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Abstract We develop a new approach on the (1+3) thread-
ing of spacetime (M, g) with respect to a congruence of
curves defined by an arbitrary timelike vector field. The study
is based on spatial tensor fields and on the Riemannian spatial
connection ∇�, which behave as 3D geometric objects. We
obtain new formulas for local components of the Ricci ten-
sor field of (M, g) with respect to the threading frame field,
in terms of the Ricci tensor field of ∇� and of kinematic
quantities. Also, new expressions for time covariant deriva-
tives of kinematic quantities are stated. In particular, a new
form of Raychaudhuri’s equation enables us to prove Lemma
6.3, which completes a well-known lemma used in the proof
of the Penrose–Hawking singularity theorems. Finally, we
apply the new (1 + 3) formalism to the study of the dynam-
ics of a Kerr–Newman black hole.

1 Introduction

The (1+3) threading of spacetime by a congruence of curves
determined by a unit timelike vector field ξ (4-velocity) is by
now a well-established theory which studies the geometry,
dynamics, and observational properties of some well-known
cosmological models. Most of the important results on this
theory, and an exhaustive list of references wherein these
results have been published, can be found in the excellent
monograph of Ellis et al. [1].

Our work on this matter is motivated by the simple remark
that it is difficult to apply the above theory to the metrics of
general form presented in (2.8). This is because, in this case,
ξ = ∂/∂x0 is not a unit vector field and thus it should be nor-
malized. But this process leads to complicated formulas for
kinematic quantities and Ricci tensor field, which of course
makes difficult their study. The question is: Are there impor-
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tant cosmological models whose metrics have the general
form (2.8). The answer is in the affirmative and it is based
on the following two examples. First, the study of the cos-
mological perturbations of the FLRW universes is developed
with respect to the metric (cf. (10.12) of [1])

ds2 = a2{−(1 + 2φ)(dx0)2 + 2(B|i − Si )dx
0dxi

+[(1 − 2ψ)γi j + 2Ei | j +2Fi | j +hi j ]dxidx j }. (1.1)

We recall that the metric of a Kerr–Newman black hole is
given by (cf. (12.3.1) in [2])

ds2 = −
(

� − a2(sin x2)2

	

)
(dx0)2

−2a((x1)2 + a2 − �)(sin x2)2

	
dx0dx3

+
[
((x1)2 + a2)2 − �a2(sin x2)2

	

]
(sin x2)2(dx3)2

+	

�
(dx1)2 + 	(dx2)2, (1.2)

where we put

� = (x1)2 + a2 + e2 − 2mx1, 	 = (x1)2 + a2(cos x2)2.

The metric (1.1) was intensively studied with respect to the
(1+3) threading of almost FLRW universes. From Chapters
10 and 11 of [1] we can see that the study is not an easy one
in literature. Also, as far we know, very little has been done
with respect to the (1 + 3) threading theory for the metric
(1.2) (cf. [2,3]).

In this paper we present a new approach on the (1 + 3)
threading of spacetime with respect to a congruence of curves
defined by an arbitrary timelike vector field ξ . We develop a
method that is based on the following concepts:

(i) Threading frame and coframe fields.
(ii) Spatial tensor fields.

(iii) Riemannian spatial connection.
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The threading frame and coframe fields are naturally con-
structed from the coordinate fields [cf. (2.3) and (2.4)], and
have a great role throughout the paper. The spatial tensor
fields have been used in earlier literature, but here we work
only with their 3D local components with respect to the above
special frames [cf. (3.1)]. This brings a substantial simplifi-
cation into the study of such general metrics. Finally, the
Riemannian spatial connection ∇� [cf. (3.12)] is a metric
linear connection on the spatial distribution, which intro-
duces both the spatial and the time covariant derivatives. It
is important to note that throughout the paper, all geometric
objects and equations involved into the study, are expressed
in terms of spatial tensor fields and their spatial or time
covariant derivatives. As the metrics (1.1) and (1.2) fall into
the class of the general metrics given by (2.8), the (1 + 3)
threading theory developed here can easily be applied to their
study.

Now, we outline the content of the paper. In Sect. 2 we
consider the orthogonal decomposition (2.1) of the tangent
bundle of the spacetime (M, g), and construct the thread-
ing frame and coframe fields {∂/∂x0, δ/δxi } and {δx0, dxi },
respectively [cf. (2.3) and (2.4)]. Also, we consider the Rie-
mannian metric h on the spatial distribution SM given by
its 3D local components [cf. (2.15)]. In Sect. 3 we introduce
the notion of spatial tensor field via 3D local components
[cf. (3.1)], and show that the vorticity, expansion and shear
tensor fields ωi j , θi j and σi j given by (3.5a) and (3.8), are
indeed spatial tensor fields. Also, we define the Riemannian
spatial connection ∇� on SM [cf. (3.11)] and express the
Levi-Civita connection ∇ in terms of the local coefficients of
∇� and the above kinematic quantities [cf. (3.17)]. A com-
parison between the concepts defined in this paper and the
corresponding ones from earlier literature is done in Sect.
4. In particular, for a unit timelike vector field we obtain
(4.14) for kinematic quantities, and we deduce that they do
not depend on the Levi-Civita connection of the spacetime.
In Sect. 5 we express both the curvature tensor field and the
Ricci tensor field of (M, g) by spatial tensor fields and their
spatial and time covariant derivatives [cf. (5.3), (5.5a), (5.11),
(5.12a)]. Next, in Sect. 6 we obtain Raychaudhuri’s equa-
tion (6.1) with respect to an arbitrary timelike vector field,
which for a congruence of timelike geodesics takes the forms
(6.5) or (6.28). It is important to note that (6.28) is the main
ingredient used in the proof of Lemma 6.3, which should be
considered as a completion of Lemma 6.2, which has been
the key in the proof of Penrose–Hawking singularity theo-
rems. Also, we express the non-zero local components of the
electric Weyl curvature tensor field in terms of spatial tensor
fields [cf. (6.20)], and deduce new formulas for time covari-
ant derivatives of the kinematic quantities [cf. (6.9), (6.12),
(6.24), (6.25)]. Finally, the last three sections are devoted to
the study of a Kerr–Newman black hole via the new approach
on the (1+3) threading of spacetime developed in the paper.

In particular, we characterize spatial geodesics and obtain the
3D force identity [cf. (9.10)].

2 Threading frame and coframe fields

Let (M, g) be a 4D spacetime, and ξ be a timelike vector
field that is globally defined on M . Note that ξ is not neces-
sarily a unit timelike vector field, as it was considered in the
early literature. The timelike congruence determined by ξ is
tangent to the fibers of the line bundle VM, which we call the
time distribution. Also, we consider the spatial distribution
SM, which is complementary orthogonal to VM in TM, that
is, we have

TM = VM ⊕ SM. (2.1)

Throughout the paper we use the ranges of indices:
i, j, k, . . . ∈ {1, 2, 3} and a, b, c, . . . ∈ {0, 1, 2, 3}. Also,
for any vector bundle E over M denote by �(E) the F(M)-
module of smooth sections of E , where F(M) is the algebra
of smooth functions on M .

