisely this structure of �00, the
Schwinger condition holds. This serves as an important con-
sistency check on our formalism. As a side remark we find
that the same prescription also leads to current conservation,
see (3), starting from the algebra (33).

3 Relativistic fluid mechanics in light-cone (null plane)
coordinates

In this section we study fluid mechanics in light-cone coor-
dinates. Apart from providing a different formulation from
the equal-time one, there is another motivation which will
become clearer in the next section when we discuss the non-
relativistic reduction of the fluid model. We define the light-
cone coordinates as in [13], {x+, x−, x̄} where x̄ ≡ x1, x2

and x± = 1√
2
(x0 ± x3). The nonvanishing metric compo-

nents are g+− = g−+ = 1, gii = −1, i, j = 1, 2. The fluid
lagrangian in this coordinate system is

L = − jμaμ − f (
√
jμ jμ) = −( j+a+ + j−a− + j i ai )

− f = −( j−a+ + j+a− − ji ai ) − f

= − j+(∂−θ + α∂−β) − j−(∂+θ + α∂+β) + ji ai − f,

(44)

where, in the last step, we have exploited the definition of aμ

(5). Note that x+ plays the role of time and the dynamical
variables are identified following our previous prescription,
that is, variables involved in x+ derivatives only are consid-
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ered as dynamical. In the present setup the degrees of freedom
are j−, θ, α, β. The momentum is defined as

πφ = (∂L)/(∂(∂+φ)) (45)

for a generic φ and ∂+ ≡ ∂t . The first order model (44)
produces the constraints:

χ1 = πθ + ρ ≈ 0, χ2 = πβ + ρα ≈ 0,

χ3 = πα ≈ 0, χ4 = π− ≈ 0, (46)

where π− is the momentum conjugate to j−. Note that j−
has to be identified with ρ. Constraint analysis once again
provides the Dirac brackets:

{ρ(x), θ(y)} = δ(x − y), {α(x), θ(y)}
= −(α/ρ)δ(x − y), {α(x), β(y)} = (1/ρ)δ(x − y), (47)

where x = x−, x̄ with x̄ = x1, x2 and δ(x − y) = δ(x− −
y−)δ(x̄ − ȳ). It is worthwhile to point out that the above
bracket structure in light cone coordinates is the same as
the one derived earlier in (14) in an equal-time coordinate
system. This is simply because the lagrangian (6) was also
first order.4 The hamiltonian density is given by

H = παα̇ + πθ θ̇ + πββ̇ + π− j̇− − L,

from which, using (44) and (46), the hamiltonian of the fluid
appears:

H =
∫
dx−dx̄ H(x)=

∫
dx−dx̄ [ j+(∂−θ+ α∂−β)− ji ai + f ].

(48)

Before proceeding we need to check the overall consistency
of the light-cone framework, mainly because of our specific
interpretation of the space component of (10) and its subse-
quent applications.

Let us start by comparing the lagrangian and hamiltonian
equations of motion. First we look at the continuity equation.
From the lagrangian (44) by varying θ we obtain

∂+ j− + ∂− j+ − ∂i ji = ∂μ jμ = 0, (49)

which is the continuity equation in light-cone coordinates.
On the other hand, in the hamiltonian framework, we have

∂+ j−(x) = { j−(x), H}
=

{
j−(x),

∫
dy−d ȳ ( j+(∂−θ + α∂−β) − ji ai + f )

}

= −∂− j+(x) + ∂i ji (x), (50)

4 This can be contrasted with a generic second order system, e.g. the
Klein–Gordon lagrangian, whose light-cone reduction yields a first
order system with a drastically altered constraint structure.

which reproduces (49). It is interesting to observe that the
spatial part is now broken up into two sectors, x− and x̄ ,
which are qualitatively somewhat distinct.

Let us rederive the light-cone version of the rest of the
lagrangian variational equations (7)–(9). The hamiltonian
equation,

∂+α = {α(x), H} = − (∂−α) j+
j−

+ (∂iα) ji
j−

, (51)

can be rearranged to yield (7), while

∂+β = {β(x), H} = − (∂−β) j+
j−

+ (∂iβ) ji
j−

, (52)

reproduces (8). In a similar way ∂+θ , obtained as

∂+θ = {θ(x), H} = α j+(∂−β)

j−
− α ji (∂iβ)

j−
− f ′ j+

n
, (53)

is the light-cone version of (9).

