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Abstract Anisotropic dark energy cosmological models
are constructed in the frame work of generalised Brans–
Dicke theory with a self-interacting potential. A unified dark
fluid characterised by a linear equation of state is consid-
ered as the source of dark energy. The shear scalar is con-
sidered to be proportional to the expansion scalar simulat-
ing an anisotropic relationship among the directional expan-
sion rates. The dynamics of the universe in the presence of a
unified dark fluid in anisotropic background have been dis-
cussed. The presence of an evolving scalar field makes it
possible to get an accelerating phase of expansion even for a
linear relationship among the directional Hubble rates. It is
found that the anisotropy in expansion rates does not affect
the scalar field, the self-interacting potential, but it controls
the non-evolving part of the Brans–Dicke parameter.

1 Introduction

Recent observations from distant type Ia supernovae (SNIa)
suggest that currently the universe is undergoing a state of
acceleration [1–5]. This intriguing discovery has led to the
idea of an exotic form of energy, dubbed dark energy, that
is responsible for the possible cosmic acceleration at late
times. Observations of large scale structure and the cosmic
microwave background (CMB) also provide strong evidence
in favour of dark energy [6,7]. The presence of dark energy
with a negative pressure is confirmed with additional evi-
dence from observations of X-ray clusters [8], Baryon Acous-
tic Oscillations (BAO) [9], weak lensing [10] and integrated
Sache–Wolfe effect [11,12]. In recent work by Sullivan
et al. [13] and Suzuki et al. [14] cosmic acceleration with dark
energy components has gained much support and a tighter
constraint has been put on the dark energy equation of state.
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The exact nature of dark energy is not yet known except the
fact that dark energy violates the strong energy condition and
clusters only at largest accessible scales. Dark energy consti-
tutes the highest contribution to the energy density (68.3 %
dark energy, 26.8 % dark matter and 4.9 % baryonic matter
[15–17]). A simple candidate for dark energy can be a cosmo-
logical constant in the classical FRW model with an equation
of state equal to −1. However, the cosmological constant is
entangled with serious puzzles like the fine tuning problem
and coincidence problem. The fine tuning problem is con-
cerned with the theoretically predicted value of the cosmo-
logical constant from quantum field theory which is larger
than the observed value by an order of 10123. Further it leads
to the coincidence problem: why are we accelerating in the
current epoch now that the vacuum and dust energy density
are of the same order? Therefore a good number of alternative
candidates have been proposed in recent times. Some alterna-
tive candidates for dark energy models are quintessence mod-
els [18], phantom models [19], ghost condensate [20] or k-
essence [21], holographic dark energy [22], agegraphic dark
energy [23,24], quintom [25,26] and so on. The dark energy
provides a negative pressure that generates an anti-gravity
effect driving the acceleration. High resolution CMB radia-
tion anisotropy data from Wilkinson Microwave Anisotropy
Probe (WMAP) are in good agreement with the prediction
of the � dominated cold dark matter model (�CDM) based
upon the spatial isotropy and flatness of the universe [27],
[28]. However, �CDM encounters some anomalous features
at large scale. Even though the large scale anomalies in CMB
anisotropy are still debatable, WMAP data suggest an asym-
metric expansion with one direction expanding differently
form the other two transverse directions at the equatorial
plane [29] and signal a non-trivial topology of the large scale
geometry of the universe [30,31].

The issue of global anisotropy of the universe can be sim-
ply dealt with a simple modification of the FRW model.
Recently, some plane symmetric Bianchi-I models or locally

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3371-3&domain=pdf
mailto:sktripathy@igitsarang.ac.in; tripathy\protect _sunil@rediffmail.com
mailto:dipadolly@rediffmail.com
mailto:bivudutta@yahoo.com


149 Page 2 of 11 Eur. Phys. J. C (2015) 75 :149

rotationally symmetric Bianchi-I (LRSBI) models have been
proposed to address the issues related to the smallness in the
angular power spectrum of the temperature anisotropy [32–
35]. For a planar symmetry, the universe looks the same from
all the points but the points all have a preferred axis. Recent
Planck data shows that the primordial power spectrum of
curvature perturbation is slightly redshifted from the exact
scale invariance [15]. It is obvious from the Planck data that
despite the notable success of �CDM model at high multi-
poles, it does not provide a good fit to the temperature power
spectrum at low multipoles [15]. However, it may be noted
here that there still persists uncertainty on these large angle
anisotropies and they remain as open problems. LRSBI mod-
els are more general than the usual FRW models and are based
on exact solutions to the Einstein field equations with homo-
geneous but anisotropic flat spatial sections. LRSBI models
have also been studied widely, in recent times, in different
contexts [36–41].

Brans–Dicke theory is a simple modification of Einstein
general relativity where the purely metric coupling of mat-
ter with gravity is preserved, thus the universality of free
fall (equivalence principle) is ensured [42]. Here, the grav-
itational constant is replaced with the inverse of a time-
dependent scalar field, namely, φ(t) = 1/8πG, and this
scalar field couples to gravity with a coupling constant ω. It
passes the experimental tests from the solar system [43] and
is able to provide an explanation of the accelerated expan-
sion of the universe [44]. The theory can also be tested by the
observational data coming from CMB and large scale struc-
ture [45–48]. Moreover, Brans–Dicke theory arises naturally
as the low energy limit of many quantum gravity theories
like superstring theory or Kaluza–Klein theory. Since the
Brans–Dicke theory has proved to be a better alternative to
general relativity and has a dynamical framework, it evokes
wide interests in the modern cosmology. In view of this, it is
worthwhile to discuss dark energy models in this framework.

