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Abstract To find boundary contributions is a rather diffi-
cult problem when applying the BCFW recursion relation.
In this paper, we propose an approach to bypass this problem
by calculating general tree amplitudes that contain no poly-
nomial using factorization limits. More explicitly, we con-
struct an expression iteratively, which produces the correct
factorization limits for all physical poles, and does not con-
tain other poles, then it should be the correct amplitude. To
some extent, this approach can be considered as an alterna-
tive way to find boundary contributions. To demonstrate our
approach, we present several examples:φ4 theory, pure gauge
theory, Einstein–Maxwell theory, and Yukawa theory. While
the amplitude allows the existence of polynomials which sat-
isfy the correct mass dimension and helicities, this approach
is not applicable to determining the full amplitude.

1 Introduction

The importance of scattering amplitudes can never be over-
estimated in high-energy physics, for it serves as the inter-
mediary between theories and experiments. The traditional
approach for the analytic calculation of scattering amplitudes
relies on Feynman diagrams and Feynman rules; it is well
systematized and has clear physical pictures. However, with
an increasing number of external states, the fast growth in the
number of diagrams makes the computation extremely com-
plicated. Naturally, more efficient approaches are desired.

Initiated by Witten’s twistor string program [1], many
powerful approaches have been developed in the past decade.
Among these, the BCFW on-shell recursion relation [2,3] has
been successfully applied in many contexts involving mass-
less particles at tree and loop levels, as well as for massive

The unconventional order of authors is merely to satisfy the outdated
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particles at tree level (see for reviews [4–6]). In the deriva-
tion of the recursion relation, one deforms a pair of external
momenta1 in terms of a single complex variable z, thus the
on-shell amplitude A(z) becomes a rational function of z.
The behavior of A(z) in the limit z → ∞ becomes crucial. If
A(z) → 0 when z → ∞, amplitudes can be reconstructed by
summing over residues of poles at finite positions. However,
if A(z) does not vanish at infinity, a boundary contribution
will emerge. Thus to get the correct amplitudes, we need to
find these boundary contributions.

It has been clarified that for many theories, such as gauge
theory and gravity, boundary terms can be zero with some
proper choices of momentum deformations [9,10]. However,
there are other theories in which boundary contributions can-
not be avoided, for example, φ4 theory and theories with
Yukawa couplings [9]. Several attempts have been proposed
for finding boundary contributions. The first one is to add
auxiliary fields so that boundary terms for the enlarged the-
ory are zero [11,12]. By proper reduction one gets the desired
amplitudes. The second one is to analyze Feynman diagrams
carefully to isolate boundary contributions within these dia-
grams [13–15]. With this information, boundary terms can
be calculated directly or recursively. The third one is to relate
boundary terms to the zeros of amplitudes, i.e., roots of ampli-
tudes [16–18]. However, it is not easy to find such zeros.
Despite the progress mentioned above, a general effective
approach to handle boundary terms is still lacking.

In this paper, we propose an approach to calculate tree
amplitudes without polynomials, which avoids the direct
computation of boundary contributions. The idea is to seek an
expression that is consistent with factorization limits for all
physical poles and does not contain other poles. The search-
ing can be done iteratively. We will start with a scalar func-
tion which has the correct factorization limits for some poles.
This starting function can be obtained by calculating the fac-
torization limit for one channel, or be chosen as the result

1 There are other deformations; see [7,8].
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given by the BCFW recursion relation regardless of the exis-
tence of boundary contributions. Having this input, at each
step we consider the factorization limit for a new channel,
and adjust the starting function to include it, without disturb-
ing the correct factorization limits that have been already
satisfied. When correct factorization limits for all physical
channels are included, we should eliminate possible spurious
poles. Then we claim that the correct amplitude is found. This
approach disregards boundary contributions, therefore it can
be applied to circumstances in which the BCFW approach
is difficult. This approach focuses on the pole structures of
amplitudes therefore it cannot detect polynomial terms which
do not have any pole. Thus, if the amplitude admits polyno-
mials which satisfy correct mass dimension and helicities,
this ambiguity will arise and the full amplitudes cannot be
determined.

This paper is organized as follows. In Sect. 2 we give a
brief overview of this approach. Then we use it to calculate
amplitudes of φ4 theory, pure gauge theory, and the Einstein–
Maxwell theory, as shown in Sects. 3, 4, and 5, respectively.
In these examples, we will not encounter any spurious pole
when obtain an expression provides the correct factorization
limits for all physical poles. In Sect. 6, we take the four-point
amplitude of Yukawa theory as an example to discuss how to
remove possible spurious poles. In Sect. 7, a brief conclusion
is given.

Throughout this paper, we use the QCD conventions, i.e.,
2ki · k j ≡ 〈i | j〉 [ j |i], and si j ···l denotes (ki + k j +· · ·+ kl)2.
Also As1···sn denotes an expression which has the correct
factorization limits for the poles s1, . . . , sn . Furthermore, we
will neglect the overall factor i in amplitudes, consequently
the corresponding factorization is A → −AL

1
P2 AR , rather

than A → AL
i
P2 AR . It also implies we should take

Res

(
A(z)

z

) ∣∣∣∣
z=zα

= −
∑
h

AL(zα)
1

P2 AR(zα), (1)

when using the BCFW approach.

2 Outline of the approach

In this section, we present a brief discussion as regards the
approach used in this paper. It bases on the property that a
correct amplitude has consistent factorization limits for all
physical poles. Since a meromorphic function is uniquely
determined by its poles and related residues, if an expres-
sion has the correct factorization limits for all physical poles,
and it does not contain other poles, the expression is almost
the correct amplitude without polynomials that we are seek-
ing. Under this observation, one can reconstruct amplitudes
by imposing consistent factorization limits for all physical
channels.

To find (or guess) the correct expression, we can start from
a scalar function depending on external momenta and helic-
ities, which gives the correct factorization limits for some
channels. Such a function can be obtained by direct compu-
tation of the factorization limit for one channel. For example,
consider the channel 〈1|2〉 → 0, we can write the initial func-
tion as2

A〈1|2〉 = − lim〈1|2〉→0 AL AR

s12
= lim〈1|2〉→0 s12A

s12
. (2)

Obviously, it has the correct factorization limit for 〈1|2〉 → 0.
The initial function can also be chosen as the result by the
BCFW approach regardless of the existence of the bound-
ary contribution. In the former choice, the function provides
the correct factorization limit for the corresponding channel.
In the latter choice, the function at least provides the cor-
rect factorization limits for the poles detected by the BCFW
deformation.

At this stage, we need to point out a subtlety of this algo-
rithm. There are many different expressions which are equiv-
alent to each other under some particular factorization limits.
For example, under the limit 〈1|2〉 → 0, 〈1|3〉

〈1|4〉 = 〈2|3〉
〈2|4〉 , but

without imposing the limit, 〈1|3〉
〈1|4〉 and 〈2|3〉

〈2|4〉 are different. More
generally, we will have f ∼ f + 〈1|2〉 g for arbitrary func-
tions f and g. Thus when we use our algorithm, we need to
choose a representative element at each step from the entire
equivalent class (category) under some factorization limits.

Having the starting expression, the next step is to con-
sider the factorization limit for a new channel. For instance,
we start with (2) and consider another channel, for example
〈1|3〉 → 0. If

lim〈1|3〉→0
s13A〈1|2〉 = lim〈1|3〉→0

AL AR, (3)

i.e., A〈1|2〉 also gives the correct factorization limit for the
pole 〈1|3〉, we move on to include the correct factorization
limit for another new physical pole. If this fails, we then
construct

A′〈1|3〉 = A〈1|2〉 +
(
A〈1|3〉 − lim〈1|3〉→0 s13A〈1|2〉

s13

)
, (4)

where

A〈1|3〉 = − lim〈1|3〉→0 AL AR

s13
. (5)

Now we need to see if A′〈1|3〉 has the correct factorization
limit for 〈1|2〉 → 0. If it does, we are content and move on to
a new pole. If it does not, it means the original expressions,
A〈1|2〉 or A〈1|3〉 or both, are not proper choices. We need to
deform them properly, i.e., to adopt different representations
as discussed in the previous paragraph. The goal is that while

2 It is not necessary to sum over helicities of the on-shell internal
line, since to get non-zero three-point sub-amplitudes under the limit
〈1|2〉 → 0, only one kind of helicity configurations is allowed.
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it gives the correct factorization limit for the new pole, it
also keeps the correct factorization limits for the poles in the
earlier steps. Although we do not have a general guidance for
the choice of proper expressions, in the following sections,
we will use many examples to demonstrate how to make
efficient choices. However, choices in these examples depend
on specific theories, it is not yet clear that whether analogous
choices can be applied universally to any theory.3

Iterating the procedure above, we can include at least one
new pole at each step. Since with proper choices of represen-
tative expressions, the set of poles that have correct factor-
ization limits is enlarged, within finite steps, we will obtain
a result that has correct factorization limits for all physical
poles.

It is possible that the obtained expression also contains
spurious poles. One approach to eliminate them is use our
framework (4) again. Let us assume that in (4), A〈1|2〉 has the
correct factorization limits for all physical poles and contains
a spurious pole 〈1|3〉. In such a case, we have A〈1|3〉 = 0. To
continue, notice that in (4), not only A〈1|2〉 and A〈1|3〉 can be
deformed, but also the expression of lim〈1|3〉→0 s13A〈1|2〉 is
not unique. Thus we can deform lim〈1|3〉→0 s13A〈1|2〉 under

the limit 〈1|3〉 → 0, so that
lim〈1|3〉→0 s13A〈1|2〉

s13
does not contain

any physical pole. Then we get the result A′〈1|2〉 which has
the correct factorization limits for all physical poles, while
the spurious pole 〈1|3〉 has been excluded. Again, although
we will demonstrate this technique in examples, there is no
general guidance of how to deform lim〈1|3〉→0 s13A〈1|2〉 cor-
rectly. Iterating this procedure to remove all spurious poles,
we find the full amplitude as desired.

