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As for the experimental data, the variation of the gravita-
tional constant is allowed at the level of 10Š13 per year and
less. We use the following constraint on the magnitude of the
dimensionless variation of the gravitational constant:

Š0.65 × 10Š3 <
�G

G H
< 1.12 × 10Š3, (1.8)

which comes from the most stringent limitation on G-dot
obtained by the set of ephemerides [26]

�G/ G = (0.16 ± 0.6) × 10Š13 yearŠ1 (1.9)

allowed at 95 % confidence (2-� ) level and the present value
of the Hubble parameter [27] (which characterizes the rate
of expansion of the observable Universe),

H0 = (67.80 ± 1.54) km/ s MpcŠ1

= (6.929 ± 0.157) × 10Š11 yearŠ1, (1.10)

with 95 % confidence level. It should be noted that the orig-
inal result for H0 in [27] (for the Planck best-fit cosmology
including an external data set) was presented at 68 % con-
fidence (1-� ) level. In the restriction (1.8) we use the lower
allowed value for H0 in (1.10) in order to obtain the confi-
dence level of more than 95 %.

Thus, we are seeking here the cosmological solutions
which obey (1.3)–(1.8), listed above.

The paper is organized as follows. In Sect. 2 the equations
of motion for the D-dimensional EGB model are consid-
ered. For diagonal cosmological type metrics the equations
of motion are equivalent to a set of Lagrange equations cor-
responding to a certain “effective” Lagrangian [29,30] (see
also [9,28]). In Sect. 3 some cosmological solutions with
an exponential behavior of the scale factors satisfying the
restriction (1.8) are obtained for two isotropic factor spaces
and a positive value of � = � 2/� 1.

2 The cosmological type model and its effective
Lagrangian

2.1 The set-up

Here we consider the manifold

M = R� × M1 × · · · × Mn, (2.1)

with the metric

g = we2� ( u)du � du +
n�

i = 1

e2� i (u) � i dyi � dyi , (2.2)

where w = ± 1, � i = ± 1, i = 1, . . . , n, and M1, . . . , Mn are
1-dimensional manifolds (either R or S1). Here and in what
follows R� = (uŠ , u+ ) is an open subset in R. The functions
� ( u) and � i (u), i = 1, . . . , n, are smooth onR� = (uŠ , u+ ).

For w = Š 1, � 1 = · · · = � n = 1 the metric (2.2) is a
cosmological one, while for w = 1, � 1 = Š 1, � 2 = · · · =
� n = 1 it describes certain static configurations.

For physical applications we put M1 = M2 = M3 = R,
while M4, . . . , Mn will be considered to be compact ones
(i.e. coinciding with S1).

The integrand in (1.1), when the metric (2.2) is substituted,
reads as follows:

�
|g|{� 1 R[g] + � 2L 2[g]} = L +

d f
du

, (2.3)

where

L = � 1L1 + � 2L2, (2.4)

L1 = (Šw)eŠ� + � 0 Gi j �� i �� j , (2.5)

L2 = Š
1

3
eŠ3� + � 0 Gi jkl �� i �� j �� k �� l , (2.6)

� 0 =
n�

i = 1

� i , (2.7)

and

Gi j = � i j Š 1, (2.8)

Gi jkl = (� i j Š 1)(� ik Š 1)(� il Š 1)(� jk Š 1)(� jl Š 1)(� kl Š 1)

(2.9)

are, respectively, the components of the 2-metrics on R
n

[29,30]. The first one is the well-known “minisuperme-
tric” 2-metric of pseudo-Euclidean signature: � v1, v2� =
Gi j vi

1v j
2 , and the second one is the Finslerian 4-metric:

� v1, v2, v3, v4� = Gi jkl vi
1v j

2 vk
3vl

4, vs = (vi
s) � R

n, where
� ., .� and � ., ., ., . � are, respectively, 2- and 4-linear symmet-
ric forms on R

n. Here we denote �A = dA/ du etc. The func-
tion f (u) in (2.3) is irrelevant for our considerations (see
[29,30]).