In the present work, we have constructed some cosmo-
logical models for LRSBI universe in the frame work of
Brans–Dicke theory with a self-interacting potential and a
dynamical Brans–Dicke parameter. The unified dark fluid
(UDF), characterised by a linear equation of state, is consid-
ered as the source of dark energy. The paper is organised as
follows: In Sect. 2, the basic equations for LRSBI universe
are derived. The dynamics of evolution with a unified dark
fluid characterised by a linear equation of state is discussed in
Sect. 3. We have shown that a constant deceleration param-
eter leads to a power law for the Brans–Dicke scalar field.
Also, in the work, we concentrate upon late time dynamics
of the universe with an accelerated phase of expansion. At
late times, the deceleration parameter is believed to be slowly
varying or constant. On the other hand, a constant decelera-
tion parameter simulates two kinds of volumetric expansion,
namely: an exponential law and a power law. Cosmological

models for exponential expansion and power law expansion
are constructed in Sects. 4 and 5, respectively. The dynamics
of universe in the presence of a dark fluid is investigated for
respective models. The dynamical Brans–Dicke parameters
and self-interacting potential for both models are discussed.
Finally, we summarise our results in Sect. 6.

2 Basic Equations

We consider here the generalised Brans–Dicke theory with
a self-interacting potential. In this generalised Brans–Dicke
theory, the Brans–Dicke parameter is considered as a function
of the scalar field φ. The action for generalised Brans–Dicke
theory in a Jordan frame is given by [49,50]

S =
∫

d4x
√−g

[
φR − ω(φ)

φ
φ,αφ,α − V (φ) + Lm

]
, (1)

where ω(φ) is the modified Brans–Dicke parameter, V (φ)

is the self-interacting potential, R is the scalar curvature and
Lm is the matter Lagrangian. The unit system we choose here
is 8πG0 = c = 1. Varying the action in (1) with respect to
the metric tensor gi j and the scalar field φ, the field equations
are obtained as

Gi j = ω(φ)

φ2

[
φiφ j − 1

2
gi jφ,αφ,α

]
+ 1

2
[φ,i; j − gi j�φ],

(2)

�φ = T

2ω(φ)+3
− 2V (φ) − φ

∂V (φ)
∂φ

2ω(φ)+3
−

∂ω(φ)
∂φ

φ,iφ
,i

2ω(φ)+3
. (3)

In the above equations, T = gi j Ti j is the trace of the energy
momentum tensor Ti j , � is the d’Alembert operator. Solar-
system experiments predicted a value of the coupling con-
stant of ω > 40,000 [43]. ω can be less than 40,000 on
a cosmological scale [45]. Observational constraints on the
Brans–Dicke model were obtained in a flat universe with
cosmological constant and cold dark matter using the lat-
est WMAP and SDSS data [47]. Within the 2σ range, the
value of ω satisfies ω < −120.0 or ω > 97.8. In a recent
work, the Brans–Dicke parameter is constrained from the
combination of observational data of CMB from seven year
WMAP, BAO from SDSS, SNIa data from union2 and the
X-ray gas mass fraction data from Chandra X-ray observa-
tions of the largest relaxed galaxy clusters to be in the range
0.0014 < 1

ω
< 0.0024 or 417 < ω < 714 [51]. The rate

of change of G was constrained to be −1.7510−12 year−1 <
Ġ
G < 1.0510−12 year−1 at 2σ confidence level in the present
epoch [47]. Brans–Dicke theory reduces to Einstein’s general
relativity in the limit of a constant scalar field and an infinitely
large Brans–Dicke parameter ω. However, this consideration
may not hold always good [41,52,53].
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A plane symmetric LRSBI model is considered through
the metric

ds2 = −dt2 + A2dx2 + B2(dy2 + dz2), (4)

where A and B are the directional scale factors and are con-
sidered as functions of cosmic time only. The metric cor-
responds to considering the yz-plane as the symmetry plane
and x as the axis of symmetry. The eccentricity of such a uni-
verse is given by e = √

1 − A2/B2. The expansion scalar θ

for this metric is θ = Ȧ
A + 2 Ḃ

B , where an overhead dot rep-
resents an ordinary time derivative. Defining the directional
Hubble parameters along the axis of symmetry and symmetry
plane as H1 = Ȧ

A and H2 = Ḃ
B , the mean Hubble parame-

ter can be written as H = 1
3 (H1 + 2H2) and θ = 3H . The

scalar expansion can be expressed in terms of the directional
Hubble parameters as

θ = H1 + 2H2. (5)

The shear scalar for the plane symmetric metric defined in
(4) is expressed as

σ 2 = 1

2

[

i H

2
i − 1

3
θ2

]
= 1

3
(H1 − H2)

2. (6)

The shear scalar may be taken to be proportional to the expan-
sion scalar which envisages a linear relationship between the
directional Hubble parameters H1 and H2 as H1 = kH2.
This assumption leads to an anisotropic relation between the
directional scale factors A and B as A = Bk . Here, k is an
arbitrary positive constant that takes care of the anisotropic
nature of the model. If k = 1, the model reduces to be
isotropic and otherwise the model is anisotropic. One may
note that such an assumption is not new and is widely used in
the literature to handle anisotropic models. The mean Hub-
ble parameter can now be expressed as H = 1

3 (k + 2)H2.