It is worth noticing that this approach is based on the
assumption that the amplitude does not contain any poly-
nomial. If an amplitude contains a polynomial that has no
pole, for instance a constant, this term cannot be detected
by any factorization limit. An example is adding a φ6 term
in the original φ4 Lagrangian, the φ6 term adds a constant
term into the six-point amplitude of pure scalars, then such an
amplitude cannot be fully calculated by our approach. How-
ever, all examples computed in the following sections do not
contain any polynomial term. We will give a brief proof for
the absence of polynomial terms in Appendix A.

The calculation of this approach is more complicated than
the BCFW one since all possible factorization channels need
to be considered, and expressions of factorization limits also
need to be fixed. However, since factorization is a general

3 Although taking efficient choices will simplify the calculation, one
can try to achieve this goal ‘blindly’ by using the following observa-
tion: The uncertainty is due to the rational function of mass dimension
zero, which is helicity neutral for all external particles and reduces to
1 in the factorization limit. Thus one can construct basis of such ratio-
nal functions and fix their coefficients using other factorization limits.
This is only a tentative suggestion, which is beyond the scope of this
manuscript and we will leave it to future work.

property of amplitudes, this approach can be applied to any
quantum field theories.

3 Example 1: φ4 theory

Given the general framework in the previous section, let us
consider a simplest example, the color-ordered massless λφ4

theory. In this theory, the lowest-point amplitude is given by

A4(1, 2, 3, 4) = −λ. (6)

From now on we will drop out the coupling constant −λ. We
will show how to construct amplitudes of the theory by our
approach. Results in this section will be the same as those
given in [13]. Here, the starting expression will be obtained
by the BCFW approach. Notice that the missing boundary
terms will be detected, although we do not pay attention to
them.

3.1 The six-point amplitude A6(1, 2, 3, 4, 5, 6)

With only the φ4 interaction, only amplitudes with an even
number of external particles can exist. The first nontrivial
amplitude is A6(1, 2, 3, 4, 5, 6). Under the deformation

λ1 → λ1 − zλ2, λ̃2 → λ̃2 + z̃λ1, (7)

there is only one pole s561 detected and the corresponding
residue gives

A0 = − 1

s561
, (8)

which is our starting expression for the iterative construction.
Obviously, A0 has the correct factorization limit for s561 →
0.

The physical amplitude also contains poles s123 and s612,
for which A0 cannot give the correct factorization limits.
Under the limit s123 → 0, we have lims123→0 s123A6(1, 2, 3,

4, 5, 6) = −1, but lims123→0 s123A0 = 0, thus we need to add
−1
s123

to A0 to get the expression
( −1
s561

+ −1
s123

)
at the second

step. Now it has the correct factorization limits for the poles
s561 and s123, but not for the pole s612. Analogously, we add
a new term −1

s612
to get

A6(1, 2, 3, 4, 5, 6) = −
(

1

s561
+ 1

s612
+ 1

s123

)
. (9)

Since all factorization limits of possible channels have been
given correctly, and no spurious pole appears (we will not
emphasize the verification of the existence of spurious poles
again if an expression does not contain any spurious pole),
(9) is the correct result. Although we did not try to find the
boundary term, the added terms in these steps give the bound-

ary contribution
( −1
s612

+ −1
s123

)
.
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3.2 The eight-point amplitude A8(1, 2, 3, 4, 5, 6, 7, 8)

The second example is the eight-point amplitude A8(1, 2, 3,

4, 5, 6, 7, 8). Under the 〈1|2]-shift, the BCFW approach
gives

A0 =
[

1

s781

(
1

s234
+ 1

s345
+ 1

s456

)
+ 1

s234

(
1

s567
+ 1

s678

)]
,

(10)

which gives the correct factorization limits for the poles s781

and s234 detected by the deformation.
A0 does not contain the pole s123, which indicates

lims123→0 s123A0

s123
= 0. (11)

Hence when we consider the factorization limit for the pole
s123, a new term needs to be added,

As123 = − lims123→0 A4(1, 2, 3,−P123)A6(P123, 4, 5, 6, 7, 8)

s123

= 1

s123

(
1

s456
+ 1

s567
+ 1

s678

)
. (12)

Thus we obtain A1 = A0 + As123 at the second step, which
gives correct factorization limits for the poles s123, s781, and
s234.

But A1 does not contain the pole s812, similarly we need
to add

As812 = 1

s812

(
1

s345
+ 1

s456
+ 1

s567

)
(13)

to get A2 = A1 + As812 , which has the correct factorization
limits for poles s781, s234, s123, and s812.

Next we consider the factorization limit for the pole
s678 → 0, given by

As678 = 1

s678

(
1

s123
+ 1

s234
+ 1

s345

)
. (14)

On the other hand, we have

lim
s678→0

s678A2 = 1

s123
+ 1

s234
. (15)

Thus using the adjustment (4), we add the difference between
(14) and (15) to get

A3 = A2 +
(
As678 − lims678→0 s678A2

s678

)
= A2 + 1

s678

1

s345
.

(16)

It can be checked that A3 provides the correct factorization
limits for all possible channels, for instance,

lim
s345→0

s345A3 = 1

s678
+ 1

s781
+ 1

s812

= − lim
s345→0

AL(3, 4, 5,−P345)AR(P345, 6, 7, 8, 1, 2).

(17)

Therefore we have found the correct result

A8(1, 2, 3, 4, 5, 6, 7, 8) = A3

=
∑
σ∈Z8

(
1

sσ(1)σ (2)σ (3)sσ(6)σ (7)σ (8)

+ 1

2sσ(1)σ (2)σ (3)sσ(5)σ (6)σ (7)

)
,

(18)

where the boundary term of A0 is

B = As123 +As812 + 1

s678

1

s345
= 1

s123

(
1

s456
+ 1

s567
+ 1

s678

)

+ 1

s812

(
1

s345
+ 1

s456
+ 1

s567

)
+ 1

s678

1

s345
. (19)

3.3 The ten-point amplitude A10(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Now we consider the third example, the ten-point amplitude
A10(1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Using the 〈1|2]-shift, we get
the starting expression

A0 = 1

s234

[
1

s12345

(
1

s678
+ 1

s789
+ 1

s89(10)

)

+ 1

s56789

(
1

s567
+ 1

s678
+ 1

s789

)

+ 1

s567

(
1

s89(10)

+ 1

s9(10)1

)]

+ 1

s9(10)1

[
1

s34567

(
1

s345
+ 1

s456
+ 1

s567

)

+ 1

s45678

(
1

s456
+ 1

s567
+ 1

s678

)

+ 1

s678

(
1

s234
+ 1

s345

)]
+ 1

s23456

(
1

s234
+ 1

s345
+ 1

s456

)

×
(

1

s789
+ 1

s89(10)

+ 1

s9(10)1

)
, (20)

which has the correct factorization limits for the poles s234,
s9(10)1, and s23456 detected by the deformation.

Since A0 does not contain the pole s123, we should add a
term to A0 to provide the correct factorization limit. Similar
manipulations as previous lead to A1 = A0 + As123 where

As123 = 1

s123

[
1

s56789

(
1

s567
+ 1

s678
+ 1

s789

)

+ 1

s45678

(
1

s456
+ 1

s567
+ 1

s678

)

+ 1

s12345

(
1

s678
+ 1

s789
+ 1

s89(10)

)

+ 1

s456

1

s789
+ 1

s456

1

s89(10)

+ 1

s567

1

s89(10)

]
. (21)
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The new A1 has the correct factorization limits for the poles
s234, s9(10)1, s23456, and s123.

Now we move on to consider the pole s(10)12. After a little
computation, we get A2 = A1 + As(10)12 , where

As(10)12 = 1

s(10)12

[
1

s45678

(
1

s456
+ 1

s567
+ 1

s678

)

+ 1

s34567

(
1

s345
+ 1

s456
+ 1

s567

)

+ 1

s56789

(
1

s567
+ 1

s678
+ 1

s789

)

+ 1

s345

1

s678
+ 1

s345

1

s789
+ 1

s456

1

s789

]
, (22)

which provides the correct factorization limits for the poles
s234, s9(10)1, s23456, s123, and s(10)12.

Now we consider the pole s345. The correct factorization
limit is

As345 = 1

s345

[
1

s23456

(
1

s789
+ 1

s89(10)

+ 1

s9(10)1

)

+ 1

s12345

(
1

s678
+ 1

s789
+ 1

s89(10)

)

+ 1

s34567

(
1

s89(10)

+ 1

s9(10)1
+ 1

s(10)12

)

+ 1

s678

1

s9(10)1
+ 1

s678

1

s(10)12
+ 1

s789

1

s(10)12

]
, (23)

while A2 gives

lim
s345→0

s345A2 = 1

s23456

(
1

s789
+ 1

s89(10)

+ 1

s9(10)1

)

+ 1

s34567

(
1

s9(10)1
+ 1

s(10)12

)

+ 1

s678

1

s9(10)1
+ 1

s678

1

s(10)12
+ 1

s789

1

s(10)12
.