The derivation of (2.4)–(2.6) is based on the following
identities [29,30]:

Gi j vi v j =
n�

i = 1

(vi )2 Š

�
n�

i = 1

vi

� 2

, (2.10)

Gi jkl vi v j vkvl =

�
n�

i = 1

vi

� 4

Š 6

�
n�

i = 1

vi

� 2 n�

j = 1

(v j )2

+ 3

�
n�

i = 1

(vi )2

� 2

+ 8

�
n�

i = 1

vi

�
n�

j = 1

(v j )3 Š 6
n�

i = 1

(vi )4.

(2.11)
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It follows immediately from the definitions (2.8) and (2.9)
that

Gi j vi v j = Š 2
�

i < j

vi v j , (2.12)

Gi jkl vi v j vkvl = 24
�

i < j < k< l

vi v j vkvl . (2.13)

2.2 The equations of motion

The equations of motion corresponding to the action (1.1)
have the following form:

EM N = � 1E(1)
M N + � 2E(2)

M N = 0, (2.14)

where

E(1)
M N = RM N Š

1

2
RgM N, (2.15)

E(2)
M N = 2

�
RM P QSR P QS

N Š 2RM P R P
N

Š 2RM P N QRP Q + RRM N

	
Š

1

2
L 2gM N. (2.16)

It was shown in [30] that the field equations (2.14) for
the metric (2.2) are equivalent to the Lagrange equations
corresponding to the Lagrangian L from (2.4).

Thus, Eq. (2.14) read as follows:

w� 1Gi j �� i �� j + � 2eŠ2� Gi jkl �� i �� j �� k �� l = 0, (2.17)

d

du



Š2w� 1Gi j eŠ� + � 0 �� j Š

4

3
� 2eŠ3� + � 0 Gi jkl �� j �� k �� l

�
Š L

= 0, (2.18)

i = 1, . . . , n. Due to (2.17) L = Š w 2
3 eŠ� + � 0 � 1Gi j �� i �� j .

2.3 Reduction to an autonomous system of first-order
differential equations

Now we put � = 0 and denote u = � , where � is a
“synchronous-like” variable. By introducing “Hubble-like”
variables hi = �� i , Eqs. (2.17) and (2.18) may be rewritten
as follows:

w� 1Gi j hi h j + � 2Gi jkl hi h j hkhl = 0, (2.19)


Š2w� 1Gi j h j Š

4

3
� 2Gi jkl h j hkhl

� n�

i = 1

hi

+
d

d�



Š2w� 1Gi j h j Š

4

3
� 2Gi jkl h j hkhl

�
Š L = 0,

(2.20)

i = 1, . . . , n, where

L = Š w� 1Gi j hi h j Š
1

3
� 2Gi jkl hi h j hkhl . (2.21)

Due to (2.19) L = Š 2
3 w� 1Gi j hi h j .

Thus, we are led to the autonomous system of the first-
order differential equations on h1(� ), . . . , hn(� ) [30,30].

Here and in what follows we use Eqs. (2.10), (2.11), and
the following formulas:

Gi j v j = vi Š S1, (2.22)

Gi jkl v j vkvl = S3
1 + 2S3 Š 3S1S2 + 3(S2 Š S2

1 )vi

+ 6S1(vi )2 Š 6(vi )3, (2.23)

i = 1, . . . , n, where Sk = Sk(v) =
� n

i = 1(vi )k.

2.4 Solutions with constant hi

In this paper we deal with the following solutions to (2.19)
and (2.20):

hi (� ) = vi , (2.24)

with constant vi , which correspond to the solutions

� i = vi � + � i
0, (2.25)

where � i
0 are constants, i = 1, . . . , n.

In this case we obtain the metric (2.2) with the exponential
dependence of the scale factors

g = wd� � d� +
n�

i = 1

� i B2
i e2vi � dyi � dyi , (2.26)

where w = ± 1, � i = ± 1, and Bi > 0 are arbitrary constants.
For the fixed point v = (vi ) we have the set of polynomial

equations

Gi j vi v j Š � Gi jkl vi v j vkvl = 0, (2.27)



2Gi j v j Š
4

3
� Gi jkl v j vkvl

� n�

i = 1

vi Š
2

3
Gi j vi v j = 0,

(2.28)

i = 1, . . . , n, where � = � 2(Šw)/� 1. For n > 3 this is a set
of fourth-order polynomial equations.