The average anisotropic parameter A = 1
3


(
�Hi
H

)2
for the

model is A = 2
(
k−1
k+2

)2
. Obviously for an isotropic model

with k = 1, A vanishes and has a finite non-zero value for
anisotropic models. One should keep in mind that the uni-
verse is observed to be mostly isotropic and any deviation
from isotropic behaviour must be considered as a sort of
small perturbation.

The field equations, for a cosmic fluid with energy
momentum tensor Ti j = (ρ + p)uiu j + pgi j , now assume
the explicit forms

9(2k + 1)H2 = (k + 2)2

×
[

ρ

φ
+ ω(φ)

2

(
φ̇

φ

)2

− 3H

(
φ̇

φ

)
+ V (φ)

2φ

]
, (7)

6(k + 2)Ḣ + 27H2 = (k + 2)2

×
[
− p

φ
− ω(φ)

2

(
φ̇

φ

)2

− 6H

(k+2)

(
φ̇

φ

)
− φ̈

φ
+ V (φ)

2φ

]
, (8)

3(k2 + 3k + 2)Ḣ + 9(k2 + k + 1)H2 = (k + 2)2

×
[
− p

φ
− ω(φ)

2

(
φ̇

φ

)2

− 3(k+1)H

(k+2)

(
φ̇

φ

)
− φ̈

φ
+ V (φ)

2φ

]
,

(9)

and the Klein–Gordon wave equation for the scalar field,

φ̈

φ
+ 3H

φ̇

φ
= ρ − 3p

2ω(φ) +3
−

∂ω(φ)
∂φ

φ̇2

2ω(φ) +3
− 2V (φ) − φ

∂V (φ)
∂φ

2ω(φ) +3
(10)

where ρ is the dark energy density and p is the dark energy
pressure.

Subtracting Eq. (9) from Eq. (8), we can obtain the evo-
lution equation for the Brans–Dicke scalar field,

− Ḣ

H
− 3H = φ̇

φ
, (11)

which can also be expressed as

(q − 2)H = φ̇

φ
, (12)

where q = −1 − Ḣ
H2 is the deceleration parameter. It

should be mentioned here that a positive deceleration param-
eter describes a decelerating universe whereas a negative q
implies an accelerating one. Equation (12) implies that, for a
non-static universe (H �= 0), a constant scalar field will give
us a decelerating universe with q = 2. Brans–Dicke field
equations with constant scalar field reduce to the usual Ein-
stein field equations in general relativity. Therefore, one can
conclude that in general relativity accelerating models can-
not be achieved for LRSBI models by assuming a linear rela-
tionship among the directional Hubble rates. This issue has
already been investigated earlier [38,54] and similar results
have been obtained. However, in the present work, it is inter-
esting to note that the presence of an evolving Brans–Dicke
field modifies the situation and it is possible to get acceler-
ating models even if the directional Hubble rates are propor-
tional to each other. Again, the behaviour of the Brans–Dicke
field is governed by the deceleration parameter and the con-
sequent Hubble rate. For a constant deceleration parameter
the Brans–Dicke field evolves as φ ∼ aq−2, or more specif-
ically φ ∼ (1 + z)2−q , where a is the scale factor, related
to the redshift z by 1

a = 1 + z. Here, we consider the scale
factor at the present epoch to be 1. In other words, a constant
deceleration parameter favours a power law for the Brans–
Dicke scalar field. Moreover, it has become a usual practice,
in the literature, to use a power law scalar field (φ = φ0aα)
to address different issues in cosmology in the framework of
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Brans–Dicke theory. Also one should keep in mind that Eq.
(12) is valid only for an anisotropic model with k �= 1.

The general expressions for the Brans–Dicke parameter
and the self-interacting potential can be obtained from the
field equations (7)–(9) as

ω(φ) =
(

φ̇

φ

)−2 [
−ρ + p

φ
− φ̈

φ
+ 3kH

k + 2

φ̇

φ

− 6Ḣ

k + 2
− 18(1 − k)

(k + 2)2 H2
]

, (13)

V (φ) = 2φ

[
9(2k+1)H2

(k+2)2 − ρ

φ
− ω(φ)

2

(
φ̇

φ

)2

+3H
φ̇

φ

]
.

(14)

The behaviour of the Brans–Dicke parameter and the self-
interacting potential along with the dynamics of the uni-
verse can be understood if we know the behaviour of the
energy density, pressure and the scale factor of the uni-
verse. The scale factor of the universe can be fixed from
the behaviour of the deceleration parameter or the assumed
dynamics of the late time accelerated universe. For the pres-
sure and energy density, usually, a barotropic relationship
in the form P = P(ρ), known as the equation of state, is
assumed. In this sense many equations of state with different
mathematical formulations have been proposed in the litera-
ture to address different issues in cosmology. In the present
work, we assume a linear equation of state to handle the issue
of the dark energy problem in the frame work of generalised
Brans–Dicke theory.

3 Unified dark fluid

A dark fluid model with a linear equation of state was pro-
posed in the spirit of the generalised Chaplygin gas model
(GCM) [55,56] after its success in addressing issues related
to the late time cosmic acceleration and dark energy problem.
Also CGM is known to be quite consistent with observations
[57]. Holeman and Naidu in their work in Ref. [56] coined
the linear equation of state defining the dark fluid as wet dark
fluid (WDF), claiming that such an equation of state was
used earlier to treat water and an aqueous solution [58,59].
In UDF, a constant adiabatic sound speed is assumed and
the equation of state is obtained through an integration over
the energy density. The integration constant coming out in
the process, obviously, has a behaviour similar to the cos-
mological constant and the equation of state has components
both from the dark matter and the dark energy sectors. This
is usually referred to as dark degeneracy.