(24)

Adding the difference, we can construct

A3 = A2 +
(
As345 − lims345→0 s345A2

s345

)

= A2 + 1

s345

[
1

s12345

(
1

s678
+ 1

s789
+ 1

s89(10)

)

+ 1

s89(10)

1

s34567

]
. (25)

Then A3 provides the correct factorization limits for the poles
s234, s9(10)1, s23456, s123, s(10)12, and s345. Finally we consider
the pole s89(10), whose correct factorization limit is

As89(10)
= 1

s89(10)

[
1

s23456

(
1

s234
+ 1

s345
+ 1

s456

)

+ 1

s12345

(
1

s123
+ 1

s234
+ 1

s345

)

+ 1

s34567

(
1

s345
+ 1

s456
+ 1

s567

)

+ 1

s123

1

s456
+ 1

s123

1

s567
+ 1

s234

1

s567

]
, (26)

while A3 gives

lim
s89(10)→0

s89(10)A3 = 1

s23456

(
1

s234
+ 1

s345
+ 1

s456

)

+ 1

s12345

(
1

s123
+ 1

s234
+ 1

s345

)

+ 1

s34567

1

s345
+ 1

s123

1

s456

+ 1

s123

1

s567
+ 1

s234

1

s567
, (27)

thus we can construct

A4 = A3 +
(
As89(10)

− lims89(10)→0 s89(10)A3

s89(10)

)

= A3 + 1

s89(10)

[
1

s34567

(
1

s456
+ 1

s567

)]
. (28)

One can verify that A4 gives the correct factorization limits
for all channels. Hence, we have found the final result,

A4 =
∑

σ∈Z10

(
1

sσ(1)σ (2)σ (3)sσ(1)σ (2)σ (3)σ (4)σ (5)sσ(8)σ (9)σ (10)

+ 1

sσ(1)σ (2)σ (3)sσ(1)σ (2)σ (3)σ (4)σ (5)sσ(7)σ (8)σ (9)

+ 1

sσ(1)σ (2)σ (3)sσ(10)σ (1)σ (2)σ (3)σ (4)sσ(7)σ (8)σ (9)

+ 1

2sσ(1)σ (2)σ (3)sσ(10)σ (1)σ (2)σ (3)σ (4)sσ(6)σ (7)σ (8)

+ 1

2sσ(1)σ (2)σ (3)sσ(1)σ (2)σ (3)σ (4)σ (5)sσ(6)σ (7)σ (8)

+ 1

2sσ(1)σ (2)σ (3)sσ(9)σ (10)σ (1)σ (2)σ (3)sσ(6)σ (7)σ (8)

+ 1

sσ(1)σ (2)σ (3)sσ(4)σ (5)σ (6)sσ(7)σ (8)σ (9)

)
. (29)

As a byproduct, the boundary term of A0 is

B = As123 + As(10)12 + 1

s345

1

s12345

(
1

s678
+ 1

s789
+ 1

s89(10)

)

+ 1

s89(10)

1

s34567

(
1

s345
+ 1

s456
+ 1

s567

)
. (30)
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4 Example 2: pure gauge theory

Now we move on to color-ordered amplitudes of gluons. The
lowest-point amplitudes are three-point MHV and anti-MHV
amplitudes, which are given as

A3(1
−, 2−, 3+) = 〈1|2〉4

〈1|2〉 〈2|3〉 〈3|1〉 ,

A3(1
+, 2+, 3−) = [1|2]4

[1|2] [2|3] [3|1]
,

(31)

where the coupling constant has been neglected. As is well
known, these amplitudes will vanish when z → ∞ under
correct deformations, therefore they can be computed by the
BCFW approach [9]. We will use our approach to reproduce
them. The results in this section can also be found in [5].
In this section, the calculation will start by computing the
factorization limit for one channel.

4.1 The MHV amplitude An(1+ · · · i− · · · j− · · · n+)

The first case is the n-point MHV amplitude, given by the
well known formula

An(1
+ · · · i− · · · j− · · · n+)= 〈i | j〉4

〈1|2〉 〈2|3〉 · · · 〈n−1|n〉 〈n|1〉 .
(32)

It is sufficient to consider An(1− · · · i− · · · n+) since the gen-
eral formula can be transformed into this choice by cyclic
permutation. We assume (32) is valid for m-point MHV
amplitudes with m < n, then consider factorization limits of
the n-point MHV amplitude. First, let us consider the limit
s12 → 0. There are two types of solutions,

I1 : λ2 = αλ1, P12 = λ1(̃λ1 + αλ̃2),

I2 : λ̃2 = βλ̃1, P12 = (λ1 + βλ2)̃λ1. (33)

Solution I2 contributes nothing to the factorization limit,
since no matter which helicity is assigned for the internal
propagator, one of the sub-amplitudes AL and AR vanishes,
thus only the solution I1 is considered. Then4

lim〈1|2〉→0
A3(1

−, 2+,−P+
12)An−1(P

−
12, 3+, . . . i− . . . n+)

= [2| − P12]3

[−P12|1] [1|2]

〈i |P12〉4

〈P|3〉 〈3|4〉 · · · 〈n|P12〉
= [2|1]3

α [2|1] [1|2]

〈i |1〉4

〈1|3〉 〈3|4〉 · · · 〈n|1〉
= [1|2] 〈1|i〉4

〈2|3〉 〈3|4〉 · · · 〈n|1〉 , (34)

4 For the complex momentum −P , one can choose corresponding
spinors as λ−P = λP and λ̃−P = −̃λP . In this choice, λ̃−P can be
replaced by λ̃P if it appears for even times.

where we have used α 〈1|3〉 = 〈2|3〉. From this we can get
the starting expression

A〈1|2〉 = − lim〈1|2〉→0 AL AR

s12
= 〈1|i〉4

〈1|2〉 〈2|3〉 〈3|4〉 · · · 〈n|1〉 .
(35)

Although for this special case it is already the correct result,
logically, we still need to check whether it has the correct
factorization limits for other channels. For instance, let us
consider the limit s( j−1) j → 0 where both ( j−1) and j have
positive helicity. The non-vanishing sub-amplitude corre-
sponds to the solution λ j = αλ j−1, P( j−1) j = λ j−1(̃λ j−1+
αλ̃ j ). Then we have

lim〈 j−1| j〉→0
A3(( j − 1)+, j+,−P−

( j−1) j )An−1

×(P+
( j−1) j , ( j + 1)+, · · · 1− · · · i− · · · ( j − 2)+)

= [ j − 1| j]3[
j | − P( j−1) j

] [−P( j−1) j | j − 1
]

× 〈1|i〉4〈
P( j−1) j | j + 1

〉 〈 j + 1| j + 2〉 · · · 〈 j − 2|P( j−1) j
〉

= [ j − 1| j] 〈1|i〉4

α 〈 j − 1| j + 1〉 〈 j + 1| j + 2〉 · · · 〈 j − 2| j − 1〉
= [ j − 1| j] 〈1|i〉4

〈 j | j + 1〉 〈 j + 1| j + 2〉 · · · 〈 j − 2| j − 1〉
= lim〈 j−1| j〉→0

s( j−1) j A〈1|2〉, (36)

therefore A〈1|2〉 provides the correct factorization limit for
s( j−1) j → 0. It can also be checked that A〈1|2〉 pro-
vides the correct factorization limits for the other chan-
nels. Therefore we can conclude that A〈1|2〉 is the amplitude
An(1− · · · i− · · · n+) that has all correct factorization limits.

4.2 The six-point amplitude A6(1−, 2−, 3−, 4+, 5+, 6+)

Now we turn to the six-point NMHV amplitude A6(1−, 2−,

3−, 4+, 5+, 6+). First let us consider the limit s12 → 0. The
solution for the non-vanishing sub-amplitude is

λ̃2 = αλ̃1, P12 = (λ1 + αλ2)̃λ1, (37)

We use an auxiliary spinor η to express the un-determined
parameter α as α = [η|2]

[η|1] . Then

A[1|2] = − lim[1|2]→0 A3(1−, 2−,−P+
12)A5(P

−
12, 3−, 4+, 5+, 6+)

s12

= 1

[1|2] [η|1] [2|η]

〈3|1 + 2|η]3

〈3|4〉 〈4|5〉 〈5|6〉 〈6|1 + 2|η]
. (38)

Notice that the spinor η can be chosen arbitrarily. It is
exactly the ambiguity we have emphasized in Sect. 2. Dif-
ferent choices of η gives the same result only under the limit
[1|2] → 0. Also since there are three pairs of η (we count one
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in the numerator and one in the denominator as a pair), each
pair can be chosen independently. For the current example,
we choose three pairs of η to be the same. In other words,
we have chosen a type of representative expressions in the
category of the limit [1|2] → 0.

To fix η, we can try to choose one value so that A[1|2]

has the correct factorization limits for other channels, thus
we pick a pole contained in A[12]. Let us consider the limit
s45 → 0, the solution corresponding to the non-vanishing
sub-amplitudes is

λ5 = αλ4, P45 = λ4(̃λ4 + αλ̃5), α = 〈ζ |4〉
〈ζ |5〉 , (39)

then we have

A〈4|5〉 = − lim〈4|5〉→0 A3(4+, 5+, −P−
45)A5(P

+
45, 6+, 1−, 2−, 3−)

s45

= 1

〈4|5〉 〈ζ |4〉 〈5|ζ 〉
〈ζ |4 + 5|6]3

[6|1] [1|2] [2|3] 〈ζ |4 + 5|3]
. (40)

Again, the form of A〈4|5〉 provides a type of representative
expressions in the category of the limit 〈4|5〉 → 0. Now we
ask if there is a choice of η and ζ , such that the above two rep-
resentative expressions are the same under the correspond-
ing limits, i.e., (s12s45A[1|2])[1|2]→0 = (s12s45A〈4|5〉)〈4|5〉→0.
This is a strong constraint, since it means that two correct
factorization limits are given either by A[1|2] or by A〈4|5〉.
In general, it cannot be achieved, but for this case, we for-
tunately manage to obtain the choice η = λ̃6, ζ = λ3. To
check it, for the left hand side, we have

lim
[1|2]→0

A3(1
−, 2−,−P+

12)A5(P
−
12, 3−, 4+, 5+, 6+)

= 〈1|2〉 〈3|1 + 2|6]3

〈3|4〉 〈4|5〉 〈5|6〉 [6|1] [2|6] 〈6|1 + 2|6]

= 〈1|2〉 〈3|4 + 5|6]3

〈3|4〉 〈4|5〉 [6|1] 〈5|6|2] (s16 + s26)

= 〈1|2〉 〈3|4 + 5|6]3

〈3|4〉 〈4|5〉 [1|6] 〈5|3 + 4|2] s126
, (41)

where [1|2] = 0 is used in the last step, thus s16 + s26 =
s12 + s16 + s26 = s126 and 〈5|3 + 4|2] = −〈5|6|2].
Similarly, for the right hand side we have

lim〈4|5〉→0
A3(4

+, 5+,−P−
45)A5(P

+
45, 6+, 1−, 2−, 3−)

= [4|5] 〈3|4 + 5|6]3

〈3|4〉 [1|2] [1|6] 〈5|3 + 4|2] s126
, (42)

where we have used 〈3|4 + 5|3] = s126 and 〈53〉 [2|3] =
−〈5|3 + 4|2] under the limit 〈4|5〉 → 0.