The trivial solution v = (vi ) = (0, . . . , 0) corresponds to
a flat metric g.

For any non-trivial solution v we have
� n

i = 1 vi 	= 0
[otherwise one gets from (2.28) Gi j vi v j =

� n
i = 1(vi )2 Š

(
� n

i = 1 vi )2 = 0 and hence v = (0, . . . , 0)].
The set of equations (2.27) and (2.28) has an isotropic

solution v1 = · · · = vn = H , where

n(n Š 1)H2 + � n(n Š 1)(n Š 2)(n Š 3)H4 = 0. (2.29)

For n = 1: H is arbitrary and for n = 2, 3: H = 0.
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When n > 3, the non-zero solution to Eq. (2.29) exists
only if � < 0 and in this case [29,30]

H = ±
1



|� |(n Š 2)(n Š 3)

. (2.30)

In the cosmological case (w = Š 1) this solution occurs
when � 2/� 1 = � < 0.

The isotropic solution for n > 3 gives rise to a very large
value of �G/ G = (n Š 3)H , which is forbidden by observa-
tional restrictions.

It was shown in [29,30] that there are no more than three
different numbers among v1, . . . , v n.1

3 Examples of cosmological solutions obeying
the restriction on the variation of G

In this section we consider some solutions to the set
of Eqs. (2.27) and (2.28) of the following form: v =
(H, . . . , H, h, . . . , h), where H the “Hubble-like” parame-
ter corresponding to m-dimensional isotropic subspace with
m > 3 and h is the “Hubble-like” parameter corresponding
to the l -dimensional isotropic subspace, l > 2.

These solutions should satisfy the following conditions:

1. mandatory:

(a) H and h are real numbers,
(b) H > 0, h < 0;

2. desirable:

(a) Int = (m Š 3)H + lh < 0;
(b) Š0.65 × 10Š3 < �G

G H = Š ((m Š 3) + lh
H ) < 1.12 ×

10Š3.

The first inequality, H > 0, in the mandatory condition
is necessary for a description of accelerated expansion of
3-dimensional subspace, which may describe our Universe,
while the second inequality, h < 0, excludes an enormous
(of the order of the Hubble parameter) variation �G/ G for
h � 0 and m > 3.

The first desirable condition means that the volume scale
factor of the internal space V(� ) = B exp(((mŠ3)H+ lh)� ) ,
where B > 0 is constant, decreases over time. This condition
is a sort of weak extension of a possible restriction for m = 3
coming from the unobservability of the “internal space” for
all � > � 0. It is also desirable since the negative value of
the parameter Int is more probable due to the more probable
positive value of �G/ G = Š Int ; see (1.9).

1 At the moment we were unable to find solutions with three different
real “Hubble-like” parameters.

The second desirable condition may also be rewritten by
using the parameter Var = | �G

G H | = | (m Š 3) + lh
H |:

Var < 1.12 × 10Š3, for Int � 0; (3.1)

Var < 0.65 × 10Š3, for Int � 0. (3.2)

Here we consider the simplest case, when the internal
spaces (apart from the expansion factors) are flat. The consid-
eration of curved internal spaces will drastically change the
equations of motion and may break the existence of solutions
with an exponential dependence of the scale factors. Anyway,
the inclusion into our consideration of curved internal spaces
may be worthwhile, but it needs a special treatment, which
may be given in a separate work.

3.1 The dependence of “Hubble-like” parameters on
m and l

The total dimension of the considered space is D = n + 1 =
(m + l ) + 1, where we have m dimensions expanding with
the Hubble parameter H > 0 and l dimensions contracting
with the “Hubble-like” parameter h < 0.