The foliation by curves that is tangent to VM, induces a
special coordinate system (xa) such that ξ = ∂/∂x0. If (x̃a)
is another coordinate system, then we have

x̃ i = x̃ i (x1, x2, x3); x̃0 = x0 + f (x1, x2, x3), (2.2)

since ∂/∂x0 and ∂/∂ x̃0 represent the same vector field ξ ,
and hence ∂ x̃0/∂x0 = 1. From (2.1) we deduce that for each
∂/∂xi there exist a unique δ/δxi ∈ �(SM) and a unique
function Ai , such that

δ

δxi
= ∂

∂xi
− Ai

∂

∂x0 . (2.3)

This enables us to consider the threading frame field
{∂/∂x0, δ/δxi }, and the threading coframe field {δx0, dxi },
where we put

δx0 = dx0 + Aidx
i . (2.4)

Now, by direct calculations using (2.1)–(2.3), we obtain

(a)
δ

δxi
= ∂ x̃ k

∂xi
δ

δx̃ k
, (b) δx̃0 =δx0, (c) Ai = Ãk

∂ x̃ k

∂xi
+ ∂ f

∂xi
.

(2.5)

Note that {δ/δxi } are transformed exactly as {∂/∂xi } on a
3D manifold, while {Ai }, in general, do not satisfy some 3D
tensorial transformations.

Next, we consider the 1-form ξ� given by

ξ�(X) = g(X, ξ), ∀X ∈ �(TM). (2.6)

The local components of ξ� with respect to the natural frame
field {∂/∂xi } are given by

(a) ξi = g

(
∂

∂xi
,

∂

∂x0

)
, (b) ξ0 = g

(
∂

∂x0 ,
∂

∂x0

)
= −�2,

(2.7)
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where � is a non-zero function on M which is independent
of x0. The above condition on � is not restrictive for our
theory, because most of the important cosmological models
satisfy it.

According to (2.7), the line element of g is expressed as
follows:

ds2 = −�2(dx0)2 + 2ξidx
idx0 + gi jdx

idx j , (2.8)

where we put

gi j = g

(
∂

∂xi
,

∂

∂x j

)
. (2.9)

Taking into account that

g

(
δ

δxi
,

∂

∂x0

)
= 0, (2.10)

and using (2.3) and (2.7), we obtain

Ai = −�−2ξi , (2.11)

and therefore

δ

δxi
= ∂

∂xi
+ �−2ξi

∂

∂x0 . (2.12)

Multiplying (2.5c) by �2, and using (2.11), we obtain

ξi = ξ̃k
∂ x̃ k

∂xi
− �2 ∂ f

∂xi
. (2.13)

Hence the ξi do not define a 3D 1-form on M .
Now, denote by h the Riemannian metric induced by g on

SM, and put

hi j = h

(
δ

δxi
,

δ

δx j

)
= g

(
δ

δxi
,

δ

δx j

)
. (2.14)

Then by using (2.14), (2.3), (2.11), (2.9), and (2.7), we infer
that

hi j = gi j + �−2ξiξ j . (2.15)

Thus ds2 from (2.8) is expressed in terms of the threading
coframe field {δx0, dxi } as follows:

ds2 = −�2(δx0)2 + hi jdx
idx j . (2.16)

Note that hi j and the entries hi j of the inverse of the matrix
[hi j ] are transformed exactly like 3D tensor fields, that is, we
have

(a) hi j = h̃kh
∂ x̃ k

∂xi
∂ x̃ h

∂x j
, (b) h̃kh = hi j

∂ x̃ k

∂xi
∂ x̃ h

∂x j
. (2.17)

3 Kinematic quantities as spatial tensor fields on (M, g)

The purpose of this section is to define the vorticity tensor
field, expansion tensor field, expansion scalar and shear ten-
sor field, as spatial tensor fields on the spacetime (M, g).
First, we give the following definition.

A spatial tensor field T of type (p, q) on M is locally given

by 3p+q locally defined functions T
j1... jp
i1...iq

(x), satisfying

T
j1... jp
i1...iq

∂ x̃ k1

∂x j1
. . .

∂ x̃ kp

∂x jp
= T̃

k1...kp
h1...hq

∂ x̃ h1

∂xi1
. . .

∂ x̃ hq

∂xiq
, (3.1)

with respect to the transformations (2.2). In other words, the
local components of a spatial tensor field on M should satisfy
the same transformations as the local components of a tensor
field on a three-dimensional manifold. From (2.17) we see
that hi j (resp. hi j ) define a spatial tensor field of type (0,2)
[resp. (2,0)] on M .

By using (2.5a) and taking into account that

∂�

∂x0 = 0, (3.2)

we deduce that

ci = �−1 δ�

δxi
= �−1 ∂�

∂xi
(3.3)

define a spatial tensor field of type (0,1). Next, by direct
calculations using (2.3), (2.11), and (3.3), we deduce that

(a)

[
δ

δx j
,

δ

δxi

]
= 2ωi j

∂

∂x0 , (b)

[
∂

∂x0 ,
δ

δxi

]
= ai

∂

∂x0 ,

(3.4)

where we put

(a) ωi j = 1

2

{
δA j

δxi
− δAi

δx j

}
=�−2

{
ci ξ j −c j ξi + 1

2

(
δξi

δx j
− δξ j

δxi

)}
,

(b) ai = − ∂Ai

∂x0 = �−2 ∂ξi

∂x0 .

(3.5)

Now, applying δ/δx j and ∂/∂x0 to (2.5c) and by using (2.5a)
and (2.5b), we infer that

(a)
δAi

δx j
= δ Ãk

δ x̃ h
∂ x̃ h

∂x j

∂ x̃ k

∂xi
+ Ãk

∂2 x̃ k

∂xi∂x j
+ ∂2 f

∂xi∂x j
,

(b)
∂Ai

∂x0 = ∂ Ãk

∂ x̃0

∂ x̃ k

∂xi
. (3.6)

Then, by using (3.6) into (3.5), we obtain

(a) ωi j = ω̃kh
∂ x̃ k

∂xi
∂ x̃ h

∂x j
, (b) ai = ãk

∂ x̃ k

∂xi
. (3.7)

Hence ωi j and ai define spatial tensor fields of type (0.2) and
(0,1), respectively. We call ω = (ωi j ) the vorticity tensor
field for the timelike congruence defined by ξ on M . From
(3.4a) we see that the spatial distribution SM is integrable if
and only if ωi j vanish identically on M .

Next, we define

(a)�i j = 1

2

∂hi j
∂x0 , (b)� = hi j�i j , (c) σi j = �i j − 1

3
�hi j .