Now a nice starting expression appears

A[1|2]〈4|5〉 = A[1|2] = A〈4|5〉

= − 〈3|4 + 5|6]3

〈3|4〉 〈4|5〉 [1|2] [6|1] 〈5|3 + 4|2] s126
. (43)

To continue, we consider other poles. One nice choice is
a pole s such that lims→0 s A[1|2]〈4|5〉 = 0. There are two
two-particle channels s23 → 0 and s56 → 0 satisfying this
requirement. Proceeding as the case [1|2] → 0 and 〈4|5〉 →
0, we get

A[2|3]〈5|6〉 = − 〈1|2 + 3|4]3

〈6|1〉 〈5|6〉 [2|3] [3|4] 〈5|3 + 4|2] s234
, (44)

which has the correct factorization limits for s23 → 0 and
s56 → 0. Since A[1|2]〈4|5〉 and A[2|3]〈5|6〉 do not share any
physical pole, we should sum them to get

A[1|2][2|3]〈4|5〉〈5|6〉 = A[1|2]〈4|5〉 + A[2|3]〈5|6〉

= − 1

〈5|3 + 4|2]

(
〈1|2 + 3|4]3

〈6|1〉 〈5|6〉 [2|3] [3|4] s234

+ 〈3|4 + 5|6]3

〈3|4〉 〈4|5〉 [1|2] [6|1] s126

)
, (45)

which gives the correct factorization limits for s12 → 0,
s23 → 0, s45 → 0, and s56 → 0. One can verify that
A[1|2][2|3]〈4|5〉〈5|6〉 also gives the correct factorization limits
for remaining channels.5

One can observe the factor 〈5|3 + 4|2] in the denominator
of A[1|2][2|3]〈4|5〉〈5|6〉. However, it is not a pole since

lim〈5|3+4|2]→0
〈5|3 + 4|2] A[1|2][2|3]〈4|5〉〈5|6〉 = 0. (46)

To verify this, notice that 〈5|3 + 4|2] → 0 implies |5〉 ∝ |3+
4 |2]. Then the momentum conservation condition becomes

|1〉 [1| + |2〉 [2| + |3〉 [3| + |4〉 [4| + c|3
+4 |2] [5| + |6〉 [6| = 0. (47)

The coefficient c can be fixed by contract (47) with two
spinors. For example, contracting (47) with |1] and 〈6|, we
get c = − 〈1|2+3+4|6]

〈1|3+4|2][5|6] . Contracting with different spinors
gives different expressions of c but they are equivalent under
the limit 〈5|3 + 4|2] → 0.6 Substituting these into (45), one
can get the result (46). Consequently, the expression (45)
contains only physical poles. Thus, we have found

A6(1
−, 2−, 3−, 4+, 5+, 6+) = A[1|2][2|3]〈4|5〉〈5|6〉. (48)

Although in this subsection, we start with the factorization
of a two-particle channel, one can start with the factorization
of a three-particle channel and proceed similarly to get the
correct result. The calculation is shown in Appendix B.

5 There is a technical issue regarding the limits, such as s234 → 0. For
this case, the spinor λP234 can be expressed, for example, via 〈a|P234〉 =
〈a|P234|b]
[P234|b] (see Appendix B).

6 If one in this way fixes the coefficient α in (37), contracting the
momentum conservation equation with different spinors, indeed this
provides different choices of the reference spinor η. There is no guid-
ance to show which choice is more proper for the latter calculation.
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4.3 The six-point amplitude A6(1+, 2−, 3+, 4−, 5+, 6−)

Let us start with the factorization limit for s12 → 0. There
are two types of solutions for non-vanishing sub-amplitudes:

I1 : λ2 = α1λ1, P12 = λ1(̃λ1 + α1̃λ2), α1 = 〈η1|2〉
〈η1|1〉 ,

I2 : λ̃2 = β1̃λ1, P12 = (λ1 + β1λ2)̃λ1, β1 = [ζ1|2]

[ζ1|1]
.

(49)

For solution I1, we have

A〈1|2〉 = 〈2|η1〉3

〈η1|1〉 〈1|2〉
[3|5]4

[3|4] [4|5] [5|6] 〈η1|1 + 2|6] 〈η1|1+2|3]
,

(50)

and for solution I2,

A[1|2] = [1|ζ1]3 〈4|6〉4

[2|ζ1] [2|1] 〈3|4〉 〈4|5〉 〈5|6〉 〈6|1 + 2|ζ1] 〈3|1 + 2|ζ1]
.

(51)

A〈1|2〉 does not contain the pole [1|2] and A[1|2] does not
contain the pole 〈1|2〉. Thus we sum these two parts to obtain
the starting expression A〈1|2〉[1|2] = A〈1|2〉 + A[1|2], which
satisfies the factorization limit for s12 → 0.

In the expression of A〈1|2〉[1|2], there are unfixed variables
ζ1 and η1, which reflects the freedom of representative ele-
ments in the category as discussed in Sect. 2. Now we try to
fix these parameters as previous. To do so, considering the
limit s23 → 0, a similar calculation leads to

s23 → 0 :
A〈2|3〉 = 〈2|η2〉3 [5|1]4

〈3|η2〉 〈3|2〉 [4|5] [5|6] [6|1] 〈η2|2+3|1] 〈η2|2+3|4]
,

A[2|3] = [3|ζ2]3 〈4|6〉4

[ζ2|2] [3|2] 〈4|5〉 〈5|6〉 〈6|1〉 〈1|2+3|ζ2] 〈4|2+3|ζ2]
.

(52)

Matching A[2|3] with A[1|2] yields

ζ1 = λ̃3, ζ2 = λ̃1 (53)

and

A[1|2][2|3] = A[1|2] = A[2|3]

= [1|3]4 〈4|6〉4

〈4|5〉 〈5|6〉 [1|2] [2|3] 〈6|1+2|3] 〈4|2+3|1] s123
.

(54)

Plugging this back, the starting expression becomes
A〈1|2〉[1|2][2|3] = A〈1|2〉 + A[1|2][2|3] which has the cor-
rect factorization limits for s12 → 0 plus [2|3] → 0.
When we do the iterative step to include the new factor-
ization limit 〈2|3〉 → 0, we need to add A〈2|3〉 to arrive at
A〈1|2〉〈2|3〉[1|2][2|3] = A〈1|2〉 + A〈2|3〉 + A[1|2][2|3], which has
the correct factorization limits for s12 → 0 and s23 → 0.

Now we continue to include new factorization limits for
s34 → 0. Using

s34 → 0 :
A〈3|4〉 = 〈4|η3〉3

〈η3|3〉 〈3|4〉
[5|1]4

[5|6] [6|1] [1|2] 〈η3|3 + 4|2] 〈η3|3 + 4|5]
,

A[3|4] = [3|ζ3]3 〈6|2〉4

[4|ζ3] [4|3] 〈5|6〉 〈6|1〉 〈1|2〉 〈2|3 + 4|ζ3] 〈5|3 + 4|ζ3]
,

(55)

we find that the freedom of A〈2|3〉 can be fixed by η2 = λ4

when we match it with A〈3|4〉 with η3 = λ2, and this single
expression is

A〈2|3〉〈3|4〉 = A〈2|3〉 = A〈3|4〉

= 〈2|4〉4 [5|1]4

〈2|3〉 〈3|4〉 [5|6] [6|1] 〈4|2 + 3|1] 〈2|3 + 4|5] s234
.

(56)

Similarly, matching A[3|4] and A〈1|2〉 we find η1 = λ6, ζ3 =
λ̃5 and

A〈1|2〉[3|4] = A〈1|2〉 = A[3|4]

= 〈2|6〉4 [3|5]4

〈6|1〉 〈1|2〉 [3|4] [4|5] 〈6|4 + 5|3] 〈2|3 + 4|5] s345
.

(57)

Summing (54), (56), and (57) we have

A〈1|2〉〈2|3〉〈3|4〉[1|2][2|3][3|4]

= A[1|2][2|3] + A〈2|3〉〈3|4〉 + A〈1|2〉[3|4]

= [1|3]4 〈4|6〉4

[1|2] [2|3] 〈4|5〉 〈5|6〉 〈6|1 + 2|3] 〈4|2 + 3|1] s123

+ 〈2|4〉4 [5|1]4

〈2|3〉 〈3|4〉 [5|6] [6|1] 〈4|2 + 3|1] 〈2|3 + 4|5] s234

+ 〈2|6〉4 [3|5]4

〈6|1〉 〈1|2〉 [3|4] [4|5] 〈6|4 + 5|3] 〈2|3 + 4|5] s345
.

(58)

One can check that A〈1|2〉〈2|3〉〈3|4〉[1|2][2|3][3|4] has the correct
factorization limits for all channels. Again, it can be verified
that there is no spurious pole. Thus we find

A6(1
+, 2−, 3+, 4−, 5+, 6−) = A〈1|2〉〈2|3〉〈3|4〉[1|2][2|3][3|4].

(59)

4.4 The six-point amplitude A6(1+, 2+, 3−, 4+, 5−, 6−)

Let us start with the factorization limit of s12 → 0. There is
only one type of solution corresponding to the non-vanishing
sub-amplitude, namely λ2 = αλ1, which leads to

A〈1|2〉 = 〈η1|1 + 2|4]4

〈2|1〉 〈2|η1〉 〈1|η1〉 [3|4] [4|5] [5|6] 〈η1|1+2|3] 〈η1|1+2|6]
.