According to this, we rewrite the set of polynomial equa-
tions (2.27), (2.28), using Eqs. (2.22) and (2.23), as follows:

H2(m Š m2) + h2(l Š l 2) Š 2ml Hh

Š �( H4m(m Š 1)(m Š 2)(m Š 3) + h4l (l Š 1)

× (l Š 2)(l Š 3)

+ 4H3hm(m Š 1)(m Š 2)l + 4h3 Hl (l Š 1)(l Š 2)m

+ 6H2h2m(m Š 1)l (l Š 1)) = 0, (3.3)

m(1 Š m)H2 Š (1/ 2)lh2(1 + 2l ) + 2l Hh((3/ 4) Š m)

Š�( H4m(m Š 1)(m Š 2)(m Š 3) + H3hl(m Š 1)

× (m Š 2)(4m Š 3)

+ 3H2h2l (m Š 1)(2lm Š 2l Š m)

+ Hh3l (l Š 1)(4lm Š 3l Š 2m)+ h4l 2(l Š 1)(l Š 2)) = 0,

(3.4)

l (1 Š l )h2 Š (1/ 2)mH2(1 + 2m) + 2mHh((3/ 4) Š l )

Š�( h4l (l Š 1)(l Š 2)(l Š 3) + h3 Hm(l Š 1)(l Š 2)(4l Š 3)

+ 3h2 H2m(l Š 1)(2lm Š 2m Š l )

+ hH3m(m Š 1)(4lm Š 3m Š 2l ) + H4m2(m Š 1)

× (m Š 2)) = 0. (3.5)

Here we put for simplicity � = ± 1 but keep in mind that
general � -dependent solution has the following form:

H(�) = H|� |Š1/ 2, h(�) = h|� |Š1/ 2. (3.6)

Due to these relations the parameter �G/( G H) does not
depend upon |� | and hence our simplification is a reasonable

123



Eur. Phys. J. C (2015) 75 :177 Page 5 of 12 177

one. For any solution (H, h) with � = ± 1 we can find a
proper � , which will be in agreement with the present value
of the Hubble parameter H0 [see (1.10)]

H|� |Š1/ 2 = H0. (3.7)

Our numerical analysis (based on Maplesoft Maple)
shows that (generically) there are 11 solutions of these equa-
tions (for m > 3 and l � 3).

(I) The first to mention is, obviously, the zero solution H1 =
h1 = 0.

(II) Two other solutions are isotropic ones:

1. if � = 1, then H = h = ±



1
(l 2+ 2lm+ m2Š5lŠ5m+ 6) ·

i . We are led to pure imaginary isotropic solutions
obeying (2.29). For example, when m = 9 and l = 6
we obtain
(a) H2 = h2 = 1

2



1
39 · i ;

(b) H3 = h3 = Š 1
2



1
39 · i ;

2. if � = Š 1, then H = h = ±



1
(l 2+ 2lm+ m2Š5lŠ5m+ 6) .

We are led to isotropic solutions (2.30). When m = 9
and l = 6 the solutions are:
(a) H2 = h2 = 1

2



1
39 ;

(b) H3 = h3 = Š 1
2



1
39 .

(III) For � = ± 1 the remaining eight solutions are roots of
the following two equations which are given by Maple:

P(H; m, l ) = 64(m Š 2)(m Š 1)2(m Š 2 + l )(l 2m + lm2

Š2l 2 + 2lm Š 2m2)(Š3 + l + m)2 · H8

� 128(m Š 1)2(Š3 + l + m)(l 2m(l + m)2

Š2l (l + m)3 + (l + m)(8l 2 + lm + 2m2)

Š10l 2 + 4lm Š 4m2) · H6

+ 16(m Š 1)(5l 5m + 10l 4m2 + 5l 3m3

Š6l 5 Š 38l 4m Š 49l 3m2 Š 17l 2m3 + 32l 4

+ 111l 3m + 75l 2m2 + 14lm3 Š 70l 3

Š130l 2m Š 14lm2

Š8m3 + 68l 2 + 4lm + 8m2) · H4

� 16l (m Š 1)(l 4 + l 3m Š 3l 3 Š 5l 2m

+ 5l 2 + 8lm Š 7l Š 2m) · H2

+ l 5 Š 3l 3 Š 2l 2 = 0, (3.8)

P(h; l , m) = 0. (3.9)

The second equation is obtained from the first one just
by swapping the parameters m and l and replacing H by h.
The solutions to Eqs. (3.8) and (3.9) should be substituted
into Eqs. (3.3), (3.4) and (3.5), in order to find the solutions
(H, h) under consideration.

