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Abstract We assume the most general static spherically
symmetric black hole metric. The accretion of any general
kind of fluid flow around the black hole is investigated. The
accretion of the fluid flow around the modified Hayward
black hole is analyzed, and we then calculate the critical
point, the fluid’s four-velocity, and the velocity of sound dur-
ing the accretion process. Also the nature of the dynamical
mass of the black hole during accretion of the fluid flow,
taking into consideration Hawking radiation from the black
hole, i.e., evaporation of the black hole, is analyzed.

1 Introduction

At present we live in a Universe which is expanding and
the expansion rate is increasing, i.e., the Universe is accel-
erating, which was confirmed by recent Supernova type Ila
observations [1,2]. The large scale structure [3—5] and cos-
mic microwave background radiation [6] WMAP observa-
tions [7-9] also support this acceleration of the Universe.
This acceleration is caused by some unknown matter which
produces a sufficiently strong negative pressure (with posi-
tive energy density), known as dark energy. The present Uni-
verse occupies ~4 % ordinary matter, ~74 % dark energy
and ~22 % dark matter. Dark energy and dark matter are
the two main components in our universe; the present dark-
energy and dark-matter densities are 7.01 x 10727 and
2.18 x 10727 kg/m?, respectively. The simplest candidate
of the dark energy is the cosmological constant A, which
obeys the equation of state EoS p = wp with EoS parameter
w = —1 [10,11]. Other candidates for the dark energy are
quintessence (where the EoS parameter satisfies —1 < w <
—1/3) [12,13] and phantom (where the EoS parameter sat-
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isfies w < —1) [14]. Till now a lot of dark-energy models
have been considered. A brief review of dark-energy models
is found in Ref. [15].

A condensed object (e.g. a neutron star, a black hole, etc.)
surrounded by a fluid can capture particles of the fluid that
pass within a certain distance from the condensed object. This
phenomenon is termed accretion of the fluid by condensed
objects. In Newtonian theory of gravity, the problem of accre-
tion of matter onto the compact object was first formulated by
Bondi [16]. Michel [17] first obtained an analytic relativis-
tic accretion (of gas) solution onto the static Schwarzschild
black hole. Such accretion processes are candidates to the
mechanisms of the formation of supermassive black holes
(SMBH) in the center of most active galaxies [18]. In partic-
ular, it should show some analogies with the process proposed
by Salpeter et al. [19] where galaxies and quasars could get
some of their energy from processes of accretion. Using this
accretion procedure, Babichev et al. [20,21] formulated the
accretion of phantom dark energy onto a static Schwarzschild
black hole and showed that static Schwarzschild black hole
mass will gradually decrease due to the strong negative pres-
sure of the phantom energy and finally all the masses tend
to zero near the big rip singularity. Sun [22] discussed phan-
tom energy accretion onto a black hole in the cyclic universe.
Jamil [23] has investigated accretion of a phantom like mod-
ified variable Chaplygin gas onto the Schwarzschild black
hole. Phantom energy accretion by a stringy charged black
hole has been discussed by Sharif et al. [24]. Dark matter
and dark energy accretion onto a static black hole has been
discussed by Kim et al. [25]. Also the accretion of the dark
energy onto the more general Kerr—Newman black hole was
studied by Madrid et al. [26]. The new variable modified
Chaplygin gas and generalized cosmic Chaplygin gas dark-
energy accretions and accretions onto a Kerr—Newman black
hole and their features were studied Bhadra et al. [27]. Sev-
eral authors [28-35] have discussed the accretions of var-
ious components of the dark energy onto several types of
black holes.
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In the present work, first we assume the most general static
spherically symmetric black hole metric in Sect. 2. The accre-
tion of any general kind of the fluid flow around the black
hole will be investigated. The accretion of the fluid flow
around the modified Hayward black hole will be analyzed
in Sect. 3 and we then calculate the critical point, the fluid’s
four-velocity, and the velocity of sound during the accre-
tion process. Also the nature of the dynamical mass of the
black hole during accretion of the fluid flow and taking into
consideration Hawking radiation from the black hole, i.e.,
evaporation of the black hole, will be analyzed in Sect. 4.
Finally, we shall present fruitful discussions of the accre-
tion of the fluids upon the modified Hayward black hole in
Sect. 5.