A unified fluid dark energy is modelled through the equa-
tion of state

p = γ (ρ − ρ∗), (15)

where γ and ρ∗ are positive constants. This non-homogen-
eous linear equation of state (15) provides a description of
both hydro-dynamically stable (γ > 0) and unstable (γ < 0)
fluids [55]. One may notice here that the UDF equation of
state contains two parts—one behaves as the usual barotropic
cosmic fluid, and the other behaves as a cosmological con-
stant and unifies the dark energy and dark matter compo-
nents. The adiabatic speed of sound for this equation of state
is C2

s = γ . For stability of a model the adiabatic speed of
sound should be C2

s ≥ 0 and for causality, C2
s ≤ 1. Hence,

γ should lie in the range of 0 ≤ γ ≤ 1. γ = 0 refers to the
case of dark matter and γ = 1 implies a stiff fluid dominated
with dark energy (maybe the contribution coming from other
sources such as a fluid with a bulk viscosity or a cosmologi-
cal constant). The value of γ in between zero and 1 refers to
an exotic cosmic fluid unifying both the dark energy and the
dark matter and it deals with the dark sector of the universe.
However, there are no such constraints for ρ∗ and it can be
treated as a free parameter. The advantage of the equation of
state (15) is that dark energy can be described with a posi-
tive squared sound speed (contrary to the need of a negative
squared sound speed in phantom energy). In Ref. [56], Hol-
man and Naidu have claimed that the WDF model (similar
to UDF) is consistent with SNIa observations [3], WMAP
data [60,61] and constraints coming from the measurements
of the matter power spectrum [62]. They have shown that a
WDF model with γ = 0.316228 fits well to the observed
data. Babichev et al. [55] did not put any sign constraint on
the parameters γ and ρ∗. For different combinations of these
two parameters they obtained distinctive types of the cosmic
evolution scenario such as Big Bang, Big Crunch, Big Rip,
anti-Big Rip solutions with de Sitter attractor and bouncing
solutions. They have shown that, for 1+γ > 0 and γρ∗ > 0
the universe may contain either non-phantom or phantom
energy, whereas for 1 + γ > 0 and γρ∗ < 0 the universe
may contain only phantom energy leading to a Big Crunch.
On the other hand, for 1 + γ < 0 and γρ∗ < 0, the universe
may contain either non-phantom or phantom energy, whereas
for 1 + γ < 0 and γρ∗ > 0, the universe may contain only
phantom energy leading to a Big Rip in a finite time. The
WDF equation of state is considered as a linearised equation
of state of any smooth function p = p(ρ) in the vicinity of
some local point. UDF dark energy model has generated a
considerable research interest in recent times and has been
studied widely addressing different issues in relativity and
cosmology [63–71].

The parameters of the UDF can be constrained using the
observational data on the dark energy equation of state. In
the present work, we use the recent observational constraint
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Fig. 1 Observational constraints on the UDF parameters

on the dark energy equation of state, ωD = −1.06+0.11
−0.13 [72].

The range of allowed values for the parameters γ and ρ∗ as
obtained by using the data of Ref. [72] is shown in Fig. 1. In
the figure, γ is restricted within the range 0 ≤ γ ≤ 1 based
upon the stability and causality of the model which keeps the
parameter ρ∗ in the positive domain for negative ωD . In a
recent work, Liao et al. [71] have constrained the parameters
of a unified dark fluid described through a two parameter
affine linear equation of state similar to the one discussed
in this work using the Hubble parameter data H(z), type Ia
Supernovae data from Union 2 datasets, Baryon Acoustics
Oscillations observations from Sloan Digital Sky Survey and
the CMB radiation data from WMAP. They have constrained
the parameter γ to be 0.00172+0.00392

−0.00479 in 1σ for a flat uni-

verse and 0.00242+0.00787
−0.00775 in 1σ for a non-flat universe. In

another work, Xu et al. [69] constrained this parameter to be
0.000487+0.000117

−0.000487 in 1σ confidence. So far, it is believed that
a low value of γ much less than 1 fits the observational data
well.

The energy conservation equation for the matter field is
given by

ρ̇ + 3H(ρ + p) = 0. (16)

For the unified dark fluid equation of state, (16) can be inte-
grated to get

ρ = ρ� + ργ a
−3(1+γ ) (17)

where ρ� = γρ∗
1+γ

and ργ = (ρ0 − ρ�). a = (AB2)
1
3 is

the average radius scale factor of the universe. ρ0 is the dark
energy density at the present epoch. Since γ and ρ∗ are pos-
itive, ρ� is positive, varying between 0 and ρ∗

2 for γ = 0,
γ = 1, respectively. Depending upon the relative values of
ρ0 and ρ�, ργ can either be positive or negative. It is inter-
esting to note that the dark energy density has two parts:

Fig. 2 Dark energy equation of state as a function of redshift for three
positive values of the ratio ρ�

ργ
. γ is taken to be 0.316

one behaves like a cosmological constant and the other part
dynamically evolves with the cosmic expansion.