The closed-form expression for the solution in general
case (for any m and l ) seems to be very bulky. So, we use

Maplesoft Maple to find solutions for certain m and l and test
some general features of these solutions:2

1. For � = 1 in the common case we have two pairs of
real and complex solutions which differ in signs. (See
Footnote 2.) For m = 9 and l = 6 we obtain

(a) H4 
 Š 0.2597 and h4 
 0.2826;
(b) H5 
 0.2597 and h5 
 Š 0.2826;
(c) H6 
 Š 0.1610 and h6 
 0.4004;
(d) H7 
 0.1610 and h7 
 Š 0.4004;
(e) H8 
 Š 0.0913 Š 0.0464 · i and h8 
 0.1456 Š

0.0449 · i ;
(f) H9 
 Š 0.0913 + 0.0464 · i and h9 
 0.1456 +

0.0449 · i ;
(g) H10 
 0.0913 Š 0.0464 · i and h10 
 Š 0.1456 Š

0.0449 · i ;
(h) H11 
 0.0913 + 0.0464 · i and h11 
 Š 0.1456 +

0.0449 · i ;

2. for � = Š 1 (m > 3 and l � 3) there are no (extra) real
solutions. (See Footnote 2.)
In the case of m = 9 and l = 6 we obtain

(a) H4 
 Š 0.2597 · i and h4 
 0.2826 · i ;
(b) H5 
 0.2597 · i and h5 
 Š 0.2826 · i ;
(c) H6 
 0.1610 · i and h6 
 Š 0.4004 · i ;
(d) H7 
 Š 0.1610 · i and h7 
 0.4004 · i ;
(e) H8 
 Š 0.0464 Š 0.0913 · i and h8 
 Š 0.0449 +

0.1456 · i ;
(f) H9 
 Š 0.0464 + 0.0913 · i and h9 
 Š 0.0449 Š

0.1456 · i ;
(g) H10 
 0.0464 Š 0.0913 · i and h10 
 0.0449 +

0.1456 · i ;
(h) H11 
 0.0464 + 0.0913 · i and h11 
 0.0449 Š

0.1456 · i .

It can be seen that none of the solutions for � = Š 1
satisfies our mandatory conditions written in the beginning
of this section.

As for � = 1, the solutions III.1.b and III.1.d are real
and H > 0, h < 0. It can be verified that in these cases
I nt = (m Š 3)H + lh < 0.

Now we have to calculate the variation of the gravitational
constant. For m = 9 and l = 6 we get

Var5 =

�
�
�
�

�G
G H

�
�
�
�
5

=

�
�
�
�(m Š 3) +

l · h5

H5

�
�
�
� 
 0.535826;

Var7 =

�
�
�
�

�G
G H

�
�
�
�
7

=

�
�
�
�(m Š 3) +

l · h7

H7

�
�
�
� 
 8.914741.

2 Here we are led to some common features of the solutions just by
numerical calculations for a restricted range of numbers m and l .
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Fig. 1 Behavior of “Hubble-like” parameters H and h for fixed m = 8 and m = 10 while l is changing

Fig. 2 Behavior of the internal space parameter Int and the variation of G parameter Var for fixed m = 8 and m = 10 while l is changing

The first variation is lower: Var5 < Var7, for m = 9 and
l = 6. This inequality seems to occur for any m > 3 and
l � 3. At the moment a rigorous proof of this fact is absent,
while certain numerical calculations support it. Anyway, here
we will focus on the solution (H5, h5), which we consider as
more interesting (for our applications) than (H7, h7). Further
we will write H and h instead of H5 and h5 in common cases.