(60)
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To fix the choice of η1, noticing the pole [5|6] in A〈1|2〉, we
then match it with the factorization limit,

A[5|6] = 〈3|5 + 6|ζ1]4

[6|5] [ζ1|5] [ζ1|6] 〈1|2〉 〈2|3〉 〈3|4〉 〈1|5 + 6|ζ1] 〈4|5 + 6|ζ1]
,

(61)

thus we find η1 = λ3, ζ1 = λ̃4, and the starting expression
is given by

A〈1|2〉[5|6] = A〈1|2〉 = A[5|6]

= − 〈3|1 + 2|4]4

〈1|2〉 〈2|3〉 [4|5] [5|6] 〈1|2 + 3|4] 〈3|1 + 2|6] s123
.

(62)

Since A〈1|2〉[5|6] does not contain the poles s34 and s61, we
will try to include their factorization limits. The limit s34 →0
gives

A〈3|4〉 = 〈3|η2〉3 [1|2]3

〈4|3〉 〈4|η2〉 [5|6] [6|1] 〈η2|3 + 4|2] 〈η2|3 + 4|5]
,

A[3|4] = 〈5|6〉3 [ζ2|4]3

[4|3] [ζ2|3] 〈6|1〉 〈1|2〉 〈2|3 + 4|ζ2] 〈5|3 + 4|ζ2]
,

(63)

while the limit s61 → 0 gives

A〈6|1〉 = 〈η3|6〉3 [2|4]4

〈1|6〉 〈1|η3〉 [2|3] [3|4] [4|5] 〈η3|1 + 6|5] 〈η3|1 + 6|2]
,

A[6|1] = 〈3|5〉4 [1|ζ3]4

[1|6] [6|ζ3] 〈2|3〉 〈3|4〉 〈4|5〉 〈5|6 + 1|ζ3] 〈2|6 + 1|ζ3]
.

(64)

Matching A[6|1] with A〈3|4〉 fixes η2 =λ5, ζ3 = λ̃2, and we get

A〈3|4〉[6|1] = A〈3|4〉 = A[6|1]

= − 〈3|5〉4 [1|2]3

〈3|4〉 〈4|5〉 [6|1] 〈5|3 + 4|2] 〈3|4 + 5|6] s345
.

(65)

Then matching A〈6|1〉 with A[3|4] fixes η3 = λ5, ζ2 = λ̃2, and

A〈6|1〉[3|4] = A〈6|1〉 = A[3|4]

= − 〈5|6〉3 [2|4]4

〈6|1〉 [2|3] [3|4] 〈1|2 + 3|4] 〈5|3 + 4|2] s234
.

(66)

Summing these, we have

A〈1|2〉〈3|4〉〈6|1〉[3|4][5|6][6|1]

= A〈1|2〉[5|6] + A〈3|4〉[6|1] + A〈6|1〉[3|4]

= − 〈3|1 + 2|4]4

〈1|2〉 〈2|3〉 [4|5] [5|6] 〈1|2 + 3|4] 〈3|1 + 2|6] s123

− 〈3|5〉4 [1|2]3

[6|1] 〈3|4〉 〈4|5〉 〈5|3 + 4|2] 〈3|4 + 5|6] s345

− 〈5|6〉3 [2|4]4

[2|3] [3|4] 〈6|1〉 〈1|2 + 3|4] 〈5|3 + 4|2] s234
. (67)

It can be verified that A〈1|2〉〈3|4〉〈6|1〉[3|4][5|6][6|1] has the correct
factorization limits for all channels, and all spurious poles are
canceled, therefore

A6(1
+, 2+, 3−, 4+, 5−, 6−) = A〈1|2〉〈3|4〉〈6|1〉[3|4][5|6][6|1].

(68)

5 Example 3: Einstein–Maxwell theory

In this section we consider amplitudes of photons coupling to
gravitons. In such a theory the lowest-point amplitudes are of
two types: photon–photon–graviton and three-graviton self-
interactions,

A3(a
−1
γ , b+1

γ , c−2
g ) = κ

〈c|a〉4

〈a|b〉2 ,

A3(a
−1
γ , b+1

γ , c+2
g ) = κ

[b|c]4

[a|b]2 ,

A3(a
−2
g , b−2

g , c+2
g ) = κ

〈a|b〉8

〈a|b〉2 〈b|c〉2 〈c|a〉2 ,

A3(a
+2
g , b+2

g , c−2
g ) = κ

[a|b]8

[a|b]2 [b|c]2 [c|a]2 . (69)

Since two types of three-point amplitudes have the same cou-
pling constant κ , we will neglect κ from now on.

Before starting the calculation, let us give a brief review
on some general properties of amplitudes in this theory. First,
let us review the validity of the BCFW approach. As proved
by Cheung, for amplitudes containing at least one graviton,
the boundary term is zero under some proper deformations
[10]. Hence, the BCFW approach is available for amplitudes
containing gravitons. On the other hand, Arkani-Hamed and
Kaplan have shown that the boundary term will not vanish
when deforming two photons [9]. However, their conclusion
cannot be applied to the circumstance that two deformed pho-
tons have the same helicity. The reason is that their approach
relies on the picture that a hard photon moves in a soft back-
ground, which means two deformed photons should be con-
nected by photon propagators or they are attached to the
same vertex. In Einstein–Maxwell theory, two photons with
the same helicity could not satisfy such a condition because
of the helicity structure of three-point amplitudes. In some
cases, the naive power counting of individual Feynman dia-
grams shows A(z → ∞) = 0 when deforming two photons
with the same helicity, for example the four-point amplitude
A4(1−1

γ , 2+1
γ , 3−1

γ , 4+1
γ ), then the BCFW approach is feasi-

ble. However, if an amplitude contains no graviton and the
naive analysis of Feynman diagrams cannot guarantee that it
will vanish at z → ∞, we do not know whether it can be com-
puted by the BCFW approach. We will see such an example,
namely A6(1−1

γ , 2+1
γ , 3−1

γ , 4+1
γ , 5−1

γ , 6+1
γ ). Secondly, ampli-

tudes of this theory do not have color-order. Thus, the only
difference between external particles which have the same
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helicity is their momenta. It means that amplitudes are invari-
ant when exchanging labels of particles with the same helic-
ity. This symmetry is useful for calculating and checking
results.

The structure of three-point amplitudes indicates that an
amplitude of this theory must contain even number of pho-
tons, and the sum of helicities of photons is zero. Thus,
if we focus on amplitudes containing photons, there are
two types of four-point amplitudes, two types of five-point
amplitudes, three types of six-point amplitudes, and so on.
We will calculate all four-point amplitudes, all five-point
amplitudes, and one type of six-point amplitudes, namely
A6(1−1

γ , 2+1
γ , 3−1

γ , 4+1
γ , 5−1

γ , 6+1
γ ). For four-point and five-

point amplitudes, we will present more tricks to fix for-
mulas of factorization limits by considering the consistency
between different channels. On the other hand, for the six-
photon amplitude, we will discuss how to handle one situa-
tion: Among all possible deformations, we know the bound-
ary term will appear for some deformations, and we do not
know whether the boundary term will vanish for other defor-
mations.

5.1 The four-point amplitude A4(1−1
γ , 2+1

γ , 3−2
g , 4+2

g )

First let us consider A4(1−1
γ , 2+1

γ , 3−2
g , 4+2

g ). We start from
the factorization limit of s12 → 0, and there are two types of
solutions,

I1 : λ̃2 = αλ̃1, λ3 = βλ4, P12 = γ λ4̃λ1,

α = 〈4|1〉
〈2|4〉 , β = [1|4]

[3|1]
, γ = 〈1|2〉

〈4|2〉 = [3|4]

[1|3]
,

I2 : λ2 = αλ1, λ̃3 = βλ̃4, P12 = γ λ1̃λ4,

α = [4|1]

[2|4]
, β = 〈1|4〉

〈3|1〉 , γ = [1|2]

[4|2]
= 〈3|4〉

〈1|3〉 . (70)

For solution I1, we have

lim
[1|2]→0

A3(1
−1
γ , 2+1

γ ,−P−2
g )A3(P

+2
g , 3−2

g , 4+2
g )

= 〈1|3〉2 〈2|3〉2 [4|2]4

s2
13

, (71)

and for solution I2

lim〈12〉→0
A3(1

−1
γ , 2+1

γ ,−P+2
g )A3(P

−2
g , 3−2

g , 4+2
g )

= 〈1|3〉2 〈2|3〉2 [4|2]4

s2
14

. (72)

Now we want to seek a formula A〈1|2〉[1|2] which satisfies
factorization limits for both 〈1|2〉 → 0 and [1|2] → 0. It can
be done by rewriting two factorization limits in the correct
expressions. This technique will be used frequently in the
latter examples. A useful observation is s13 = −s14 when
s12 → 0, since s12 + s13 + s14 = 0 for massless particles.

Using this relation, we have

lim〈1|2〉→0
AL AR = lim

[1|2]→0
AL AR = −〈1|3〉2 〈2|3〉2 [4|2]4

s13s14
.

(73)

Thus we can write

A〈1|2〉[1|2] = 〈1|3〉2 〈2|3〉2 [4|2]4

s12s13s14
. (74)

One can check that A〈1|2〉[1|2] has the correct factorization
limits for the remaining channels, therefore it is the correct
result of A4(1−1

γ , 2+1
γ , 3−2

g , 4+2
g ). It is the same as the one in

[16].

5.2 The four-point amplitude A4(1−1
γ , 2+1

γ , 3−1
γ , 4+1

γ )

The second amplitude is A4(1−1
γ , 2+1

γ , 3−1
γ , 4+1

γ ). Notice
that the naive power counting of Feynman diagrams shows
A(z → ∞) → 1

z under the deformation of two photons
of the same helicity, thus the BCFW approach is feasible
although this case cannot be covered by the conclusions in
[9,10]. Here we try to find the amplitude using our approach.
We will start from considering the limit s12 → 0, where two
types of solutions are the same as in the previous example
and we find

A[1|2] = −〈1|3〉2 [2|4]2

s12
, A〈1|2〉 = −〈1|3〉2 [2|4]2

s12
. (75)

So we can write A〈1|2〉[1|2] = A〈1|2〉 = A[1|2] as our starting
expression.