3.1 Conservation laws in hamiltonian formulation and
Schwinger condition

In order to discuss the conservation laws in the light-cone
coordinates we have to first identify the appropriate hamil-
tonian. Consider the �+− component of (23),

�+− = −(n f ′ − f )g+− + f ′

n
j+ j−

= f − f ′

n
( j+ j− − ji ji )

= f + j+a− − ji ai . (54)

We identify this with the canonical hamiltonian density (H)

defined in (48). This may easily be seen by replacing a−
using (5).

We are now ready to obtain the various conservation laws.
Let us first derive the result (49). This will also act as a
forerunner for the derivation of the Schwinger condition in
light-cone coordinates. Consider the algebra,

{ j−(x),�+−(y)} = { j−(x), ( j+a− − ji ai + f )(y)}. (55)

Replacing a− and ai from (5) and using the algebra (47)
yields

{ j−(x),�+−(y)} = j+(y)∂ y
−δ(x − y) − ji (y)∂

y
i δ(x − y).

(56)

Taking its integrated version,
{
j−(x),

∫
d3y �+−(y)

}

=
∫

d3y ( j+(y)∂ y
−δ(x − y) − ji (y)∂

y
i δ(x − y)), (57)
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and dropping the surface terms yield

∂+ j−(x) = −∂− j+(x) + ∂i ji (x), (58)

which reproduces (49).
We next discuss the Schwinger condition. The relevant

algebra is

{�+−(x),�+−(y)}
= {[ j+(∂−θ + α∂−β) − ji ai + f ](x),

×[ j+(∂−θ + α∂−β) − ji ai + f ](y)}. (59)

After some algebra we end up with

{�+−(x),�+−(y)} = − j+(x)∂x−
(

f ′ j+δ(x − y)
n

)

+ j+(y)∂ y
−

(
f ′ j+δ(x − y)

n

)

+ ji (x)∂
x
i

(
f ′ j+δ(x − y)

n

)

− ji (y)∂
y
i

(
f ′ j+δ(x − y)

n

)
. (60)

On further simplification, we obtain

{�+−(x),�+−(y)} =
[
f ′( j+)2

n
(x) + f ′( j+)2

n
(y)

]

×∂
y
−δ(x − y) +

[
f ′ j+ ji
n

(x) + f ′ j+ ji
n

(y)

]
∂x
i δ(x − y).

(61)

From (10) and (23) we identify the other components of the
stress tensor,

f ′( j+)2

n
= �++,

f ′ j+ ji
n

= �+i ,

and thereby we recover the cherished form of the Schwinger
condition in light-cone coordinates,

{�+−(x),�+−(y)} = −(�++(x) + �++(y))

× ∂−δ(x − y) + (�+i (x) + �+i (y))∂iδ(x − y). (62)

We emphasize that this is a completely new result in the
context of a light-cone formulation of a classical fluid.

Integrating over y we recover

∂+�+− = −∂−�++ + ∂i�+i , (63)

or, equivalently, the energy conservation condition

∂+�+− + ∂−�−− + ∂i�
i− = 0, (64)

since this is the ν = − component of the conservation law(1).
Note that this computation can be repeated for ν = +, i ,
but in fact that is unnecessary, since the covariant conserva-
tion law follows directly from the lagrangian (14), and we

have checked individually that the hamiltonian equations of
motion in light-cone coordinates match correctly with their
lagrangian counterpart. Finally, as discussed in Sect. 2, the
light-cone version of the relativistic Euler equation (43) will
also appear in the present setup.

To the best of our knowledge, in our work, for the first
time the light-cone analysis of relativistic fluid model has
been carried through where the specific identification of the
physical degrees of freedom with the Clebsch variables has
been spelled out.

4 Interacting fluid model

The background gauge field Aμ is introduced in the fluid
lagrangian in a conventional way,

L = −ημν jμ(aν − Aν) − f. (65)

Here also j i is regarded as an auxiliary variable. The dynam-
ical equations which are modified by the gauge field are pro-
vided here:

θ̇ + αβ̇ + ρ

n
f ′(n) − A0 = 0, (66)

jμ = − n

f ′(n)
(aμ − Aμ) = − n

f ′(n)
(∂μθ + α∂μβ − Aμ).