We can plot the behavior of the parameters H , h, Int, and
Var, for example, keeping fixed m = 8 and m = 10 and
raising l from 5 to 100 by 5. See Figs. 1 and 2.

3.2 The limiting values of H , hl, Int, and Var for fixed
m � 9

When m � 9 the internal space parameter Int remains nega-
tive, which means that the first desirable condition is satisfied
for any l . The variation of the G parameter is monotonically
decreasing with the increase of l . Moreover, we get finite

limits for H and hl as l � +� . In this subsection we obtain
these and other limits (for Int and Var) for fixed m � 9.

Now let us rewrite (3.8) and (3.9) for H and hl keeping
only the terms with higher degrees of l :

64(m Š 1)2(m Š 2)2l 5 · H8 Š 128(m Š 2)(m Š 1)2l 5 · H6

+ 16(m Š 1)(5m Š 6)l 5 ·H4Š 16(m Š 1)l 5 ·H2+ l 5 = 0,

(3.10)

64(m Š 1)(l · h)8 Š 128(m2 Š 2m + 2)(l · h)6

+ (80m3 Š 272m2 + 224m Š 128)(l · h)4

Š16m(m3 Š 5m2 + 8m Š 2)(l · h)2

+ m5 Š 3m3 Š 2m2 = 0. (3.11)

Solving these equations we find the limiting values:

lim
l ��

H =
1

2

�
2m Š 2 +



2m2 Š 2m

m2 Š 3m + 2
, (3.12)
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Table 1 The limiting values of
H , hl, Int, and Var parameters
as l � �

m liml �� H liml �� l · h liml �� Int liml �� Var

3 0.9659258265 Š0.7630807575 Š0.7630807575 0.7899993318

4 0.6738873385 Š1.093021916 Š0.4191345775 0.621965355

5 0.5462858555 Š1.352249104 Š0.259677393 0.475350754

6 0.4709825726 Š1.574449592 Š0.161501874 0.342904141

7 0.4199717390 Š1.772664074 Š0.092777118 0.220912766

8 0.3825276619 Š1.953613607 Š0.040975297 0.107117214

9 0.3535533906 Š2.121320344 0 0

lim
l ��

h · l = Š
1

2

�
1

m Š 2
(m

�
2m(m Š 1) + 2m2

Š2

�
2((m+ 2)



m(m Š 1)+ m2



2)(m Š 1)2



m(m Š 1)

Š 4m + 4)
� Š 1

2

, (3.13)

lim
l ��

Var =

�
�
�
�(m Š 3) +

liml �� h · l
liml �� H

�
�
�
� . (3.14)

Table 1 contains the calculated values for 3 � m � 9.
For 3 � m � 8 the limiting values of the Var-parameter

are too large. Since Var(l ) exceeds the limiting values
Var(� ) for 2 < m < 9 (see Fig. 2 for m = 8) the restriction
(1.8) on the variation of G is not satisfied for m = 3, . . . , 8
and we are led to unphysical results. This is why we consider
in what follows just the cases m = 9, 10, 12, . . .

3.3 Infinite series of solutions for m = 9

Now we consider the case m = 9. We get the following
relations.
For l = 2679:

H 
 0.3531582111,

h 
 Š 0.0007910955039,

Int 
 Š 0.000395588,

Var 
 0.001120145.

For l = 2680:

H 
 0.3531583594,

h 
 Š 0.0007908005933,

Int 
 Š 0.000395434,

Var 
 0.001119706.

For l = 2681:

H 
 0.3531585062,

h 
 Š 0.0007905059028,

Int 
 Š 0.000395288,

Var 
 0.001119293.

For l = 2682:

H 
 0.3531586532,

h 
 Š 0.0007902114318,

Int 
 Š 0.000395141,

Var 
 0.001118876.

We do not present here the exact analytical forms of
these solutions in radicals which are bulky ones. For
example, the relation for the parameter H , when
l = 2680, contains (17 times) the radical
√
32839778319264444823234828568184005.