Since A〈1|2〉[1|2] does not contain the pole s14, we need to
add a new term to get the full answer. The limit s14 → 0
gives

A〈1|4〉[1|4] = −〈1|3〉2 [2|4]2

s14
. (76)

Finally we sum A〈1|2〉[1|2] and A〈1|4〉[1|4] to get

A〈1|2〉〈1|4〉[1|2][1|4] = A〈1|2〉[1|2] + A〈1|4〉[1|4]

= s13 〈1|3〉2 [2|4]2

s12s14
, (77)

which has the correct factorization limits for s12 → 0
and s14 → 0. It can be verified that A〈1|2〉〈1|4〉[1|2][1|4] also
has the correct factorization limits for remain channels.
Thus A〈1|2〉〈1|4〉[1|2][1|4] is the correct result for the amplitude
A4(1−1

γ , 2+1
γ , 3−1

γ , 4+1
γ ). It is the same as the one in [16].

5.3 The five-point amplitude A5(1−1
γ , 2+1

γ , 3−2
g , 4+2

g , 5−2
g )

Now we turn to the five-point amplitude A5(1−1
γ , 2+1

γ , 3−2
g ,

4+2
g , 5−2

g ). Brief analysis of sub-amplitudes shows that this
amplitude only contains poles of the form [•|•], therefore we
need not to consider any channel of the form 〈•|•〉. We start
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with the result of the BCFW approach through a deformation
which yields the non-zero boundary term. If we deform 1−1

and 2+1, the conclusion in [9] indicates that the boundary
contribution will appear. Under the deformation

λ2 → λ2 − zλ1, λ̃1 → λ̃1 + z̃λ2, (78)

the BCFW approach gives

A[1|3][1|5] = 〈1|3〉 〈4|5〉 [3|4] [2|4]5

[1|3] [2|5] [3|5] [4|5] [2|3]2

+ 〈1|5〉 〈3|4〉 [4|5] [2|4]5

[1|5] [2|3] [3|4] [3|5] [2|5]2 , (79)

which has the correct factorization limits for the poles [1|3]
and [1|5]. The expression (79) is just one representation in
the category and we can deform it to another while keeping
the correct factorization limits for the poles [1|3] and [1|5].
The reason to choose another representation is that

lim
[2|5]→0

s25A[1|3][1|5] = ∞, lim
[2|3]→0

s23A[1|3][1|5] = ∞.

(80)

To remove double poles, we can use following transforma-
tions:

lim
[1|3]→0

s13A[1|3][1|5] = −〈1|3〉2 〈4|5〉 [3|4] [2|4]5

[2|5] [3|5] [4|5] [2|3]2

= 〈1|3〉2 〈2|5〉 [3|2] [2|4]5

[2|5] [3|5] [4|5] [2|3]2

= − 〈1|3〉2 〈2|5〉 [2|4]5

[2|3] [2|5] [3|5] [4|5]
(81)

and

lim
[1|5]→0

s15A[1|3][1|5] = −〈1|5〉2 〈3|4〉 [4|5] [2|4]5

[2|3] [3|4] [3|5] [2|5]2

= 〈1|5〉2 〈3|2〉 [2|5] [2|4]5

[2|3] [3|4] [3|5] [2|5]2

= − 〈1|5〉2 〈2|3〉 [2|4]5

[2|3] [2|5] [3|4] [3|5]
. (82)

Then we have

A′
[1|3][1|5] = 〈1|3〉 〈2|5〉 [2|4]5

[1|3] [2|3] [2|5] [3|5] [4|5]

+ 〈1|5〉 〈2|3〉 [2|4]5

[1|5] [2|3] [2|5] [3|4] [3|5]
, (83)

which will be our starting expression for later calculations.
Since A[1|3][1|5] does not contain the pole [1|2], we must

add a term to give the correct factorization limit for [1|2] →
0. Thus we consider [1|2] → 0, and we get

lim
[1|2]→0

AL AR = − 〈1|2〉2 〈3|5〉 [1|4]2 [2|4]4

[1|3] [1|5] [3|4] [3|5] [4|5]

= − 〈1|2〉2 〈3|5〉 [2|4]6

[2|3] [2|5] [3|4] [3|5] [4|5]
,

A[1|2] = − lim[1|2]→0 AL AR

s12

= − 〈1|2〉 〈3|5〉 [2|4]6

[1|2] [2|3] [2|5] [3|4] [3|5] [4|5]
. (84)

The purpose of the last step in the first line is to deform
properly under the limit, so that the poles [1|3] and [1|5] in
the denominator can be removed to keep the factorization
limits for [1|3] → 0 and [1|5] → 0 when A′

[1|3][1|5] is added.
Now we arrive at

A[1|2][1|3][1|5] = 〈1|3〉 〈2|5〉 [2|4]5

[1|3] [2|3] [2|5] [3|5] [4|5]

+ 〈1|5〉 〈2|3〉 [2|4]5

[1|5] [2|3] [2|5] [3|4] [3|5]

− 〈1|2〉 〈3|5〉 [2|4]6

[1|2] [2|3] [2|5] [3|4] [3|5] [4|5]
, (85)

which has the correct factorization limits for the poles
[1|3], [1|5], [1|2]. One can observe that it is invariant when
exchanging 3 and 5. It can be checked that it gives the correct
factorization limits for remain channels, therefore

A5(1
−1
γ , 2+1

γ , 3−2
g , 4+2

g , 5−2
g ) = A[1|2][1|3][1|5]. (86)

The calculation above starts from a deformation which
yields a non-zero boundary contribution. In order to verify
(86), we can calculate the amplitude by the BCFW approach
under a correct deformation, and compare the result with
(86). Let us choose the deformation as

λ̃3 → λ̃3 + z̃λ5, λ5 → λ5 − zλ3. (87)

Then the BCFW approach gives

A5(1
−1
γ , 2+1

γ , 3−2
g , 4+2

g , 5−2
g )

= [1|4] [2|4]5

[1|2] [3|5]2

( 〈1|3〉 〈2|4〉
[1|3] [2|5] [4|5]

+ 〈3|2〉 〈1|4〉
[1|5] [2|3] [4|5]

+ 〈1|2〉 〈3|4〉
[1|5] [2|5] [3|4]

)
. (88)

One can verify that it is equal to (86) although their expres-
sions look totally different.

5.4 The five-point amplitude A5(1−1
γ , 2+1

γ , 3−1
γ , 4+1

γ , 5−2
g )

The next example is the five-point amplitude A5(1−1
γ , 2+1

γ ,

3−1
γ , 4+1

γ , 5−2
g ). As in the previous case, a brief analysis of

sub-amplitudes shows that all poles are of the form [•|•]. We
again start from the result given by the BCFW approach under
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a wrong deformation which contains the non-zero boundary
term. Such a deformation can be chosen as

λ̃1 → λ̃1 − z̃λ2, λ2 → λ2 + zλ1, (89)

then the BCFW approach gives

A[1|4][1|5] = − 〈1|4〉 〈3|5〉 [3|4] [2|4]4

[1|4] [2|3] [2|5] [3|5] [4|5]

+ 〈1|5〉 〈3|4〉 [3|5] [2|4]5

[1|5] [2|3] [3|4] [4|5] [2|5]2 , (90)

which produces the correct factorization limits for the poles
[1|4] and [1|5]. Again the presence of the double pole
[2|5] suggests us to deform it. To do so, we can use
lim[1|5]→0 〈3|4〉 [3|5] = −〈2|4〉 [2|5] to rewrite the second
term as

〈1|5〉 〈3|4〉 [3|5] [2|4]5

[1|5] [2|3] [3|4] [4|5] [2|5]2 → − 〈1|5〉 〈2|4〉 [2|4]5

[1|5] [2|3] [3|4] [4|5] [2|5]
.

(91)

Thus we get our starting expression,

A′
[1|4][1|5] = A[1|4] + A[1|5], (92)

with

A[1|4] = − 〈1|4〉 〈3|5〉 [3|4] [2|4]4

[1|4] [2|3] [2|5] [3|5] [4|5]
,

A[1|5] = − 〈1|5〉 〈2|4〉 [2|4]5

[1|5] [2|3] [3|4] [4|5] [2|5]
. (93)

Then we try to include a term to produce the correct fac-
torization limit for the pole [1|2], which is not contained in
A′

[1|4][1|5]. The symmetry of exchanging labels implies A[1|2]

can be obtained by exchanging 2 and 4 in A[1|4], thus we
arrive at

A[1|2][1|4][1|5] = A[1|2] + A′
[1|4][1|5]

= − 〈1|2〉 〈3|5〉 [2|3] [2|4]4

[1|2] [3|4] [2|5] [3|5] [4|5]

− 〈1|4〉 〈3|5〉 [3|4] [2|4]4

[1|4] [2|3] [2|5] [3|5] [4|5]

− 〈1|5〉 〈2|4〉 [2|4]5

[1|5] [2|3] [3|4] [4|5] [2|5]
. (94)

Now we consider the factorization limit for the pole [3|4].
A[3|4] can be obtained by exchanging 1 and 3 in A[1|4]:

A[3|4] = 〈1|5〉 〈3|4〉 [1|4] [2|4]4

[3|4] [1|2] [2|5] [1|5] [4|5]
, (95)

thus using (4) one can construct

A′
[3|4] = A[1|2][1|4][1|5]

+
(
A[3|4] − lim[3|4]→0 s34A[1|2][1|4][1|5]

s34

)

= A[3|4] + A[1|4]. (96)

A′
[3|4] gives the correct factorization limits for [3|4] → 0 and

[1|4] → 0, but no longer has the correct factorization limits
for [1|2] → 0 and [1|5] → 0. This is a phenomenon one
will encounter if the representative expression is not properly
chosen as mentioned in Sect. 2. To avoid this, one needs to
find proper representative expressions for A[3|4] in (95) and
A[1|4] in (93), such that at each iterative step, the correct
factorization limit is satisfied not only for the new pole, but
also for other poles in previous steps.