(3.8)

Then we take derivatives with respect to x0 in (2.17a) and
obtain
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�i j = �̃kh
∂ x̃ k

∂xi
∂ x̃ h

∂x j
,

that is, the �i j define a spatial tensor field of type (0,2). We
call it the expansion tensor field. Clearly � from (3.8b) is a
function, and σi j from (3.8c) define a trace-free spatial tensor
field of type (0,2). We call � the expansion scalar and σi j the
shear tensor field for the congruence. According to the ter-
minology from earlier literature, we call {ωi j ,�i j ,�, σi j }
given by (3.5a) and (3.8), the kinematic quantities with
respect to the congruence of curves defined by the timelike
vector field ξ = ∂/∂x0.

Raising and lowering Latin indices is done by using hi j

and hi j , as follows:

(a) ωk
j = hkiωi j , (b) ωkh = hki hhjωi j . (3.9)

In order to define covariant derivatives of the above kine-
matic quantities, we consider the Levi-Civita connection ∇
on (M, g) given by (cf. [4, p. 61])

2g(∇XY, Z) = X (g(Y, Z)) + Y (g(Z , X)) − Z(g(X,Y ))

+ g([X,Y ], Z) − g([Y, Z ], X)

+ g([Z , X ],Y ), (3.10)

for all X,Y, Z ∈ �(TM). We define the linear connection
∇� on the spatial distribution as the spatial projection of ∇
on SM, that is, we have

(a) ∇�
XsY = s∇XsY, ∀ X,Y ∈ (�(SM), (3.11)

where s is the projection morphism of TM on SM with respect
to (2.1). Note that ∇� is a metric linear connection on SM.
We call it the Riemannian spatial connection.

Remark 3.1 The Riemannian spatial connection ∇� is differ-
ent from the three-dimensional operator ∇̄, which has been
used in the earlier literature (cf. (4.19) of [1]). ∇� is a linear
connection on SM and therefore defines covariant derivatives
of any spatial tensor field with respect to vector fields on M .
On the contrary, ∇̄ is an operator which acts on tensor fields
on M , but, in general, it does not define a linear connection
on M .

Locally, we put

(a) ∇�
δ

δx j

δ

δxi
= �� k

i j
δ

δxk
, (b)∇�

∂

∂x0

δ

δxi
= �� k

i 0
δ

δxk
.

(3.12)

We take X = δ/δx j ,Y = δ/δxi and Z = δ/δxh in (3.10)
and by using (3.11), (3.12a), (2.14), and (3.4a), we obtain

�� k
i j = 1

2
hkh

{
δhhj
δxi

+ δhhi
δx j

− δhi j
δxh

}
. (3.13)

Similarly, we deduce that

�� k
i 0 = �k

i + �2ωk
i . (3.14)

Now, consider a spatial tensor field T of type (p, q). Then
∇�

δ

δxk
T and ∇�

∂

∂x0
T are spatial tensor of type (p, q + 1) and

(p, q), respectively. As an example, we consider T = (T i
j ),

and obtain

(a) T i
j |k = δT i

j

δxk
+ T h

j �� i
h k − T i

h�� h
j k,

(b) T i
j |0 = ∂T i

j

∂x0 + T h
j �� i

h 0 − T i
h�� h

j 0.

(3.15)

We call (3.15a) [resp. (3.15b)] the spatial (resp. time) covari-
ant derivative of T . As ∇� is a metric connection on SM, we
have

(a) hi j |k = 0, (b) hi j|k = 0, (c) hi j |0 = 0, (d) hi j|0 = 0.

(3.16)

Finally, by using (3.10), the above spatial tensor fields
and the local coefficients of ∇�, we express the Levi-Civita
connection ∇ on (M, g) as follows:

(a) ∇ δ

δx j

δ
δxi

= �� k
i j

δ
δxk

+ (ωi j + �−2�i j )
∂

∂x0 ,

(b) ∇ ∂

∂x0

δ
δxi

= (�k
i + �2ωk

i )
δ

δxk
+ (ai + ci )

∂
∂x0 ,

(c) ∇ δ

δxi

∂
∂x0 = (�k

i + �2ωk
i )

δ
δxk

+ ci
∂

∂x0 ,

(d) ∇ ∂

∂x0

∂
∂x0 = �2(ak + ck) δ

δxk
.

(3.17)

4 Comparison with concepts from earlier literature

In the previous section we introduced the kinematic quan-
tities on a spacetime (M, g) with respect to the congruence
that is tangent to an arbitrary timelike vector field ξ . If in
particular, ξ is a unit timelike vector field, the configuration
of the spacetime with respect to the congruence of timelike
curves determined by ξ is known in the literature as (1 + 3)
threading of spacetime (cf. [1,5–14]). In this section we show
that for �2 = 1 in (3.5) and (3.8) (that is, ξ is a unit vector
field), we obtain the well-known kinematic quantities from
earlier literature.

First, by using (2.6) and taking into account that ∇ is a
metric connection, we obtain

(∇Xξ�)(Y ) = g(Y,∇Xξ), ∀ X,Y ∈ �(TM). (4.1)

Consider the threading frame {∂/∂x0, δ/δxi } and using
(3.17), we infer that

(a)

(
∇ δ

δx j
ξ�

) (
δ

δxi

)
= �i j + �2ωi j ,

(b)

(
∇ ∂

∂x0
ξ�

) (
δ

δxi

)
= �2(ai + ci ),

(c)

(
∇ δ

δxi
ξ�

) (
∂

∂x0

)
= −�2ci ,

(d)

(
∇ ∂

∂x0
ξ�

) (
∂

∂x0

)
= 0.

(4.2)
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Next, taking into account (2.12) and (2.7b), we express the
natural frame field as follows:

∂

∂xa
= δia

δ

δxi
− �−2ξa

∂

∂x0 , a ∈ {0, 1, 2, 3}. (4.3)

Consider the covariant acceleration vector field

.

ξa =
(

∇ ∂

∂x0
ξ�

)(
∂

∂xa

)
, (4.4)

and using (4.2b) and (4.2d), we obtain
.

ξa = �2δiabi , (4.5)

where we put

bi = ai + ci . (4.6)

Thus, we deduce that the congruence defined by ξ is a con-
gruence of timelike geodesics if, and only if, we have

bi = 0, ∀ i ∈ {1, 2, 3}. (4.7)

For this reason we call bi the geodesic spatial covector field
of the congruence.

Now, by direct calculations, using (4.3) and (4.2), we infer
that

(a)

(
∇ ∂

∂xb
ξ�

)(
δ

δxi

)
= δ

j
b (�i j + �2ωi j ) − biξb,

(b)

(
∇ ∂

∂xb
ξ�

)(
∂

∂x0

)
= −�2δ

j
b c j .

(4.8)

Taking into account (4.3), (4.8), and (4.5), we find

∇bξa = −�−2ξb
.

ξa + δiaδ
j
b (�i j + �2ωi j ) + ξaδ

j
b c j . (4.9)

Now, we suppose that ξ is a unit vector field. According to
Eq. (4.38) from [1, p. 85], we have

∇bξa = −ξb
.