The numerical calculations for fixed m = 9 gives evi-
dence of the monotonically decreasing behavior of the func-
tion Var(l ) for l � 26803 as well as the asymptotical relation:
Var(l ) � A/ l , as l � +� , where A > 0. See Fig. 3.

Thus, for m = 9 there is an infinite series of admissible
cosmological solutions with l = 2680, 2681, . . ., which sat-
isfy all the conditions imposed. Any such solution describes
an accelerated expansion of the 3-dimensional factor space
with sufficiently small value of the variation of the effective
gravitational constant G. This variation may be arbitrarily
small for a big enough value of l .

The infinite series of solutions for m = 9 and l =
2680, 2681, . . . starts from the (special) total dimension
D = 2690. For D < 2690 and m = 9 the solutions do
not obey restriction (1.8) on the variation of G and hence are
not of interest for our consideration.

3.4 Some solutions for m > 9 with minimal Var-parameter

When m > 9 the internal space parameter Int becomes pos-
itive. As l can only be a natural number we should look for
a value of l , which gives the minimal magnitude of the vari-
ation of G parameter Var. Below we present the calculated

3 A rigorous analytical proof of this fact may be a subject of a separate
work.
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Fig. 3 Behavior of the variation of G parameter Var for fixed m = 9 while l is changing from 1000 to 11,000 by 500 (left) and from 2670 to 2690
by 1 (right)

Fig. 4 The variation of the G parameter for m = 10

values of our parameters (H , h, Int = (m Š 3) · H + l · h,
and Var = | (mŠ 3) + l ·h

H |) for each of the considered cases:

1. For m = 10: the variation of G parameter is minimal for
l = 31, see Fig. 4,

H 
 0.2996055415,

h 
 Š 0.06764217686,

Int 
 0.000331307,

Var 
 0.001105812.

This case is not of particular interest. The radical forms
of the solutions are too bulky, so we approximated them.
Nevertheless the variation of the G parameter is out of
the allowed domain and the “internal space” parameter
is positive.

Fig. 5 The variation of the G parameter for m = 11

2. For m = 11: the variation of G and the “internal space”
parameters are zero for l = 16, see Fig. 5,

H =

�
1

15
,

h = Š
1

2

�
1

15
,

Int = 0,

Var = 0.

This case is the first one with zero variation of G. Also, the
exact values of the “Hubble-like” parameters (H = Š 2h)
in contrast to the previous case have rather simple and
compact forms.

3. For m = 12: the variation of the G parameter is minimal
for l = 11, see Fig. 6,
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Fig. 6 The variation of the G parameter for m = 12

H 
 0.2264080186,

h 
 Š 0.1852491999,

Int 
 Š 0.000069032,

Var 
 0.000304899.

Here all our four conditions are satisfied. The variation
of the G parameter is non-zero and the volume of the
internal space is decreasing.

4. For m = 13: the variation of the G parameter is minimal
for l = 9 and the “internal space” parameter is positive;
see Fig. 7,

H 
 0.2039802,

h 
 Š 0.2261006,

Int 
 0.0048967,

V ar 
 0.0240058.

For l = 8 the variation of the G parameter is slightly
higher, but the “internal space” parameter is negative,
see Fig. 8.

H 
 0.1942063,

h 
 Š 0.2498379,

Int 
 Š 0.0052611,

Var 
 0.0263919.

Both cases are excluded by the G-dot restrictions.

5. For m = 14: the variation of the G parameter is minimal
for l = 7, see Fig. 8.

H 
 0.1822582965,

h 
 Š 0.2863787788,

Int 
 0.000189810,

Var 
 0.00104143.

Fig. 7 The variation of the G parameter for m = 13

Fig. 8 The variation of the G parameter for m = 14

The variation of the G parameter exceeds our limits, and
the condition of the volume contraction of the “inner
space” is not met.

6. For m = 15: the variation of the G and the “internal
space” parameters are zero for l = 6, see Fig. 9,

H =
1

6
,

h = Š
1

3
,

Int = 0,

Var = 0.

This is the second case with a zero variation of G.
The exact values of the “Hubble-like” parameters (H =
Š 1

2 h) have simple and compact forms.