The dark energy pressure can be expressed as

p = −ρ� + γργ a
−3(1+γ ), (18)

so that the equation of state parameter ωD = p
ρ

becomes

ωD = −1 + 1 + γ

1 +
(

ρ�

ργ

)
a3(1+γ )

. (19)

The dynamical evolution of the dark energy equation of state
can also be assessed from

ωD = −1 + 1 + γ

1 +
(

ρ�

ργ

)
(1 + z)−3(1+γ )

. (20)

The dark energy pressure and the dark energy equation of
state parameter also have two parts each, one corresponds to
the usual cosmological constant and the second part evolves
dynamically with cosmic expansion. In Fig. 2, the dynami-
cal evolution of the dark energy equation of state parameter
is shown as a function of redshift for three representative
values of the ratio ρ�

ργ
= 20, 30 and 50 corresponding to

ωD = −0.937,−0.958 and −0.974 at the present epoch. γ

is chosen to be 0.316. ωD dynamically evolves from γ at an
early epoch to −1 at late times of evolution. In the interme-
diate time zone, the behaviour of the dark energy equation
of state is the same for all the choices of ρ�

ργ
, except the fact

that with increase in the value of the ratio, ωD becomes less
negative. In Fig. 3, the dark energy equation of state is plotted
as a function of redshift with γ = 0.316 for three negative
values of the ratio ρ�

ργ
= −8,−20 and −50, corresponding

to ωD = −1.19,−1.07 and −1.03 at the present epoch. The
dark energy equation of state evolves in the phantom region
and increases with the cosmic expansion to behave like a
cosmological constant.

123



149 Page 6 of 11 Eur. Phys. J. C (2015) 75 :149

Fig. 3 Dark energy equation of state as a function of redshift for three
negative values of the ratio ρ�

ργ
. γ is taken to be 0.316

Deceleration parameter q = − ä
aH2 and jerk parameter

j = ...
a

aH3 are considered as important quantities in the
description of the dynamics of universe. The observational
constraints as set upon these parameters in the present epoch
from type Ia supernova and X-ray cluster gas mass fraction
measurements are q0 = −0.81 ± 0.14 and j0 = 2.16±+0.81

−0.76
[73]. In a recent work, the deceleration parameter is con-
strained from H(z) and SNIa data to be q = −0.34 ± 0.05
[74]. Experimentally it is challenging to measure the deceler-
ation parameter and jerk parameter and one needs to observe
objects of red shift z ≥ 1. In attempts to investigate the accel-
erated expansion of the universe, the sign and behaviour of
these parameters have been considered in different manners
in different works. The time variation of the deceleration
parameter is under debate even though, in certain models, a
time varying q leads to a cosmic transit from early decel-
eration to late time acceleration [75–78]. However, at a late
of time of cosmic expansion, the deceleration parameter is
believed to vary slowly with time or to become a constant.
A constant deceleration parameter leads to two different vol-
umetric expansions of the universe, namely the power law
expansion and exponential expansion. In a model with expo-
nential expansion, the radius scale factor increases exponen-
tially with time, leading to a constant Hubble rate. In a model
with power law expansion of the volume scale factor, the
scale factor can be expressed as a cosmic time raised to some
positive power. The Hubble parameter for such a power law
model behaves reciprocally to the cosmic time. In the present
work, we are interested in models describing a late time uni-
verse with the predicted cosmic acceleration and therefore we
will consider the exponential and power law expansion of the
scale factor corresponding to a constant and variable (decay-
ing) mean Hubble rate, i.e. H = H0 and H = m

t , where H0

and m are positive constants. It is worth to mention here that

Fig. 4 Evolution of Brans–Dicke scalar field. Brans–Dicke fields for
both the exponential and the power law models are shown. For the power
law model, three representative values of the exponentm are considered

the choice of a constant deceleration parameter cannot pro-
vide a time dependent cosmic transition from a deceleration
phase in the past to an accelerated phase at late times.

4 Exponential model

In this kind of volumetric expansion, the Hubble rate is a
constant quantity i.e. H = H0=constant and the scale fac-
tor is given by a = eH0(t−t0) and it describes a de Sitter
type universe. t0 is the cosmic time in the present epoch. The
directional scale factors along the longitudinal and transverse

directions are A = e
3kH0(t−t0)

(k+2) and B = e
3H0(t−t0)

(k+2) . The decel-
eration parameter and jerk parameter, for this choice of the
Hubble rate, are q = −1 and j = 1. The directional decel-
eration parameters qx , qy and qz are the same as that of the
mean deceleration parameter q.

Integration of (12) yields for an exponential scale factor

φ = φ0e
−3H0(t−t0), (21)

where φ0 is the value of the scalar field in the present epoch.
In terms of the scale factor and redshift z, we can express the
scalar field, respectively, as φ = φ0a−3 and φ = φ0(1 + z)3,
where we have used the fact 1

a = 1+z. In Fig. 4, the evolution
of the Brans–Dicke scalar field is plotted as a function of
redshift. The scalar field decreases exponentially from a large
value at the early epoch to vanishing value at late times of
the cosmic evolution.

The rest energy density and pressure for the present model
are

ρ = ρ� + ργ

(
φ

φ0

)1+γ

, (22)
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p = −ρ� + γργ

(
φ

φ0

)1+γ

. (23)

The rest energy density and pressure in the model evolve with
the scalar field. They decrease from higher values in the past
to low values in a later period. At late times, ρ dynamically
evolves to become ρ� and the pressure p reduces to −ρ�.
At late times, a negative pressure dominates the scenario and
helps in the acceleration of cosmic expansion.

Using the fact that φ̇
φ

= −3H0 and φ̈
φ

= 9H2
0 we get the

Brans–Dicke parameter as

ω(φ) = ω0 + ω1φ
γ , (24)

whereω0 = −2
[

(k2+2k+3)

(k+2)2

]
andω1 =−

[
(γ+1)ργ

9H2
0

]
φ

−(1+γ )
0 .