ξa + σab + 1

3
�hab + ωab, (4.10)

where σab, θ, hab and ωab are quantities defined in the earlier
literature. On the other hand, in this case we have �2 = 1,

and from (4.9) we obtain

∇bξa = −ξb
.

ξa + δiaδ
j
b (�i j + ωi j ), (4.11)

since c j = 0, for all j ∈ {1, 2, 3}.
Comparing the symmetric and skew-symmetric parts in

(4.10) and (4.11) we deduce that

(a) σab = δiaδ
j
b�i j − 1

3�hab,

(b) ωab = δiaδ
j
bωi j .

(4.12)

Finally, comparing (4.12a) with (4.31) from [1, p. 81], we
obtain

�ab = δiaδ
j
b�i j . (4.13)

According to (3.8), (3.5a), (4.12), and (4.13), we conclude
that in case ξ is a unit vector field, the only possible non-zero

local components of expansion, shear and vorticity tensor
fields from earlier literature are the following:

(a) �i j = 1
2

∂hi j
∂x0 , (b) σi j = 1

2
∂hi j
∂x0 − 1

3�hi j ,

(c) ωi j = 1
2

{
δξi
δx j − δξ j

δxi

}
.

(4.14)

As far as we know, Eqs. (4.14) do not appear in earlier lit-
erature. Due to them we can state that the expansion, shear,
and vorticity tensor fields do not depend on the Levi-Civita
connection of the spacetime (M, g). Of course, due to (3.5a)
and (3.8), this conclusion is still valid for the general case of
a congruence defined by an arbitrary timelike vector field ξ .

We close this section with an interesting property of vor-
ticity tensor field. Suppose that we have a congruence of
geodesics defined by ξ . According to (4.7), (4.6), (3.3), and
(3.5b), we have

∂ξi

∂x0 + �
∂�

∂xi
= 0. (4.15)

By using (4.15), (3.2), and (3.3), we infer that

(a)
∂2ξi

(∂x0)2 = 0, (b) ci
∂ξ j

∂x0 = c j
∂ξi

∂x0 , (c)
∂2ξi

∂x j∂x0 = ∂2ξ j

∂xi∂x0 .

(4.16)

We take the derivative with respect to x0 in (3.5a) and by
(3.2), (3.3), and (4.16), we obtain

∂ωi j

∂x0 = 0. (4.17)

Thus, we can state that the vorticity tensor field for a congru-
ence of timelike geodesics of a spacetime is independent of
time. In particular, this is true for a congruence of geodesics
with respect to a unit vector field ξ . However, we did not see
this result in earlier literature. This is because the formulas
(3.5a), (3.8), and (4.14) we deduced for the kinematic quan-
tities are much simpler than the ones by means of Levi-Civita
connection.

5 Curvature and Ricci tensor fields of a spacetime
via spatial tensor fields

In this section we show that the curvature tensor field of
(M, g) is completely determined by three spatial tensor fields
Ri jkh, Ri0kh and Ri0k0 [cf. (5.3), (5.5a)]. A similar result we
obtain for the Ricci tensor of (M, g) [cf. (5.11), (5.12a)]. Note
that all these spatial tensor fields are expressed in terms of
the curvature and Ricci tensor fields of the of the Riemannian
spatial connection, and of all kinematic quantities introduced
in Sect. 3.
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In the following, R denotes both the curvature tensor fields
of (M, g) of type (0,4) and of type (1,3), given by

(a) R(X,Y, Z ,U ) = g(R(X,Y,U ), Z),

(b) R(X,Y,U ) = ∇X∇YU − ∇Y∇XU − ∇[X,Y ]U, (5.1)

for all X,Y, Z ,U ∈ �(TM). Then the curvature tensor field
of (M, g) is completely determined by its local components

(a) Ri jkh = R
(

δ
δxh

, δ
δxk

, δ
δx j ,

δ
δxi

)
,

(b) Ri0kh = R
(

δ
δxh

, δ
δxk

, ∂
∂x0 , δ

δxi

)
,

(c) Ri0k0 = R
(

∂
∂x0 , δ

δxk
, ∂

∂x0 , δ
δxi

)
.

(5.2)

By direct calculations, using (5.2), (5.1), (3.17), (3.4), (3.3),
and (4.6), we obtain

(a) Ri jkh = R�
i jkh+ωik� jh−ωih� jk+�−2(�ik� jh−�ih� jk)

+�2(ωikω jh − ωihω jk) + �ikω jh − �ihω jk ,

(b)Ri0kh = �ih|k − �ik|h + �ikch − �ihck
+�2{ωih|k − ωik|h + ωihck − ωikch + 2ωkhbi },

(c) Ri0k0 = �2{bibk+bi |k +ωkh�
h
i −ωih�

h
k −ωik|0 −�2ωihω

h
k }

−�ik|0 − �ih�
h
k ,

(5.3)

where R�
i jkh are the local components of the curvature tensor

field of the Riemannian spatial connection defined as in (5.2a)
and given by

R�
i jkh = h jl

{
δ��l

i k

δxh
− δ��l

i h

δxk
+ ��n

i k�
�l
n h − ��n

i h�
�l
n k

−2ωkh(�
l
i + �2ωl

i )

}
. (5.4)

Taking the symmetric and skew-symmetric parts, in (5.3c)
we deduce that

(a) Ri0k0 = �2
{
bibk + 1

2 (bi |k + bk|i ) − �2ωihω
h
k

}
−�ik|0 − �ih�

h
k ,

(b)ωik|0 = ωkh�
h
i − ωih�

h
k + 1

2 (bi |k − bk|i ).
(5.5)

Now, consider an orthonormal frame field {Ek,�
−1 ∂

∂x0 } on
M and put

Ek = Ei
k

δ

δxi
. (5.6)

We deduce that

hi j =
3∑

k=1

Ei
k E

j
k . (5.7)

According to [4, p. 87], the Ricci tensor of (M, g) is given
by

Ric(X, Y ) =
3∑

k=1

R(Ek , X, Ek , Y ) − �−2R

(
∂

∂x0 , X,
∂

∂x0 , Y

)
.

(5.8)

By using (5.8), (5.6), (5.7), and (5.2), we obtain

(a) Rik = h jh Ri jkh − �−2Ri0k0, (b) Ri0 = h jh R j0hi ,

(c) R00 = h jh R j0h0, (5.9)

where we put

(a) Rik = Ric

(
δ

δxk
,

δ

δxi

)
, (b) Ri0 = Ric

(
∂

∂x0 ,
δ

δxi

)
,

(c) R00 = Ric

(
∂

∂x0 ,
∂

∂x0

)
. (5.10)

By using (5.3a), (5.3b), and (5.5a) into (5.9), we deduce that

(a) Rik = R�h
i kh + �−2(�ik|0 + ��ik) − bi bk − 1

2 (bi |k + bk|i )
+�ωik + ωkh�

h
i − ωih�

h
k ,

(b) Ri0 = �k
i |k − �|i + �ci − �k

i ck

+�2{ωk
i |k + ωk

i ck + 2ωk
i bk},

(c) R00 = �2{bkbk + bk|k + �2ωkhω
kh} − �|0 − �kh�

kh,

(5.11)

where �k
i |k , ωk

i |k and bk|k are spatial divergences given by
formulas deduced from (3.15a). Now, we take symmetric
and skew-symmetric parts in (5.11a) and obtain

(a) Rik = R�
ik + �−2(�ik|0 + ��ik) − bi bk − 1

2
(bi |k + bk|i ),

(b)
1

2
(R�h

i kh − R�h
k ih) = ωih�h

k − ωkh�h
i − �ωik , (5.12)

where we put

R�
ik = 1

2
(R�h

i kh + R�h
k ih). (5.13)

We call R�
ik the spatial Ricci tensor of the spacetime (M, g).