Now we will reverse our method and look for the solutions
with minimal variation of G for fixed l instead of m. The
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Fig. 9 The variation of the G parameter for m = 15

Fig. 10 The variation of the G parameter for l = 5

calculations lead to the following rule: the lesser is l the
greater is an appropriate m which gives the minimum of Var.
As we consider l � 3 and for l = 6 the solution with minimal
variation of the G parameter is already found, and we should
examine only three cases.

1. For l = 5: the variation of the G parameter is minimal
for m = 17, see Fig. 10,

H 
 0.1447364880,

h 
 Š 0.4041874693,

Int 
 0.005373486,

Var 
 0.017555134.

None of the desirable conditions are satisfied.

2. For l = 4: the variation of the G parameter is minimal for
m = 20, see Fig. 11,

H 
 0.1220672556,

h 
 Š 0.5176845111,

Fig. 11 Variation of G for l = 4

Fig. 12 The variation of the G parameter for l = 3

Int 
 0.004405301,

Var 
 0.03608913.

The amount of variation is too high and the “internal
space” parameter is positive.

3. For l = 3: the variation of the G parameter is minimal
for m = 28, see Fig. 12,

H 
 0.09202826388,

h 
 Š 0.7765606872,

Int 
 0.000272078,

Var 
 0.00295646.

The “internal space” parameter is also positive and the
variation of the G parameter exceeds the limits imposed.

Thus, in this subsection we have obtained cosmological
solutions for m > 9, which satisfy all four conditions for the
following cases:
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1. m = 11, l = 16 (zero variation of G);
2. m = 12, l = 11;
3. m = 15, l = 6 (zero variation of G).

It should be noted that for m = 3 and l = 2 the solution
with H 
 0.750173 and h 
 Š 0.541715 was found earlier in
[16]. For this solution we have a contracting “internal space”
but the variation of G is a huge one ( �G/ G is of the order of
the Hubble parameter). Recently, an exact analytic form of
this solution was obtained in [17].

4 Conclusions

We have considered the (n+ 1)-dimensional EGB model. By
using the ansatz with diagonal cosmological type metrics,
we have found solutions with an exponential dependence
of the scale factors with respect to the “synchronous-like”
variable � .

In the cosmological case (w = Š 1) these solutions
describe an exponential expansion of “our” 3-dimensional
factor space with the Hubble parameter H > 0 and obey
the observational constraints on the temporal variation of the
effective gravitational constant G. Any solution describes
an (m Š 3 + l )-dimensional “internal space”, which is
anisotropic: it is expanding in (m Š 3) dimensions with the
Hubble rate H > 0 and contracting in l dimensions.

These solutions were found (in numerical or analytical
forms) for the following cases:

1. m = 9, l � 2680 (variation of G tends to 0 as l � +� );
2. m = 11, l = 16 (variation of G is zero);
3. m = 12, l = 11;
4. m = 15, l = 6 (variation of G is zero).

Thus, we have shown that it is possible in the framework
of the EGB model to describe the accelerated expansion of
the 3-dimensional factor space with sufficiently small (or
even zero) value of the variation of the effective gravitational
constant G. For the case w = 1 we have obtained as a by-
product a family of static configurations which may be of
interest within some other possible applications.

Here we have considered a gravitational model in more
than 4 dimensions. In such a case the Gauss–Bonnet term
gives non-trivial contributions to the generalized Einstein
field equations. In particular, we have shown that there are
cosmological solutions in agreement with observations when
“projected” on the (3 + 1)-dimensional physical space-time.
For the sake of simplicity, we restrict ourselves to vac-
uum solutions in multi-dimensional gravity with the Gauss–
Bonnet term. Such an ansatz may be considered as a part of
a general “geometrical program” aimed at the explanation
of dark energy in 4-dimensional space, e.g. by using extra

dimensions and modified equations of motion just without
matter sources. This is a first step. The inclusion of matter
sources (e.g. an anisotropic fluid) will be the next step, as a
subject of a subsequent publication.
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