Now we try to deform A[3|4] in (95). Noting that A[3|4]

contains both poles [1|2] and [3|4], we try to transform it so
that it gives the correct factorization limit for the pole [1|2]
automatically. Using

lim
[3|4]→0

s34A[3|4] = −〈1|5〉 〈3|4〉2 [1|4] [2|4]4

[1|2] [2|5] [1|5] [4|5]

= 〈2|5〉 〈3|4〉2 [3|5] [2|4]5

[1|2] [2|5] [1|5] [4|5] [3|5]

= − 〈1|2〉 〈3|4〉2 [1|3] [2|4]5

[1|2] [1|5] [2|5] [3|5] [4|5]
(97)

and

lim
[1|2]→0

s12A[1|2] = 〈1|2〉2 〈3|5〉 [2|3] [2|4]4

[3|4] [2|5] [3|5] [4|5]

= − 〈1|2〉2 〈4|5〉 [1|5] [2|4]5

[3|4] [2|5] [3|5] [4|5] [1|5]

= − 〈1|2〉2 〈3|4〉 [1|3] [2|4]5

[1|5] [2|5] [3|4] [3|5] [4|5]
, (98)

we obtain

A[1|2][3|4] = A[1|2] = A[3|4]

= 〈1|2〉 〈3|4〉 [1|3] [2|4]5

[1|2] [1|5] [2|5] [3|4] [3|5] [4|5]
, (99)

where A[1|2] in (94) has been deformed as well. Using the
deformed A[3|4] in (99) from (94) to (96), we find that the
new A′

[3|4] gives the correct factorization limits for the poles
[3|4], [1|4], and [1|2], but not for the pole [1|5]. To fix this
problem, we need to deform A[1|4] or A[1|5] in (93).

Now noticing the symmetry 1 ↔ 3 or 2 ↔ 4, we can
construct A[1|4][2|3] from A[1|2][3|4] in (99) by exchanging 2
and 4 as

A[1|4][2|3] = A[1|4] = A[2|3]

= − 〈1|4〉 〈2|3〉 [1|3] [2|4]5

[1|4] [1|5] [2|3] [2|5] [3|5] [4|5]
. (100)

Putting the new expressions in (99) and (100) into (96), we
arrive at

A[1|2][1|4][2|3][3|4] = A[1|2][3|4] + A[1|4][2|3], (101)

which gives the correct factorization limits for [1|2] → 0,
[1|4] → 0, [2|3] → 0, [3|4] → 0 as well as [1|5] → 0. To
check it, notice that
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lim
[1|5]→0

s15A[1|2][1|4][2|3][3|4]

= 〈1|5〉 〈1|4〉 〈2|3〉 [1|3] [2|4]5

[1|4] [2|3] [2|5] [3|5] [4|5]

−〈1|5〉 〈1|2〉 〈3|4〉 [1|3] [2|4]5

[1|2] [2|5] [3|4] [3|5] [4|5]

= 〈1|5〉 〈2|4〉 [2|4]5

[2|5] [3|5] [4|5]

( 〈1|2〉
[3|4]

− 〈1|4〉
[2|3]

)

= 〈1|5〉 〈2|4〉 [2|4]5 〈1|2 + 4|3]

[2|3] [2|5] [3|4] [3|5] [4|5]

= 〈1|5〉 〈2|4〉 [2|4]5 〈1|5〉 [3|5]

[2|3] [2|5] [3|4] [3|5] [4|5]
, (102)

therefore

lim
[1|5]→0

s15A[1|2][1|4][2|3][3|4] = s15A[1|5]

= − lim
[1|5]→0

AL AR . (103)

One can verify that A[1|2][1|4][2|3][3|4] also gives the correct
factorization limits for remaining channels. Thus we find the
correct amplitude is

A(1−1
γ , 2+1

γ , 3−1
γ , 4+1

γ , 5−2
g ) = A[1|2][1|4][2|3][3|4]. (104)

Notice that the formula of A[1|2][1|4][2|3][3|4] is manifestly
invariant when exchanging 1 ↔ 3 and 2 ↔ 4. The result
(104) can be rewritten as

A(1−1
γ , 2+1

γ , 3−1
γ , 4+1

γ , 5−2
g )

= [1|3] [2|4]5 (〈1|4〉 [3|4] [1|4 + 5|3〉 − [1|4] 〈3|4〉 〈1|4 + 5|3])

[1|2] [1|4] [1|5] [2|3] [2|5] [3|4] [3|5] [4|5]

= [1|3] [2|4]5 ([1|4] [3|5] 〈1|5〉 〈3|4〉 − 〈1|4〉 〈3|5〉 [1|5] [3|4])

[1|2] [1|4] [1|5] [2|3] [2|5] [3|4] [3|5] [4|5]
,

(105)

which is the formula in [16].
As a side note, when two deformed particles are two pho-

tons of the same helicity, there is no general proof of its
boundary behavior, since this situation cannot be covered

by the conclusions in [9,10]. Although naive power count-
ing of Feynman diagrams shows that the large z behavior
is z0, using the result given in (105), one can observe that
under the deformation of two photons of the same helicity,
the boundary term will vanish.

5.5 The six-point amplitude
A6(1−1

γ , 2+1
γ , 3−1

γ , 4+1
γ , 5−1

γ , 6+1
γ )

The final example is the six-point amplitude A6(1−
γ , 2+

γ , 3−
γ ,

4+
γ , 5−

γ , 6+
γ ). This case is a little different from those in pre-

vious subsections. For previous cases, we know there exist
some deformations that can make boundary terms vanish,
so we do not need our approach in this paper to find them.
However, for A6(1−1

γ , 2+1
γ , 3−1

γ , 4+1
γ , 5−1

γ , 6+1
γ ) the situation

is different. First, since there is no graviton, the results in [10]
cannot be applied. Secondly, we know the boundary term is
not zero when deforming two photons with opposite helic-
ities. Thirdly, when two deformed photons have the same
helicity, the large z behavior is z0 by naive power counting
of Feynman diagrams. Thus, our approach becomes one of
the useful approaches.

Let us consider the deformation

λ1 → λ1 − zλ3, λ̃3 → λ̃3 + z̃λ1. (106)

Under this deformation, the BCFW approach gives residues
for the following poles: [1|2], [1|4], [1|6], 〈3|2〉, 〈3|4〉, 〈3|6〉,
s124, s125, s126, s145, s146, s156. A little algebra yields

A = 〈1|2〉 〈4|6〉 〈5|1 + 3|2]5 (〈4|5〉 [3|4] [5|6] 〈6|1 + 3|2] − 〈5|6〉 [3|6] [4|5] 〈4|1 + 3|2])

[1|2] 〈4|5〉 〈5|6〉 〈4|1 + 3|2] 〈6|1 + 3|2] 〈4|1 + 2|3] 〈5|1 + 2|3] 〈6|1 + 2|3] s123
+ (2 ↔ 4) + (2 ↔ 6)

+〈1|3〉4 [2|3] [4|6]5 〈2|1 + 3|5] (〈1|4〉 〈5|6〉 [4|5] 〈2|1 + 3|6] − 〈1|6〉 〈4|5〉 [5|6] 〈2|1 + 3|4])

〈2|3〉 [4|5] [5|6] 〈2|1 + 3|4] 〈2|1 + 3|6] 〈1|2 + 3|4] 〈1|2 + 3|5] 〈1|2 + 3|6] s123
+ (2 ↔ 4) + (2 ↔ 6)

+ s24 〈5|6〉 [3|5] 〈1|2 + 4|6]5

〈1|2〉 〈1|4〉 [3|6] [5|6] 〈1|2 + 4|5] 〈2|1 + 4|3] 〈4|1 + 2|3] s124
+ (4 ↔ 6) + (2 ↔ 6)

+ s46 〈1|5〉5 [2|5] [4|6]4 〈2|1 + 5|3]

〈1|2〉 〈2|5〉 [3|4] [3|6] 〈1|2 + 5|4] 〈1|2 + 5|6] 〈5|1 + 2|3] s125
+ (2 ↔ 4) + (2 ↔ 6). (107)

Four explicit terms above are residues for the poles [1|2],
〈2|3〉, s124, and s125. Other terms can be obtained by exchang-
ing labels. The result (107) will be our starting expression.

Now we need to include factorization limits for the poles
not detected by the chosen deformation. It turns out that the
result (107) is the correct amplitude that we are seeking,
since it gives the correct factorization limits for all phys-
ical channels. The symmetry of exchanging labels makes
the verification very easy. The amplitude has the S3

⊗
S3

symmetry: 1 ↔ 3, 3 ↔ 5, 5 ↔ 1, and 2 ↔ 4, 4 ↔ 6,
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6 ↔ 2. Its factorization limits will be restricted by this
symmetry, for example, lim[2|3]→0 AL AR can be obtained
by exchanging 1 and 3 in lim[1|2]→0 AL AR . Equation (107)
already has the correct factorization limits for the poles
detected by the BCFW approach. If it is invariant when some
labels are exchanged, more correct factorization limits will
be satisfied. For instance, (107) provides the correct factor-
ization limit for [1|2] → 0. If we perform the exchange
1 ↔ 3 for (107), the new expression gives the correct fac-
torization limit for [2|3] → 0, since lim[2|3]→0 AL AR can
be obtained from lim[1|2]→0 AL AR by this exchange. Thus,
if (107) has the symmetry 1 ↔ 3, the correct factoriza-
tion limit for [2|3] → 0 is also satisfied. Consequently, if
(107) has the S3

⊗
S3 symmetry as the correct amplitude,

all factorization limits will be given. In (107), the symmetry
{2 ↔ 4, 4 ↔ 6, 6 ↔ 2} is manifest. On the other hand,
we have checked the symmetry {1 ↔ 3, 3 ↔ 5, 5 ↔ 1}
numerically. Furthermore, we have verified that all spurious
poles are canceled, as we did in Sect. 4.2. Therefore (107) is
the correct A6(1−1

γ , 2+1
γ , 3−1

γ , 4+1
γ , 5−1

γ , 6+1
γ ).