From (5.12b) we see that if the spatial distribution is inte-
grable, then we have

R�h
i kh = R�h

k ih . (5.14)

In this case, we have

R�
ik = R�h

i kh . (5.15)

Also, note that because in this particular case the vortic-
ity vanishes identically, from (5.3a), (5.3b), (5.5a), (5.11a),
(5.11b) and (5.12a), we deduce that the curvature and Ricci
tensors on (M, g) are expressed as follows:

(a) Ri jkh = R�
i jkh + �−2(�ik� jh − �ih� jk),

(b) Ri0kh = �ih|k −�ik|h +�ikch − �ihck,
(c) Ri0k0 = �2

{
bibk+ 1

2 (bi |k + bk|i )
}−�ik|0 − �ih�

h
k ,

(5.16)

and

(a) Rik = R�
ik + �−2(�ik|0 + ��ik) − bi bk − 1

2 (bi |k + bk|i ),
(b) Ri0 = �k

i |k − �|i + �ci − �k
i ck ,

(c) R00 = �2{bhbh + bh|h } − �|0 − �kh�
kh,

(5.17)

where R�
ik is given by (5.15).

123



Eur. Phys. J. C (2015) 75 :159 Page 7 of 12 159

6 Raychaudhuri’s equation and time covariant
derivatives of kinematic quantities

First, by putting (3.8b) and (3.8c) into (5.11c), we infer

�|0 = �4ω2 − σ 2 − 1

3
�2 + �2(bh|h + b2) − R00, (6.1)

where we put

(a) ω2 = ωkhω
kh, (b) σ 2 = σkhσ

kh, (c) b2 = bhb
h . (6.2)

In particular, if ξ is a unit timelike vector field, that is,

�2 = 1, (6.3)

(6.1) becomes

�|0 = ω2 − σ 2 − 1

3
�2 + bh|h + b2 − R00, (6.4)

which is Raychaudhuri’s equation expressed in terms of local
components of spatial tensor fields introduced in the present
paper. Thus, we are entitled to call (6.1) the generalized Ray-
chaudhuri equation with respect to a congruence defined by
an arbitrary timelike vector field ξ .

According to (4.7), in the case of a timelike congruence
of geodesics, (6.1) and (6.4) become

�|0 = �4ω2 − σ 2 − 1

3
�2 − R00, (6.5)

and

�|0 = ω2 − σ 2 − 1

3
�2 − R00, (6.6)

respectively.

Remark 6.1 Formally, (6.6) looks like (9.2.11) in [2], but we
should note that ω, σ and � from (6.6) are calculated via their
3D spatial components [see (3.5a), (3.8), and (6.2)], while in
[2] they are calculated in terms of the 4D local components
with respect to the natural frame field {∂/∂xa}.

Next, observe that (5.5b) gives a formula for the time
covariant derivative of vorticity tensor field. By using (3.8b)
and (3.8c) into (5.5b) we find

ωik|0 = ωkhσ
h
i − ωihσ

h
k − 2

3
�ωik + 1

2
(bi |k − bk|i ). (6.7)

Now, from (5.5a) we deduce that the time covariant derivative
of the expansion tensor field is given by

�ik|0 = �2
{
bibk + 1

2
(bi |k + bk|i ) − �2ωihω

h
k

}

−�ih�
h
k − Ri0k0. (6.8)

Another formula in terms of Ricci tensors is deduced from
(5.12a):

�ik|0 = −��ik + �2
{
bi bk + 1

2
(bi |k + bk|i ) + Rik − R�

ik

}
.

(6.9)

Taking the time covariant derivative in (3.8c), and using
(3.16c), (6.8), and (6.1), we infer that

σik|0 = �2
{
bibk + 1

2
(bi |k + bk|i ) − 1

3
(bh|h + b2)hik

−�2(ωihω
h
k + 1

3
ω2hik)

}

+1

3
σ 2hik − σihσ

h
k − 2

3
�σik − R̃i0k0, (6.10)

where R̃i0k0 is the trace-free part of the spatial tensor field
Ri0k0, given by

R̃i0k0 = Ri0k0 − 1

3
R00hik . (6.11)

In a similar way, but using (6.9) instead of (6.8), we obtain

σik|0 = −�σik + 1

3

(
σ 2 − 2

3
�2 + R00

)
hik + �2

{
bi bk

+1

2
(bi |k + bk|i ) − 1

3
(bh|h + b2 + �2ω2)hik + Rik − R�

ik

}
.

(6.12)

Now consider the Weyl tensor field in (M, g), given by

Cabcd = R̄abcd + 1

2
{gad R̄bc + gbc R̄ad − gac R̄bd − gbd R̄ac}

+ 1

6
R{gacgbd − gadgbc}, (6.13)

where we put

(a)Cabcd = C
(

∂
∂xd

, ∂
∂xc ,

∂
∂xb

, ∂
∂xa

)
,

(b) R̄abcd = R
(

∂
∂xd

, ∂
∂xc ,

∂
∂xb

, ∂
∂xa

)
,

(c) R̄ab = Ric
(

∂
∂xb

, ∂
∂xa

)
,

(6.14)

and R is the scalar curvature of (M, g). We consider the
electric Weyl curvature tensor field E = (Eac), given by

Eac = E

(
∂

∂xc
,

∂

∂xa

)
= Cabcdξ

bξd , (6.15)

and taking into account that ξ = ∂/∂x0, we obtain

Eac = Ca0c0 = C

(
∂

∂x0 ,
∂

∂xc
,

∂

∂x0 ,
∂

∂xa

)
. (6.16)

Then by direct calculations, using (6.16), (6.13), (2.7), (2.9),
and (2.15), we deduce that the only possible non-zero local
components of E with respect to the natural frame field are

Eik = R̄i0k0 + 1

2
{ξi R̄k0 + ξk R̄i0 − gik R̄00 + �2 R̄ik} − 1

6
R�2hik .

(6.17)

Note that due to (2.3) and (6.16), we have

Eik = C

(
∂

∂x0 ,
δ

δxk
,

∂

∂x0 ,
δ

δxi

)
= E

(
δ

δxk
,

δ

δxi

)
.