2 Accretion phenomena of general static spherically
symmetric black hole

First we consider general static spherically symmetric metric
given by

ds? = —A(r)di> + —— dr? 4+ r2(d0% +sin6dp?) (1)

B ( )
where A(r) > 0 and B(r) > 0 are functions of r only. We
can choose A(r) and B(r) in such a way that the above metric
represents a black hole metric. Let us assume M is the mass
of the black hole. For instance, if A(r) = B(r) = 1 — &
the above metric represents a Schwarzschild black hole.
The energy—momentum tensor for the fluid is given by

Ty = (o + puyuy + pguy ()

where p and p are the energy density and pressure of the
fluid. The four-velocity vector of the fluid flow is given by
ut = % = @Y u',0,0) where u° and u! are the non-
zero components of velocity vector satisfying u, u" = —1.
This implies goououo + gllulu1 = —1. So we can obtain

w)? = % and let the radial velocity of the flow u! =

0— \/%\/u2+ B.Here /—g =

\/g r2sin6. From the above Eq. (2), we obtain TOl =(p+
p)uou. It is assumed that u < 0 for inward flow of the fluid
toward the black hole.

In the fluid flow, we may assume that the fluid is dark
matter or any kind of dark energy. A proper dark-energy
accretion model for a static spherically symmetric black hole
should be obtained by generalizing Michel’s theory [17]. In
the dark-energy accretion onto Schwarzschild black hole,
Babichev et al. [20,21] have performed the above gener-
alization. We shall follow now the above procedure in the
case of static spherically symmetric black hole. The rel-
ativistic Bernoulli equation (the time component) of the
energy-momentum conservation law is 7.," = 0, and we

u, thus we have ug = goou

@ Springer

obtain dd—r (Tola/—g) = 0, which provides the first integral,
(p + p)uou' /=g = C. This simplifies to

A
ur’M 2 (p + p)E\/ u?+ B =C; 3)

where C1 is an integration constant, which has the dimension
of the energy density. Moreover, the energy flux equation can
be derived by the projection of the conservation law for the
energy—momentum tensor onto the fluid four-velocity, i.e.,
u,LT;’:U = 0, which gives u*p , + (o + p)uf‘u = 0. From
this, we obtain

urzMz\/z exp |:/ph d—,o:| =-C 4
B pe P+ P(P)

where C is an integration constant (energy flux onto the black
hole) and the associated minus sign is taken for convenience.
Also pp and ps represent the energy densities at the black
hole horizon and at infinity, respectively. Combining Eqgs. (3)
and (4), we obtain

d
(0 + PV + \F exp[ —”} SRNG)

pe P P(P)
where Cp = —C1/C = po + p(pPo)- The equation of mass
flux J;‘; = 0 is given by % (J'/=g) = 0, which integrates
to pu'/—g = A1 and yields

A
,ourzM_2\/; =C;3 (6)

where C3 is an integration constant. From (3) and (6), we
obtain

,o—l—p‘/ Vu 2—i—B———C4— constant. @)

Now let us assume

»_ din(p +p)
dlnp

Thus, from Egs. (6), (7), and (8), we obtain

e u? du [ 2,1 A B
u?+B | u 2\ A B

rB’ dr
2(u 2—i—B):|

Now if one or the other of the bracketed terms in (9) vanishes,
we get a turn-around point, and in this case, the solutions will
be the double-valued in either r or u. There are only solutions
which pass through a critical point that correspond to material
falling into (or flowing out of) the object with monotonically
increasing velocity along with the particle trajectory. A point
where the speed of the flow is equal to the speed of sound is
called a critical point. It is assumed that the critical point of
accretion is located at r = r, which is obtained by taking

—1. ®)

x(V2 4+ Dr + Q)
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the two bracketed terms (coefficients of du and dr) in Eq. (9)
to be zero. So at the critical point, we obtain

2 g
R 1o
and
ave _[AGd BT o B'(rc)

e [A(ra - B(m)](vc MR TeR S

Here, the subscript ¢ denotes the critical value and u. is the
critical speed of the flow at the critical point r.. From the
above two expressions, we have

2o B A [ 2 A B’(rc)]‘ 1)
2 A(re) Lre A(re) B(re)

and

V2 [1+2A<rc> B(r) (g_ Ao B’(n:))}_l

¢ Al(re) B'(re) \re A(re) B(re) ’

13)

At the critical point r., the sound speed can be determined
by

_dp

2 C4Vc(vc2 + 1) B(re)
= o =

Uc A(re)

~1. (14)

r=re

The physically acceptable solutions of the above equations
may be obtained if 2 > 0 and V2 > 0, which leads to
/ /!
A'(re)B'(re) > 0 and 2 > Al M
re A(re) B(re)
From the above equation we can obtain the bound of r. if A
and B are known for several kinds of static black holes.