6 Example 4: Yukawa theory (elimination of spurious
poles)

In this section we will show how to treat the case that an
expression has the correct factorization limits for all physi-
cal poles but contains spurious poles. We have not encoun-
tered such a phenomenon in previous examples. However,
the situation will appear when considering the color-ordered
amplitude of fermions coupling to scalars by the Yukawa
coupling.

In this theory, three-point amplitudes are given by

A3(1
+, 2, 3+) = [1|3] , A3(1

−, 2, 3−) = 〈1|3〉 ,

A3(1
+, 2, 3−) = A3(1

−, 2, 3+) = 0, (108)

where the coupling constant has been neglected. Let us con-
sider the simplest case, the four-point amplitude A4(1−, 2,

3, 4+). This amplitude corresponds to only one Feynman
diagram and the result can be obtained by Feynman rules as7

A4(1
−, 2, 3, 4+) = 〈1|P34|4]

s34
= 〈1|3〉

〈4|3〉 = − [2|4]

[2|1]
. (109)

Now we use our approach to reproduce this result. Physical
poles come from s12 → 0, and only the solution λ̃2 ∝ λ̃1

provides non-vanishing sub-amplitudes, thus there is only
one physical pole [1|2]. Using the solution I1 in (70), we get
the factorization limit for this pole as

7 Since the propagator i �P
P2 depends on the direction of P , we assume

that the fermion line is from 4 to 1 and all external momenta are in-
coming.

A[1|2] = − lim[1|2]→0 AL AR

s12
= s14

〈2|4〉 [1|2]
. (110)

The expression A[1|2] which has the correct factorization
limit for the physical pole but also contains a spurious pole
〈2|4〉. To eliminate it, let us use the approach discussed in
Sect. 2, i.e., choose a correct expression for

lim〈2|4〉→0〈2|4〉A〈1|2〉
〈2|4〉

so that it does not contain any physical pole. This procedure
can be performed:

lim〈2|4〉→0
〈2|4〉 A〈1|2〉 = lim〈2|4〉→0

s14

[1|2]
= −s12

[1|2]
= 〈1|2〉 .

(111)

Then we can construct

A′
[1|2] = A[1|2] − lim〈2|4〉→0 〈2|4〉 A〈1|2〉

〈2|4〉
= −s13

〈2|4〉 [1|2]
= [2|4]

[1|2]
, (112)

which is the correct answer.
However, the above approach for removing spurious poles

will be difficult to perform if the amplitude contains many
physical poles. We have not found a more efficient approach.

7 Conclusion

In this paper, we have proposed an approach to calculate tree
amplitudes without polynomial terms through their factor-
ization limits. We seek a quantity that has the correct factor-
ization limits for all physical poles and does not contain other
poles iteratively. Starting from an initial function which has
the correct factorization limits for some poles, we adjust our
expression to include factorization limits for new channels
at each iterative step, while keeping the correct factoriza-
tion limits of the previous poles. Proceeding thus, a proper
choice of the expression in the equivalent category under cor-
responding limits is required. We have shown how to make
such a choice in various examples. Because at each step at
least one new pole is included into the set of channels hav-
ing the correct factorization limits, this algorithm will stop
at finite steps. After obtaining an expression which has the
correct factorization limits for all physical poles, we need to
eliminate possible spurious poles. Then we get the desired
result. This approach can be applied to all circumstances no
matter whether the boundary contribution vanishes. How-
ever, this approach cannot determine the polynomial terms
since it can only detect the pole part. If the amplitude admits
polynomials which satisfy correct mass dimension and helic-
ities, the full amplitude cannot be determined. Such polyno-
mials can be included into the theory by allowing certain
higher-dimensional coupling constants.

To demonstrate this, we have applied our approach to cal-
culate amplitudes of φ4 theory, pure gauge theory, Einstein–
Maxwell theory, and Yukawa theory. Correct results of these
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examples are obtained, although their calculations are some-
what complicated. In these examples, one can see that no
information as regards boundary terms is required when
using this approach.

In principle, one can split an amplitude into more than
two sub-amplitudes by imposing on-shell conditions on more
propagators. However, it will make the computation more
complicated. For example, if we cut the amplitude into three
sub-amplitudes, we need to consider factorization limits for
all possible combinations of two channels. The number of
such combinations grows extremely faster than the number
of channels. The maximal cut is imposing on-shell conditions
on all propagators, then all sub-amplitudes are lowest-point
amplitudes. In such a case, all possible Feynman diagrams
need to be considered one by one.

It is interesting to consider whether this approach can be
generalized to tree amplitudes of string theory. The most
difficult issue is, in string theory, that the number of inner
states is infinite. We have not found a way to tackle this
difficulty.

In this paper, all examples are within consistent quantum
field theories. Another important direction in the future is
to apply this approach to any theory which is known to be
inconsistent. An example is massless spin-3 fields: here the
three-point amplitudes are known, but on general grounds no
higher-point tree-level amplitudes should be ‘constructable’,
thus our approach encounters the difficulty. Also, coupling
gauge or gravity fields to higher spin (>2) massive or mass-
less matter would be interesting.
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Appendix A: Absence of polynomials

Here we give a brief proof of the fact that the amplitudes
calculated in this paper do not contain any polynomial term.
The argument is simple: One cannot construct a polynomial
that has the correct mass dimension of the amplitude and the
correct helicities of all external particles.

The mass dimension of a bare amplitude is D = 4 −
n − ∑

Dc. Here Dc are mass dimensions of coupling con-
stants. When we mention the ‘bare amplitude’, we mean that
all coupling constants are stripped off. For amplitudes of

φ4 theory, pure gauge theory, and Yukawa theory, since the
coupling constants are dimensionless, we have D < 0 if the
amplitude contains at least five external particles, and D = 0
if the amplitude contains four external particles. Thus, the
only possible polynomial is a constant which corresponds to
four-point amplitudes. However, a constant cannot provide
the correct helicities for external particles, unless all exter-
nal states are scalars. Consequently, for such amplitudes, the
only allowed polynomial is just the lowest-point amplitude
of φ4 theory.

For amplitudes of Einstein–Maxwell theory, the coupling
constant has mass dimension −1, thus for all amplitudes of
this theory we have D = −2 for an arbitrary n. Then the pos-
sible polynomial can take the form 〈•|•〉 〈•|•〉, [•|•] [•|•],
and 〈•|•〉 [•|•]. None of these can provide correct helicities
for all external states since one spinor can only carry helic-
ity ± 1

2 , and the amplitudes we have calculated contain at
least four external particles (recall that a photon has helicity
±1, one graviton has helicity ±2, and for spinorial products,
〈i |i〉 = 0, [i |i] = 0).

Hence, the amplitudes mentioned in this paper do not con-
tain any polynomial term.

Appendix B: Alternative calculation of A6(1−, 2−, 3−,

4+, 5+, 6+)

In this section, we present the calculation of A6(1−, 2−, 3−,

4+, 5+, 6+) that starts by considering the factorization limit
for the three-particle channel s234 → 0. Unlike the two-
particle channel where the on-shell limit is split into the
holomorphic and anti-holomorphic parts, the on-shell limit
of s234 → 0 could not be split, therefore s234 will appear in
the denominator of the amplitude as a whole. Thus we do not
solve the constraint on the kinematic variables, as in the cal-
culation in the φ4 case. The factorization limit for s234 → 0
is given by

lim
s234→0

A4(2
−, 3−, 4+,−P+

234)A4(P
−
234, 5+, 6+, 1−)

= 〈2|3〉3

〈3|4〉 〈4|P234〉 〈P234|2〉
〈1|P234〉3

〈P234|5〉 〈5|6〉 〈6|1〉 . (B1)

To express λP234 , we can use 〈a|P234〉 = 〈a|P234|b]
[P234|b] . The cal-

culation is as follows:

lim
s234→0

A4(2
−, 3−, 4+,−P+

234)A4(P
−
234, 5+, 6+, 1−)

= 〈2|3〉3

〈3|4〉 〈4|P234〉 〈P234|2〉
〈1|P234〉3

〈P234|5〉 〈5|6〉 〈6|1〉

× [P234|2]2 [P234|4]

[P234|2]2 [P234|4]
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= 〈1|P234|4] 〈1|P2342|3〉2

〈5|6〉 〈6|1〉 〈3|4〉2 [2|3] [3|4] 〈5|P234|2]

= 〈1|2 + 3|4] 〈1|P2344|3〉2

〈5|6〉 〈6|1〉 〈3|4〉2 [2|3] [3|4] 〈5|3 + 4|2]

= 〈1|2 + 3|4]3

〈5|6〉 〈6|1〉 [2|3] [3|4] 〈5|3 + 4|2]
. (B2)

Going from the second line to the third line, we have used
〈1|P2342|3〉 = 〈1|P234(2 + 3)|3〉 = − 〈1|P2344|3〉. This
step is necessary if we try to include correct factorization
limits for the poles 〈5|6〉 and [2|3]. Thus we obtain

A〈5|6〉[2|3]s234 = − 〈1|2 + 3|4]3

〈5|6〉 〈6|1〉 [2|3] [3|4] 〈5|3 + 4|2] s234
.

(B3)

Since A〈5|6〉[2|3]s234 does not contain the pole s126, we should
compute the factorization limit for this pole and add it to
A〈5|6〉[2|3]s234 . A similar manipulation gives

A〈4|5〉[1|2]s126 = − 〈3|4 + 5|6]3

〈3|4〉 〈4|5〉 [1|2] [6|1] 〈5|3 + 4|2] s126
.

(B4)

Summing (B3) and (B4), we arrive at the correct result.
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