(67)

The rest of the equations of motion are the same as the
free theory, given in (7) and ( 8). Notice that the conju-
gate momenta remain unaffected, see (11), since no new time
derivatives are introduced in the interacting theory and hence
the same Dirac bracket structure (as in the free fluid theory)
will prevail.

The canonical Hamiltonian is given by

H = παα̇ + πθ θ̇ + πββ̇ + πρρ̇ − L
= j i∂iθ + j iα∂iβ − jμAμ + f (n). (68)

The θ equation is recovered:

θ̇ = {θ, H} = −αβ̇ − ρ

n
f ′(n) + A0. (69)

The rest of the equations of motion are also derived correctly.
Thus the hamiltonian in (68) is able to generate the correct
dynamics.

Following our free theory analysis we now derive the
covariant stress tensor �μν for the interacting theory,

�μν = − 2√−g

∂S

∂gμν
= −Lημν + jμ jν√

j2
f ′

(√
j2

)

= −(− jσ (aσ − Aσ ) − f )ημν + jμ jν√
j2

f ′
(√

j2

)
.

(70)
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We express �μν in terms of the Clebsch variables following
our earlier prescription of replacing jν by exploiting (67),

�μν = −(− jσ (aσ − Aσ )− f )ημν − jμ(∂νθ +α∂νβ − Aν).

(71)

One can directly check that �μν satisfies the correct conser-
vation law in the presence of interactions,

∂μ�μν = −∂ν[− jμ(aμ−Aμ)− f ]− jμ∂μ[∂νθ+α∂νβ−Aν]

= ∂ν j
μ(∂μθ + α∂μβ − Aμ) + jμ∂ν(∂μθ + α∂μβ − Aμ)

+∂ν f − jμ∂μ∂νθ − α jμ∂μ∂νβ + jμ∂μAν (72)

= jμFμν + ∂ν f + ∂ν j
μ(∂μθ + α∂μβ − Aμ) = jμFμν,

(73)

where we have exploited the result (67). The hamiltonian
density obtained from (71) is given by

�00 = j i (ai − Ai ) + f = j i (∂iθ + α∂iβ − Ai ) + f. (74)

Immediately we are faced with a problem: the expressions for
the hamiltonian density given in (68) and (74) do not match.
The mismatch term is j0A0, which has nontrivial brackets
with θ . Thus the hamiltonian density (74) fails to generate
the lagrangian equation of motion for the θ variable (66). Of
course in the absence of interaction the results agree.

The expression for the canonical stress tensor Tμν is
straightforward to obtain following the Noether prescription.
The result is (30) with the lagrangianL defined in (65). Obvi-
ously T00 agrees with the canonical hamiltonian density (68).
Also T0i , following from (30) and (65),

T0i = πθ∂iθ + πβ∂iβ = −ρ(∂iθ + α∂iβ),

matches with the non-interacting fluid result (28), and it
behaves like the correct translation generator. In obtaining
the final expression we have imposed the constraints (12)
strongly since Dirac brackets are being used. Using (14) we
obtain
{
θ,

∫
dx̄T0i

}
=

{
θ,

∫
−ρ(∂iθ + α∂iβ)

}
= ∂iθ, (75)

which is the desired translation law.
However, �0i defined from (71),

�0i = −ρ(∂iθ + α∂iβ − Ai ),

does not match with T0i , and it does not correctly generate
the translation of θ ,

{
θ,

∫
dx̄�0i

}
=

{
θ,

∫
−ρ(∂iθ + α∂iβ − Ai )

}
= ∂iθ+Ai .

(76)

Let us next derive the conservation law satisfied by Tμν .
Taking a four-divergence of (30) yields

∂μTμν = −∂μ( jμ∂νθ) − ∂μ(α jμ∂νβ) − ∂νL.