15)

3 Accretion phenomena of modified Hayward black
hole

The static spherically symmetric space-time is described by
the Hayward metric which is obtained by A(r) = B(r) in
Eq. (1) and is given by [36]

1
B(r)

Here, M is the mass of the Hayward black hole and B(r) =
1— %, where [ is a parameter with dimensions of length
(Hubble length) with a small scale related to the inverse
cosmological constant A (/ is a convenient encoding of the
central energy density ﬁ ~ A, assumed positive). Such
a behavior has been proposed by Sakharov [37,38] as the
equation of state of matter at high density and by Markov
[39,40] based on an upper limit on the density or curvature,
to be ultimately justified by a quantum theory of gravity. In
the limit » — oo, B(r) ~ 1 — ZTM, which represents the

ds? = —B(r)ds> + dr? 4 r2(d6? + sin6 dg?). (16)

Schwarzschild black zhole, but it becomes a de Sitter black
hole as B(r) ~ 1 — % near the center (r =~ 0), so itis a reg-
ular space-time without singularity. Thus a Hayward black
hole is the simplest regular black hole. Some physical con-
sequences of Hayward black holes have been discussed by
several authors [41-43]. After that the Hayward metric was
modified [44] by choosing A(r) = f(r)B(r), satisfying the
following conditions: it

(i) preserves the Schwarzschild behavior at large r,

(i) includes the one-loop quantum corrections, and

(iii) allows for a finite time dilation between the center
and infinity.

So the modified Hayward black hole metric is given by
[44]
ds? = — f(r)B(r)ds* + ﬁ dr? + r*(d6? + sin 6d¢?)

A7)

where

Mr? aBM
w10 =1 o
with «, B positive constants. Now from the relation A(r) =
f(r)B(r), we may obtain
A'(r) _ f'r) | B'(r)
Ay~ f(r)  B(r)’

Also from the expressions of B(r) and f(r) [Eq. (18)], we
get

B(r) =1 (18)

(19)

B'(r) 2Mr(r3 — 4MI?) 20)
B(r)  (r3+2MP)[r3 +2M 1% — )]

/ 2 2
;i 3a“BMr 21

for)y  (ard+BM)lar’ + (1 —a)BM]
Since outside the horizon,

() B(r) > 0, which implies > > 2M (> — %) and (ii)
f@r) >0,

we getr > [W]% with @ > 1. So from Eq. (21), we
have f'(r) > 0.

If we assume that the fluid flow accretes upon the mod-
ified Hayward black hole, we can calculate the expressions
of u2, V2 and c? at the critical point .. The expressions are
given below (using Egs. (12), (13), and (14)):

/ ’ ’ / —1
uZ_B(rC) <B(rc)+f(rc)> (E_f(’%)) ()

¢ 2 \B(ro  fro)) \re {(rc)
v = [1 * 25/((’:0)) (i((rr; j;%(rr)) )
5 (L@)}l, 23)
re f(rc)
2
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where B(r), f(r), and their derivatives are given in (18),
(20), and (21) at the point r = r.. The physically acceptable
solutions of the above equations may be obtained if ug >0
and VC2 > 0, which leads to

f'(re) - E (25)

flre) re
From the above restrictions, we may get the bounds of r,
that is (o > 1):

AMP B(—4 + 5o + Ja(R5a — 24))M }
, 1o .

B'(r.) >0 and 0 <

rc3 > Max {
(26)

For example, we assume the fluid flow obeys a linear equation
of state p = wp (w = constant) as it accretes upon the
modified Hayward black hole. Then we obtain ¢ = w and
VC2 = 0 and from (10), we obtain u. = 0. From Eqs. (22) and
(24), we see that the critical point occurs at the point r, =
4mi 2) % For the general equation of state where w = w(?),
we obtain C52 Z constant, ch # 0, and u% # 0. In this case,

it is very difficult to obtain the critical point r..