(6.18)
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By using (2.5a), from (6.18) we infer that the Eik define a
spatial tensor field of type (0,2). Using (2.12) in (6.14b) and
(6.14c), we obtain

(a) R̄i0k0 = Ri0ko, (b) R̄i0 = Ri0 − �−2ξi R00, (c) R̄00 = R00,

(d) R̄ik = Rik − �−2{ξi Rk0 + ξk Ri0 − �−2ξi ξk R00},
(6.19)

where Ri0k0 and {Rik, Ri0, R00} are given by (5.2c) and
(5.10), respectively. Taking into account of (6.19) into (6.17)
and using (2.15), we express Eik in terms of spatial tensor
fields, as follows:

Eik = Ri0k0 + 1

2

{
�2Rik −

(
R00 + 1

3
R�2

)
hik

}
. (6.20)

The scalar curvature R of (M, g) is given by

R =
3∑

k=1

Ric(Ek, Ek) − �−2Ric

(
∂

∂x0 ,
∂

∂x0

)

= h jh R jh − �−2R00. (6.21)

We replace R from (6.21) into (6.20) and taking into account
(6.11), we deduce that

Eik = R̃i0k0 + 1

2
�2 R̃ik, (6.22)

where R̃ik is the trace-free part of Rik , that is, we have

R̃ik = Rik − 1

3
h jh R jhhik . (6.23)

Finally, by using (6.11) and (6.22) into (6.8) and (6.10), we
obtain

�ik|0 = �2
{
bibk + 1

2
(bi |k + bk|i ) − �2ωihω

h
k

}
− �ih�

h
k

−Eik + 1

2
�2 R̃ik − 1

3
R00hik (6.24)

and

σik|0 = �2
{
bibk + 1

2
(bi |k + bk|i ) − 1

3
(bh|h + b2)hik

−�2
(

ωihω
h
k + 1

3
ω2hik

)}
+ 1

3
σ 2hik − σihσ

h
k − 2

3
�σik

−Eik + 1

2
�2 R̃ik, (6.25)

respectively.
It is interesting to note that the generalized Raychaudhuri

equation (6.1) can be expressed by using the scalar curvature
R of (M, g) and the spatial scalar curvature R� of ∇� given
by

R� = h jh R�
jh . (6.26)

Indeed, contracting (6.9) by hik and using (3.16d), (3.8b),
(6.21), and (6.26) we deduce that

�|0 = −�2 + �2{b2 + bh|h + R − R�} + R00. (6.27)

In particular, if ξ is a unit vector field that defines a timelike
congruence of geodesics [see (6.3) and (4.7)], then (6.27)
becomes

�|0 = −�2 + R − R� + R00. (6.28)

This is a new form of Raychaudhuri’s equation (6.6) for a
congruence of timelike geodesics. It is well known that (6.6)
is the key equation used in the proof of the Penrose–Hawking
singularity theorems. More precisely, one proved the follow-
ing lemma.

Lemma 6.2 (See Lemma 9.2.1 in [2]) Let ξ be the tangent
field of a hypersurface orthogonal timelike geodesic congru-
ence. Suppose the following conditions are satisfied:

(i) Ric(ξ, ξ) ≥ 0, which is the case if Einstein’s equations
hold in the spacetime and the strong energy condition is
satisfied by the matter.

(ii) The expansion � takes the negative value �0 at a point
on a geodesic in the congruence corresponding to the
proper time τ = 0.

Then � goes to −∞ along that geodesic within the proper
time τ ≤ 3

|�0| .

Note that in the above lemma, that ξ is a tangent field
of a hypersurface orthogonal timelike geodesic congruence
means that SM is an integrable distribution.

Now, by using the new form (6.28) of Raychaudhuri’s
equation we can complete Lemma 6.2 with the following
lemma.

Lemma 6.3 Let the congruence of timelike geodesics sat-
isfying the conditions from Lemma 6.2. Then we have the
following assertions:

(a) If R ≥ R�, then the proper time τ must be in the interval
[1/|�0|, 3/|�0|].

(b) If R < R�, then the following cases occur:

(b1) IfRic(ξ, ξ) ≥ R�−R, then τ must be in the interval
[1/|�0|, 3/|�0|].
(b2) IfRic(ξ, ξ) < R�−R, then τ must be in the interval
[0, 1/|�0|).

Proof Suppose (a) is satisfied, and by using (i) in (6.28), we
obtain

�|0 + �2 ≥ 0,

which is equivalent to

d

dτ

(
1

�

)
≤ 1. (6.29)

Integrating (6.29) on [0, τ ], we infer that
1

�
≤ 1

�0
+ τ. (6.30)
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As 1/� must pass through zero, from (6.30) we deduce that

τ ≥ 1

|�0| . (6.31)

Combining with the result from Lemma 6.2, we conclude that
τ must be in the interval [1/|�0|, 3/|�0|]. In a similar way
one proved the assertion (b1). Finally, by using the condition
from (b2) into (6.28), we obtain

�|0 + �2 < 0,

which is equivalent to

d

dτ

(
1

�

)
> 1. (6.32)

Integrating (6.32) on [0, τ ], we deduce that

1

�
>

1

�0
+ τ. (6.33)

As 1/� must pass through zero, we conclude that τ ∈
[0, 1/|�0|). This completes the proof of the lemma.

7 Kinematic quantities for Kerr–Newman black holes

The new point of view developed here on the (1 + 3) thread-
ing of spacetime is applied in this section to the charged Kerr
black hole (also called Kerr–Newman black hole). We show
that the curvature and Ricci tensor fields of (M, g) are simply
expressed in terms of the curvature and Ricci tensor fields of
the Riemannian spatial connection, via the kinematic quan-
tities.

Now, according to the notations used in Sects. 2 and 3, for
the metric of a Kerr–Newman black hole given by (1.2), we
have

(a) �2 = �−a2(sin x2)2

	
= 1 − 2mx1−e2

	
,

(b) ξ1 = ξ2 = 0, xi3 = (e2−2mx1)a(sin x2)2

	
,

(c) ai = 0, ∀ i ∈ {1, 2, 3}.
(7.1)

The spatial distribution SM of (M, g) is locally spanned by

δ

δx1 = ∂

∂x1 ,
δ

δx2 = ∂

∂x2 ,
δ

δx3 = ∂

∂x3 + �−2ξ3
∂

∂x0 , (7.2)

and it is the kernel of the 1-form

δx0 = dx0 − �−2ξ3dx3. (7.3)

By using (2.15), (1.2), (7.1a), and (7.1b), we deduce that the
only non-zero local components of the Riemannian metric h
on SM with respect to the threading frame field from (7.2)
are the following:

h11 = 	

�
, h22 = 	, h33 = �(sin x2)2

�2 . (7.4)