It is interesting to note here that the Brans–Dicke parameter
has two parts: a constant ω0 and a dynamically evolving part.
The constant part is decided from the anisotropic nature of
the model. For an isotropic model with k = 1, it becomes
ω0 = − 4

3 . The anisotropic nature of the model does not affect
the evolving part of the Brans–Dicke parameter. The evolv-
ing part is mostly governed by the value of γ . The variable
Brans–Dicke parameter becomes a constant for the lower
limit of γ , whereas it varies linearly with the scalar field for
its upper limit. The allowed range of the Brans–Dicke param-
eter is ω0 + ω1 ≤ ω(φ) ≤ ω0 + ω1φ. The role played by
the parameter ρ∗ is quite interesting. In the absence of this
parameter, the cosmic fluid behaves as a barotropic fluid with
the usual relation p = γρ, and ω1 turns out to be negative.
Consequently, the Brans–Dicke parameter assumes a much
higher negative value in the early phase of cosmic evolution.
However, in the presence of this parameter, the value of ω(φ)

is a bit lifted up because of the positive contribution from ρ∗.

For the particular choice of ρ∗ =
(

1 + 1
γ

)
ρ0, ω1 vanishes

and ω(φ) behaves as a constant ω0. In Fig. 5, the functional
ωBD = ω(φ)−ω0

ω1
is shown as a function of the scalar field for

the exponential scale factor leading to a de Sitter kind of uni-
verse. The shaded area in the plot shows the allowed range
of the functional ωBD corresponding to the upper and lower
bounds on γ . The blue curve running through the shaded area
is for the representative value γ = 0.316. It is obvious from
the figure that, for this representative value of γ , the func-
tional ωBD increases with increase in the scalar field. At an
early phase of the cosmic evolution, the functional is almost
constant or has a little variation with the scalar field, whereas,
with the growth of time, the rate of change in the functional
becomes more rapid at late times. It can be concluded that
with the cosmic expansion, the functional ωBD decreases for
γ > 0. The rate of decrement slows down as the value of γ

decreases from its upper bound to the lower one. For γ = 0,
the functional becomes a constant with a value equal to 1.
However, for γ = 1, the value of ω is decided by the param-

Fig. 5 The functional ωBD , for the exponential model, as a function of
scalar field. The shaded area shows the allowed range for the functional.
The curve running through the shaded area is for γ = 0.316

eters ρ∗, ρ0, φ0 and H0. The scalar field decreases with time
and therefore, for any value of γ other than zero, the Brans–
Dicke parameter evolves to a constant ω0 at late times of the
evolution. From a dimensional consistency as demanded by
the Klein–Gordon wave equation (10), for γ �= 0, the value of
ω0 should be −1.5, which favours the anisotropic parameter
k to be 4. On the other hand, the average anisotropic parame-
ter is constrained from WMAP data [79] to be |√A| = 10−5,
which corresponds to k = 1.0000212 in our present model.
In fact, the universe is observed to be mostly flat and isotropic
and hence the anisotropy in cosmic expansion must be con-
sidered as a little perturbation to the isotropic behaviour.

The self-interacting potential can be expressed as

V (φ) = V0 + V1φ
1+γ , (25)

where V0 = −2ρ� and V1 = −2ργ φ
−(1+γ )
0 . The self-

interacting potential does not depend upon the anisotropic
parameter k, rather it depends upon the parameters of the uni-
fied dark fluid. For the lower limit of γ , the self-interacting
potential varies linearly with the scalar field and for the upper
limit it varies in a quadratic manner. For a particular choice of

the parameter ρ∗ =
(

1 + 1
γ

)
ρ0, the Brans–Dicke parameter

behaves like a constant with values ω0 = −1.5 and the self-
interacting potential behaves as a constant with the value of
V (φ) = V0 = −2ρ0. With the evolution of the scalar field,
the self-interacting potential evolves to a constant value of
−2ρ� at late times. However, in the absence of the parameter
ρ∗ in the dark energy equation of state, the potential vanishes.
In other words, the presence of the parameter ρ∗ induces a
self-interacting potential even in the absence of a scalar field.
The behaviour of the functional VBD = V−V0

V1
is shown in

Fig. 6. The shaded area in the graph shows the allowed range
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Fig. 6 The functional VBD , for the exponential model, as a function of
scalar field. The shaded area shows the allowed range for the functional.
The curve running through the shaded area is for γ = 0.316

of the functional VBD . The curve running through the shaded
area is for γ = 0.316, where the functional VBD increases
with the increase in the scalar field. The slope of the curve
increases with the increase in γ .

The dynamics of cosmic evolution through its expansion
history can be understood from the dark energy equation of
state parameter, ωD . From (22) and (23), we get

ωD = −1 + 1 + γ

1 +
(

ρ�

ργ

) (
φ
φ0

)−(1+γ )
. (26)

The dark energy equation of state does not depend on the
anisotropic nature of the model and depends on the parame-
ters of the UDF like the self-interacting potential. The dark
energy equation of state, for γ > 0, decreases from γ in
the quintessence region at the initial epoch to behave as a
cosmological constant with ωD = −1, at a later epoch when
the scalar field vanishes. At a given cosmic time, the dark
energy equation of state is decided by the parameters γ and
ρ∗. One should note the role played by the parameter ρ∗.
In the absence of this parameter, i.e. for ρ� = 0, the dark
energy equation of state is simply given by ωD = γ , which
can take only positive values as decided from the constraints
on the adiabatic speed of sound. But the inclusion of ρ∗ into
the equation of state modifies the relation and makes the
dark energy equation of state a dynamic one. In other words,
ρ∗ incorporates some negative pressure simulating the dark
energy necessary for the accelerated expansion.