Exploiting the equations of motion we find

∂μTμν = (∂ν j
μ)∂μθ − jμα∂μ∂νβ − (∂ν j

μ)Aμ + ∂ν f

= jμFμν − jμ∂μAν − (∂ν j
μ)Aμ + (∂ν j

μ)∂μθ

+α(∂ν j
μ)∂μβ + ∂ν f

= jμFμν − ∂μ( jμAν). (77)

First of all, in the absence of Aμ the stress tensor is conserved.
This is compatible with the free fluid theory discussed in
Sect. 2. But for the interacting theory the stress tensor does
not reproduce the expected conservation law, as computed in
(73). Apart from the Lorentz force term there is an additional
piece. However, it is possible to define an ’improved’ canon-
ical stress tensor ˜Tμν , which yields the desired relation. It is
given by

˜Tμν = Tμν + jμAν, (78)

which satisfies

∂μ ˜Tμν = jμFμν. (79)

It is now possible to show that this ˜Tμν is exactly identical to
�μν (70). From (30) and (78) we obtain

˜Tμν = − jμ(∂νθ + α∂νβ − Aν) − ημνL. (80)

Exploiting (67) we find

˜Tμν = −Lημν + jμ jν√
j2

f ′
(√

j2

)
, (81)

which is the same as �μν defined in (70).
It is worthwhile to observe the complementary roles of

the canonical (Noether) stress tensor (Tμν) and the sym-
metric (Schwinger) stress tensor (�μν). While the canonical
expression correctly reproduces the equations of motion for
all the dynamical variables, the symmetric one fails for the
θ variable. On the other hand, the symmetric tensor yields
the correct Lorentz force term but the canonical tensor fails.
Nevertheless, it is possible to redefine the latter from the con-
servation law such that the expected result is reproduced. Fur-
thermore, this ’improved’ canonical tensor matches exactly
with the symmetric one.

5 Conclusion and future prospects

Fluid dynamics has generally been considered as an applied
science but there has been a paradigm shift in the modern
physics perspective where deep theoretical aspects of the
theory are being studied in the context of a fluid–gravity
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correspondence [14], conformal symmetry of non-relativistic
fluid dynamics [22,23], etc. A stepping stone in this direction
would be to study fluid dynamics from a modern field theory
point of view. This has been the motivation of the present
paper. We have discussed kinematic and dynamic aspects
in detail both for ideal and interacting fluids, the latter in the
presence of gauge fields. We have principally used a hamilto-
nian formalism since this framework is most appropriate for
studying symmetry properties. The Clebsch parametrization
plays an essential role in our framework where the fluid turns
out to be a second class constraint system. We have reconsid-
ered the fluid model in a light-cone coordinate system, which
is qualitatively different from the equal-time coordinate sys-
tem considered earlier. The light-cone analysis of fluids has
recently attracted a lot of attention [24].

In both equal-time as well as light-cone formulation we
have shown the validity of the Schwinger condition, a hall-
mark of any relativistic field theory. Although the Schwinger
condition was originally given for relativistic quantum field
theory, there are instances [20,21] where it holds for the clas-
sical case also. We find here that it is valid for relativistic clas-
sical fluids. The Schwinger condition involves the computa-
tion of the algebra of the stress tensor components. Since the
fluid is a constrained system, it is essential to use Dirac brack-
ets to calculate this algebra. It needs to be emphasized that
this computation is by no means straightforward and requires
a subtle interpretation of the auxiliary variables in terms of
the physical fluid degrees of freedom. This interpretation is
completely new and was instrumental in our derivation of the
Schwinger condition.

The role of the Schwinger condition vis-à-vis the Cleb-
sch parametrization was highlighted. The utility of this
parametrization, which is frequently used in the analysis of
fluids [4,5], is manifested in the present case through the
study of the Schwinger condition.

Another thrust of our work is in the study of fluids in
the presence of external gauge interactions. We have demon-
strated that the canonical (Noether) and symmetric forms of
the stress tensors do not match, although both have essential
properties pertaining to it, such as generating proper dynam-
ics (in the case of the canonical one) and satisfying the correct
conservation principle (in the case of the symmetric one). In
this sense the two definitions of the stress tensor complement
each other. However, it still needs to be seen how to define a
stress tensor that obeys both these properties. We have also
shown how an elegant modification of the canonical stress
tensor leads to the symmetric one. In this analysis we have
once again used the same interpretation of the auxiliary vari-
able in terms of the physical ones as done for the free theory.
This shows the robustness of our interpretation.

There are diverse channels along which further work can
be pursued. It will be worthwhile to generalize our analy-
sis for viscous fluids. Another open problem is the hamilto-

nian analysis of fluid interacting with dynamical gauge fields.
Obviously this is a nontrivial extension where new symplec-
tic structures will emerge. Moreover, the energy density of
the fluid discussed here is a function of n only, which corre-
sponds to the barotropic fluid. But in general it is possible to
have a dependence of the entropy density. We hope to report
on these findings in the near future.
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