Hence the line element from (1.2) becomes

ds2 = −�2(δx0)2 + 	

�
(dx1)2 + 	(dx2)2

+�(sin x2)2

�2 (dx3)2, (7.5)

with respect to the threading coframe field {δx0, dxi }.
Next, by using (3.3), (4.6), (7.1a), and (7.1c), we deduce

that the geodesic spatial tensor field b = (bi ) is given by

(a) b1 = c1 = x1(2mx1−e2)−m	

(�	)2 ,

(b) b2 = c2 = (e2−2mx1)a2 sin x2 cos x2

(�	)2 , (c) b3 = c3 = 0.
(7.6)

Due to (4.7) and (7.6) we conclude that the curves from the
congruence defined by ξ = ∂/∂x0 which sit in the surface
given by the equations

x1(2mx1−e2)−m	=0, (e2 − 2mx1)a2 sin x2 cos x2 =0,

for a 	= 0, or in the hypersurface

x1 = e2

m
,

for a = 0, are the only geodesics of (M, g) that are tangent to
ξ . Moreover, we see that such geodesics have the equations

x0 = λ, x1 = e2

m , x2 = π
2 , x3 = c, or

x0 = λ, x1 = e2±√
e4+4m2

2m , x2 = 0, x3 = c,

for a 	= 0, and

x0 = λ, x1 = e2

m
, x2 = k, x3 = c,

for a = 0, where k and c are constants. In particular, the
integral curves of ξ cannot be geodesics in the Schwarzschild
spacetime.

Now, taking into account (3.8) and (7.4), we obtain

(a) �i j = 0, (b) � = 0, (c) σi j = 0, ∀ i, j ∈ {1, 2, 3}.
(7.7)

Also, by using (3.5a), (7.1b), (7.2), and (7.6), we deduce that
the only non-zero local components of the vorticity tensor
field (ωi j ) are given by

(a) ω13 = a(sin x2)2

�4	2 {m	 − x1(2mx1 − e2)},
(b) ω23 = (2mx1−e2)a� sin x2 cos x2

�4	2 .
(7.8)

From (7.8) we see that the spatial distribution SM is not
integrable for both Kerr–Newman and Kerr black holes. On
the contrary, for the Reissner–Nordstrom and Schwarzschild
solutions, the timelike vector field ξ = ∂/∂x0 is hypersurface
orthogonal.

Finally, we note that the local components of the curvature
and Ricci tensor fields with respect to the threading frame
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field have very simple expressions. Indeed, by putting (7.6)
and (7.7) into (5.3a), (5.3b), and (5.5a), we obtain

(a) Ri jkh = R�
i jkh + �2{ωikω jh − ωihω jk},

(b) Ri0kh = �2{ωih|k − ωik|h + ωihck − ωikch + 2ωkhci },
(c) Ri0k0 = �2

{
ci ck + 1

2 (ci |k + ck|i ) − �2ωihω
h
k

}
,

(7.9)

where R�
i jkh is the curvature tensor field of the Riemannian

spatial connection. In a similar way, from (5.12a), (5.11b),
and (5.11c), we infer that the local components of the Ricci
tensor of (M, g) with respect to the threading frame field are
given by

(a) Rik = R�
ik − ci ck − 1

2 (ci |k + ck|i ),
(b) Ri0 = �2{ωh

i |h + 3ωh
i ch},

(c) R00 = �2{chch + ch|h + �2ωkhω
kh},

(7.10)

where R�
ik is the Ricci tensor of the Riemannian spatial

connection. As far as we know, (7.9) and (7.10) have not
been stated before in the earlier literature. They can bring
more information and ideas in the study of the geometry
and physics of the black holes. In particular, for Reissner–
Nordstrom and Schwarzschild solutions, (7.9) and (7.10)
become

(a) Ri jkh = R�
i jkh, (b) Ri0kh = 0,

(c) Ri0k0 = �2
{
ci ck + 1

2 (ci |k + ck|i )
}
,

(7.11)

and

(a) Rik = R�
ik − ci ck − 1

2 (ci |k + ck|i ),
(b) Ri0 = 0, (c) R00 = �2{chch + ch|h },

(7.12)

respectively.

8 Equations of motion in a Kerr black hole

In this section and in the next one, we take e = 0 in (1.2), that
is, we consider the Kerr black hole (M, g). As is well known,
the geodesic equations in a Kerr black hole have been explic-
itly integrated for the first time by Carter [15]. In the present
section we will state a new form of the equations of motion in
a Kerr black hole, and obtain information about the position
of geodesics in M with respect to the spatial distribution. In
particular, we show that the geodesics of (M, g) which are
tangent to SM coincide with the autoparallel curves of the
Riemannian spatial connection.

Let C be a smooth curve in M given by parametric equa-
tions

x0 = x0(λ), xi = xi (λ), i ∈ {1, 2, 3}, λ ∈ [a, b], (8.1)

where λ does not necessarily represent the time in (M, g).
The velocity vector field d/dλ for C is expressed in terms of

the threading frame {∂/∂x0, δ/δxi } as follows:

d

dλ
= δx0

δλ

∂

∂x0 + dxi

dλ

δ

δxi
, (8.2)

where we put

δx0

δλ
= dx0

dλ
− �−2ξ3

dx3

dλ
. (8.3)

Now, by using (7.7) and (7.1c) in (3.17), we express the Levi-
Civita connection ∇ on (M, g), as follows:

(a) ∇ δ

δx j

δ
δxi

= ��k
i j

δ
δxk

+ ωi j
∂

∂x0 ,

(b) ∇ ∂

∂x0

δ
δxi

= ∇ δ

δxi

∂
∂x0 = �2ωk

i
δ

δxk
+ ci

∂
∂x0 ,

(c) ∇ ∂

∂x0

∂
∂x0 = �2ck δ

δxk
.

(8.4)

By direct calculations using (8.4) and (8.2), we obtain

∇ d
dλ

d

dλ
=

{
d2xk

dλ2 + �� k
i j

dxi

dλ

dx j

dλ
+ 2�2 δx0

δλ
ωk
i

dxi

dλ
+

(
δx0

δλ

)2

�2ck
}

δ

δxk

+
{

d

dλ

(
δx0

δλ

)
+ 2

δx0

δλ
ci

dxi

dλ

}
∂

∂x0 , (8.5)

which leads to the following equations of motion:

(a)
d2xk

dλ2 + �� k
i j

dxi

dλ

dx j

dλ
+ 2�2 δx0

δλ
ωk
i

dxi

dλ
+

(
δx0

δλ

)2

�2ck = 0,

(b)
d

dλ

(
δx0

δλ

)
+ 2

δx0

δλ
ci

dxi

dλ
= 0. (8.6)

Note that λ from (8.6) is an affine parameter for geodesics in
(M, g).

A geodesic of (M, g) which is tangent at any of its points
to the spatial distribution SM is called a spatial geodesic.
Then by using (8.2), (8.3), and (8.6) we deduce that a curve
C given by (8.1) is a spatial geodesic if, and only if, it is a
solution of the system

(a) d2xk

dλ2 + ��k
i j

dxi
dλ

dx j

dλ
= 0,

(b) δx0

δλ
= dx0

dλ
− �−2ξ3

dx3

dλ
= 0.