The time variation of Newtonian gravitational constant is
given by

Ġ

G
= φ̇

φ
= −3H0. (27)

Since, in the present model, the Hubble parameter is assumed
to be a constant quantity throughout the cosmic evolution,
obviously, Ġ

G turns out to be a constant and its value can be
calculated in a straightforward manner. The observational
data from H(z) and Supernovae Ia constrained the Hub-
ble parameter as H0 = 68.930.53

−0.52kms−1Mpc−1 [74] and
accordingly the time variation of G can be calculated from
the present model.

5 Power law model

In the case of power law expansion with the Hubble param-
eter behaving as H = m

t , m being a positive constant, the

average scale factor behaves as a =
(

t
t0

)m
. The scale fac-

tors along the longitudinal and transverse directions read

A =
(

t
t0

)(
3mk
k+2

)
and B =

(
t
t0

)(
3m
k+2

)
. Cosmologies with a

power law scale factor are widely discussed in the litera-
ture [74,80–86]. The success of the power law model lies
with the fact that models with m ≥ 1 do not encounter the
horizon problem and do not witness the flatness problem.
In Ref. [74], from the analysis of observational constraints
from H(z) and SNIa data, Kumar has shown that a power
law cosmology is viable in the description of the accelera-
tion of the present day universe even though it fails to produce
primordial nucleosynthesis.

The deceleration parameter for this model is q = 1
m − 1.

In order to be in the safe zone for accelerated expansion, the
predicted deceleration parameter should be negative and that
can be achieved only if m > 1. In terms of the deceleration
parameter, the parameter m can be expressed as m = 1

1+q .
Considering the observational constraints from Ref. [73], we
put the constraints on m to be 3.03 ≤ m ≤ 20. Correspond-
ing to the constraints from Ref. [74], m can be constrained in
the range 1.4085 ≤ m ≤ 1.6393. The jerk parameter is cal-
culated to be j = (m−1)(m−2)

m and can be constrained in the
range 0.69 ≤ j ≤ 17.1 [73] and −0.1716 ≤ j ≤ −0.1407
[74]. It is worth to mention here that the exact determina-
tion of the jerk parameter involves the observation of high-z
supernovae, which is a tough task. Therefore, current obser-
vational data have not yet been able to pin down the range
or sign of the jerk parameter. The directional Hubble rates

for this model are H1 =
(

3mk
k+2

)
1
t and H2 =

(
3m
k+2

)
1
t .

Consequently the directional deceleration parameters along
different spatial directions are obtained using the relation

qi = −1+ d
dt

(
1
Hi

)
as qx = k+2

3mk −1 and qy = qz = k+2
3m −1.

The mean deceleration parameter q is obtained from the
directional deceleration parameters as q = 1

3 (qx + qy + qz).
The directional deceleration parameters are also independent
of time. For an isotropic model, k = 1 and the directional
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deceleration parameters all reduce to qx = qy = qz = 1
m −1

and become equal to the mean q.
The scalar field for this model becomes

φ = φ0

(
t

t0

)1−3m

. (28)

In terms of the scale factor φ = φ0 (a)
1−3m
m and in terms of the

redshift φ = φ0(1 + z)
3m−1

3m . It is obvious from (28) that the
scalar field decreases with expansion of the universe and van-
ishes at large cosmic time. The behaviour of the scalar field is
only decided by the single parameter m or more specifically
the constant negative deceleration parameter. The scalar field
is independent of the anisotropic parameter k. In Fig. 4, the
scalar field for the model is shown as a function of redshift.
In the figure we have considered three representative values
of the exponent m, namely 1.5, 3 and 7, which are within the
allowed range as calculated from the observational data for
the deceleration parameter. It is amply clear from the figure
that a model with a higher value of m has a higher scalar field
in the past, whereas it has a low value of the scalar field in
the future. Also, the variation of scalar field with m at early
time is much better exemplified than that at late times of the
evolution.

The energy density and pressure for this model with power
law expansion read

ρ = ρ� + ργ

(
φ

φ0

) 3m(1+γ )
3m−1

(29)

and

p = −ρ� + γργ

(
φ

φ0

) 3m(1+γ )
3m−1

. (30)

Just like the previous model, the energy density and pressure
evolve with the scalar field from large values at the initial
epoch to, respectively, become ρ� and −ρ� at large cosmic
time.

The variable Brans–Dicke parameter can be expressed as

ω(φ) = ω0p + ω1pφ

(
3γm−1
3m−1

)
, (31)

where ω0p = 3m[(k+2)(k−3mk+2)−6m(1−k)]
(1−3m)2(k+2)2 and ω1p =

− (γ+1)ργ

(1−3m)2 t
2
0 φ

− 3γm−2
3m−1

0 . We have used the fact φ̇
φ

= 1−3m
t and

φ̈
φ

= 3m(3m−1)

t2
to get (31) from (14). It is interesting to note

that the Brans–Dicke parameter is a function of the scalar
field even in the lower limit of γ , in which it decreases with
the scalar field. In other words, the Brans–Dicke parame-
ter assumes lower values in the past and larger values in
the late time of cosmic evolution. If we consider the upper
bound of γ , the Brans–Dicke parameter evolves linearly with
the scalar field. The anisotropic nature of the model affects
only the constant part of the Brans–Dicke parameter. The