4 Changes of black hole mass during accretion
and evaporation

The rate of change of mass M of the black hole is computed
by integrating the flux of the fluid over the 2-dimensional
surface of the black hole and given by M=— f TO1 dS where
dS = /—gdfd¢. Using Eq. (3), we obtain the rate of change
of the mass of the black hole in the following form:

M = 4nCM*(poo + P(po))- 27)

The above result is also valid for any equation of state p =
p(p). So the rate of change of mass for the accreting fluid
around the black hole will be

Moee = 4 CM*(p + p). (28)

We see that the rate of change of mass for the general spheri-
cally symmetric static black hole due to accretion of the fluid
flow becomes exactly the rate of the case of a Schwarzschild
black hole. From the expression (28) it is to be noted that the
rate of change of the mass of any static spherically symmet-
ric black hole is completely independent of A(r) and B(r).
When some fluid accretes outside the black hole, the mass
function M of the black hole is considered as a dynamical
mass function and hence it should be a function of time also.
So M is time dependent and the increasing or decreasing of
the black hole mass M sensitively depends on the nature of
the fluid which accretes upon the black hole. If p + p < 0
i.e., for phantom dark-energy accretion, the mass of the black
hole decreases but if p + p > 0, i.e., for quintessence dark-
energy accretion, the mass of the black hole increases.

@ Springer

We may also assume that the black hole evaporates by the
Hawking radiation process. The rate of change of mass for
the evaporation is given by

D
M?
where D > 0 is a constant whose value depends on the model
[45]. Now due to accretion of the fluid flow and evaporation
of the mass of the black hole, we get the rate of change of
the mass of the black hole as

Meyy = — (29)

M = Wigee + Wloa = 47CM>(p 4 p) = - (30)
For the accretion scenario, the change of the mass of the
black hole completely depends on the nature of the fluid
that accretes. But for an evaporation process, the change of
the mass of the black hole is independent of the nature of
the fluid, because this is internal process. In fact, when the
accretion fluid is only the cosmological constant (p = —p),
the mass of the black hole for only the accretion scenario
is always the same throughout the time evolution. Only in
the accretion process, the mass of the black hole increases
for a normal fluid and quintessence type dark energy fluid
and decreases for phantom dark energy. But due to accre-
tion as well as evaporation, M > 0 for M* > m

and M < 0 for M* < m for a normal fluid and a
quintessence type dark energy, but for phantom energy, the
black hole mass always decreases (M < 0). Thus evapora-
tion supports the decreasing of the mass of the black hole
with some restrictions of the minimum values of the mass of
the black hole.

5 Discussions and concluding remarks

First we have assumed the most general static spherically
symmetric black hole metric. The accretion of any general
kind of the fluid flow around the black hole has been inves-
tigated. For this general kind of static black hole, the critical
point, velocity of sound, and the fluid’s four-velocity have
been calculated and it was shown that these values depend
completely on the metric coefficients. Next, the accretion of
the fluid flow around the modified Hayward black hole has
been analyzed and we then calculated the critical point, the
fluid’s four-velocity, and the velocity of sound during the
accretion process. We can mention that outside the horizon,
(1) B(r) > 0, which implies 3 > 2M &% — 12), and (ii)
f(@r) > 0,s0we getr > [W]% with « > 1 and also
f'(r) > 0. For the physical region of accretion the bounds

of the critical point have been generated and were found to
ber? > Max{4MI?, ’3(_4+5“+V4z(25“_24)w}.When the per-

fect fluid satisfies a linear equation of state, p = wp (w =
constant), it accretes upon the modified Hayward black hole,
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we have obtained: c? = w,u. = 0,and ch = (0. Inthis accre-
tion process, we have seen that the critical point occurs at the
point ro = (4M 12)%. Also the nature of the dynamical mass
of the black hole during accretion of the fluid flow, taking
into consideration Hawking radiation from the black hole,
i.e., evaporation of the black hole, has been analyzed. Only
in the accretion process, the mass of the black hole increases
for a normal fluid and a quintessence type dark-energy fluid
and decreases for phantom dark energy. But due to accre-
tion as well as evaporation, M > 0 for M* > m

and M < 0 for M* < m for a normal fluid and a
quintessence type dark energy, but for phantom energy, the
black hole mass always decreases (M < 0). Thus evapora-
tion supports the decreasing of the mass of the black hole
with some restrictions on the minimum values of the mass of
the black hole.
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