(8.7)

Now, we remark that (7.7a) implies that the Kerr spacetime
has a bundle-like metric with respect to the foliation deter-
mined by ξ (cf. [16, p. 112]). Thus, we have the following
interesting property:

If a geodesic of a Kerr black hole is tangent to the spatial
distribution at one point, then it remains tangent to it at all
later times.

Also, due to (8.7) we may state the following:
The spatial geodesics in (M, g) coincidewith autoparallel

curves for the Riemannian spatial connection.
Next, we suppose that C is a geodesic in (M, g) which

is not spatial, that is, we have δx0/δλ 	= 0. Without loss of
generality we suppose δx0/δλ > 0. Then by using (3.3) in

123



Eur. Phys. J. C (2015) 75 :159 Page 11 of 12 159

(8.6b), we obtain

(
δx0

δλ

)−1
d

dλ

(
δx0

δλ

)
+ 2�−1 d�

dλ
= 0,

which is equivalent to

δx0

δλ
�2 = K , (8.8)

where K is a positive constant. By using (8.8) into (8.6a),
we deduce that a geodesic of a Kerr black hole (which is not
a spatial geodesic), must be a solution of the system formed
by (8.8) and the equations

d2xk

dλ2 + �� k
i j

dxi

dλ

dx j

dλ
+ 2Kωk

i
dxi

dλ
+ K 2�−2ck = 0. (8.9)

Finally, taking into account (8.7b) and (8.8), we conclude
that the system of differential equations for the geodesics in
a Kerr black hole can be arranged in such a way that one of
the equations is of first order.

9 A 3D identity along a geodesic in a Kerr black hole

The Riemannian spatial connection given by (3.11) enables
us to define a 3D force in a Kerr black hole, and to deduce
what we call the 3D force identity [cf. (9.10)]. Note that
this 3D force is a direct consequence of the existence of
the fourth dimension (time), and emphasizes an important
difference between Newtonian gravity and Einstein’s general
relativity.

Let C be a geodesic in (M, g), andU (λ) be the projection
of velocity d/dλ on SM. Then by (8.2) we obtain

U (λ) = dxi

dλ

δ

δxi
, (9.1)

which we call the 3D velocity along C . Now, we consider the
3D arc-length parameter s� on C given by

s� =
∫ λ

a
h(U (λ),U (λ))1/2dλ =

∫ λ

a

(
hi j

dxi

dλ

dx j

dλ

)1/2

dλ,

and we obtain

(ds�)2 = hi jdx
idx j . (9.2)

Hence

U (s�) = dxi

ds�

δ

δxi
(9.3)

is a unit spatial vector field, that is, we have

h(U (s�),U (s�)) = 1. (9.4)

Since ds�/dλ is positive, we can take s� as a new parameter
on C . We define the 3D force along C as the spatial vector

field F(s�) given by

F(s�) = ∇�
d

ds�
U (s�). (9.5)

Here, ∇� is the Riemannian spatial connection, and d/ds� is
given by

d

ds�
= δx0

δs�

∂

∂x0 + dxi

ds�

δ

δxi
. (9.6)

Taking into account that ∇� is a metric connection on SM,
and using (9.4) and (9.5), we deduce that F(s�) is orthogonal
to both U (s�) and U (λ). By (9.5), (9.6), and (8.7), we see
that the 3D force vanishes along a spatial geodesic C if, and
only if, s� is an affine parameter on C .

Next, we put

F(s�) = Fk(s�)
δ

δxk
,

and by using (9.5), (9.6), (3.12), (3.14), and (7.7a), obtain

Fk(s�) = d2xk

(ds�)2 + �� k
i j

dxi

ds�

dx j

ds�
+ �2 δx0

δs�
ωk
i

dxi

ds�
, (9.7)

provided C is not a spatial geodesic. Now, by using (8.8) and
taking into account that

d2λ

(ds�)2 = −d2s�

dλ2

(
ds�

dλ

)−3

,

from (9.7) we deduce that the local components of the 3D
force with respect to the affine parameter λ are given by

Fk(λ) =
{

d2xk

dλ2 + �� k
i j

dxi

dλ

dx j

dλ
+ Kωk

i
dxi

dλ

−
(

ds�

dλ

)−1 d2s�

dλ2

dxk

dλ

} (
ds�

dλ

)−2

. (9.8)

Finally, by using (8.9) into (9.8), we infer that

Fk(λ) = −
{
Kωk

i
dxi

dλ
+K 2�−2ck +

(
ds�

dλ

)−1 d2s�

dλ2

dxk

dλ

}

×
(

ds�

dλ

)−2

. (9.9)

Taking into account that

hkh F
k(λ)

dxh

dλ
= 0,

and using (9.9), (3.3), and (9.2), we obtain

K 2�−3 d�

dλ
+ ds�

dλ

d2s�

dλ2 = 0. (9.10)

Note that the identity (9.10) is a direct consequence of the
existence of the 3D force F given by (9.5). For this reason
we call it the 3D force identity. Such an identity could be
useful in a study of motions in (M, g), and even for solving
the equations of motion. For example, from (9.10) we deduce
the following.
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The 3D arc-length parameter s� is an affine parameter on
the geodesic C , if and only if, � is constant along C .

10 Conclusions

In the present paper we develop a theory for a (1+3) threading
of spacetime (M, g) with respect to a congruence of curves
determined by an arbitrary timelike vector field ξ = ∂/∂x0.
The generality of the study is not the only difference between
our approach and what is known in the literature for the case
of the unit vector field ξ . The main differences consist in the
following:

(i) Our approach is entirely developed with geometric
objects expressed by their local components with
respect to the threading frames {∂/∂x0, δ/δxi } and
threading coframes {δx0, dxi }.

(ii) The spatial distribution is not supposed to be necessar-
ily integrable, and therefore this theory can easily be
applied to the study of any cosmological model with
non-zero vorticity.

(iii) All the equations and results that we state are expressed
in terms of the spatial tensor fields [cf. (3.1)] and
their spatial and time covariant derivatives [cf. (3.15)]
induced by the Riemannian spatial connection given by
(3.12).

(iv) In spite of the numerous papers published on (1 + 3)
threading of the spacetime (cf. [1,5–14]), the general-
ized Raychaudhuri equations (6.1), (6.5), and (6.27) are
stated here for the first time in the literature.

(v) The proof of Lemma 6.3, which completes the well-
known Lemma 6.2, is entirely based on a new form of
Raychaudhuri’s equation for a congruence of timelike
geodesics [cf. (6.28)].

(vi) It is the first time in the literature that the spatial
geodesics of a Kerr black hole are investigated [see (8.7)
and the assertions which follow it].

(vii) The 3D force (9.5) and the 3D force identity (9.10) are
new objects in the general theory of Kerr back holes,
and they illustrate the differences between Newtonian
gravity and Einstein’s general relativity.
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