Fig. 7 The functional ωBD , for the power law model, as a function of
scalar field. The shaded area shows the allowed range for the functional.
The curve running through the shaded area is for γ = 0.316

behaviour of the evolving part is governed by the parameters
of the UDF and the exponent m. In Fig. 7, the functional
ωBD = ω−ω0p

ω1p
is plotted as a function of the Brans–Dicke

field. The shaded area shows the allowed range. In order
to get a general behaviour, we have shown the functional
for a representative value γ = 0.316. For the upper bound
of γ , the functional linearly behaves with the Brans–Dicke
field. In order to calculate the lower bound for the functional
we have used a reasonable value of the exponent m = 1.5,
which lies within the observational limits corresponding to
more recent data. Just like the previous model, the functional
ωBD for the representative value of γ varies slowly with the
Brans–Dicke field at an early epoch and varies rapidly at a
late time of evolution. ρ∗ has a significant role to play in the
behaviour of the Brans–Dicke parameter. For the particular

choice ρ∗ =
(

1 + 1
γ

)
ρ0, it behaves as a pure constant which

can be equated to −1.5, from dimensional consistency of the
Klein–Gordon wave equation.

The self-interacting potential for this model is given by

V (φ) = V0 + V1pφ
3m(1+γ )

3m−1 , (32)

where

V1p = (γ − 1)ργ φ

(
3m(1+γ )

1−3m

)
0 . (33)

Since m > 1, the self-interacting potential increases with
the increase in the scalar field. Like the previous model,
the scalar field does not depend on the anisotropic expo-
nent k and it depends on the parameters of the unified dark

fluid. For a choice of ρ∗ =
(

1 + 1
γ

)
ρ0 or γ = 1, the self-

interacting potential becomes independent of the scalar field
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Fig. 8 The functional VBD, for the power law model, as a function of
scalar field. The upper curve is for γ = 0.8 and m = 1.5. The lower
curve shows the lower bound with γ = 0. The three curves in themiddle
are for three different values of the exponent m with γ = 0.316

and equals −2ρ�. This is the same value as the potential
assumes at a later epoch. In other words, there is an induced
self-interacting potential in the absence of the scalar field,
because of the parameter ρ∗. In Fig. 8, we have shown the
functional VBD = V−V0

V1p
as a function of the Brans–Dicke

field. In this figure we cannot set up the upper bound since
V1p vanishes for γ = 1. However, a curve for γ = 0.8 with
m = 1.5 is shown in the figure to get an idea. The curves
for γ = 0.316 are shown for three different values of m, e.g.
m = 1.5, 3.5 and 7. The functional VBD decreases with the
decrease in the field and at late times of the evolution it van-
ishes. For a given value of γ , the functional decreases with
the increase in m at early epochs, whereas it increases at late
times. However, the rate of increment at late times is less as
compared to the rate of decrement at an early phase.

The dark energy equation of state ωD can be calculated
from (29) and (30) as

ωD = −1 + 1 + γ

1 +
(

ρ�

ργ

) (
φ
φ0

) 3m(1+γ )
1−3m

. (34)

The dark energy equation of state decreases from γ in
the beginning to behave like a cosmological constant with
ωD = −1 at a late epoch of cosmic evolution. In the absence
of the parameter ρ∗, the dark energy equation of state is
a constant quantity i.e. γ . The presence of this parameter
makes the dark energy equation of state an evolving one.
The anisotropic nature of the model does not affect ωD . How-
ever, the dark energy equation of state is controlled by the
choice of the exponent m, which is decided by the observa-
tional constraints on the deceleration parameter and the jerk
parameter.

The time variation of the Newtonian gravitational constant
for this power law model is

Ġ

G
= 1 − 3m

t
. (35)

Here, φ̇
φ

= 1−3m
t inversely varies with time. The value of m

for the present is constrained from the observational data [74]
and consequently the time variation of G can be predicted to
be in the range −3.918 < Ġ

G t < −3.226.

6 Conclusion

In the present work, we have constructed some cosmological
models mimicking the late time cosmic acceleration in the
frame work of generalised Brans–Dicke scalar tensor theory
of gravitation for a plane symmetric universe. The cosmic
fluid is considered to be a dark fluid described by a two param-
eter affine equation of state. The shear scalar is considered
to be proportional to the scalar expansion, which simulates a
linear relationship among the directional Hubble rates incor-
porating anisotropy in expansion rates along different spatial
directions. In general relativity, such an assumption does not
provide an accelerating model. However, in the frame work
of generalised Brans–Dicke theory with evolving scalar field,
it is possible to get accelerated phase of expansion with such
an assumption. Considering a constant deceleration param-
eter at a late time of evolution of the universe, we have con-
sidered two kinds of volume expansion, namely, the power
law expansion and the exponential law of expansion. More-
over, we have shown that a constant deceleration parameter
leads to a power law in the Brans–Dicke scalar field. The
presence of the extra term in the barotropic fluid equation
of state makes the dark energy equation of state an evolving
one. The dark energy equation of state evolves from a posi-
tive constant quantity equal to the adiabatic speed of sound
in the beginning to behave like a cosmological constant at
a later epoch of cosmic evolution. The scalar field is found
to decrease with the cosmic expansion. The self-interacting
potential increases with the increase in scalar field. In an ini-
tial epoch, the self-interacting potential is having a large value
and decreases with time to have a constant value decided
by the equation of state parameter at a later epoch. The
anisotropic nature of the model does not affect the behaviour
of the scalar field and the self-interacting potential. However,
the non-evolving part of the dynamic Brans–Dicke param-
eter is affected by the introduction of an anisotropy in the
expansion rates.
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