
Eur. Phys. J. C (2015) 75:115
DOI 10.1140/epjc/s10052-015-3337-5

Regular Article - Theoretical Physics

Thermal relics in cosmology with bulk viscosity

A. Iorio1,a, G. Lambiase2,3,b

1 Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 18000 Prague 8, Czech Republic
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Abstract In this paper we discuss some consequences of
cosmological models in which the primordial cosmic mat-
ter is described by a relativistic imperfect fluid. The lat-
ter takes into account the dissipative effects (bulk viscos-
ity) arising from different cooling rates of the fluid compo-
nents in the expanding Universe. We discuss, in particular,
the effects of the bulk viscosity on Big Bang Nucleosyn-
thesis and on the thermal relic abundance of particles, look-
ing at recent results of PAMELA experiment. The latter has
determined an anomalous excess of positron events, which
cannot be explained by conventional cosmology and particle
physics.

1 Introduction

Bulk viscous pressure in cosmic media arises as a conse-
quence of the coupling among the different components of
the cosmic substratum. Since these components have differ-
ent internal equation of state, their cooling is different as the
Universe expands, giving rise to a deviation of the system
from equilibrium. The different cooling rates of the compo-
nents generate a bulk viscous pressure of the cosmic medium
as a whole, which for a homogeneous and isotropic Universe
is the only possible dissipative phenomenon.1 These dissi-
pative processes are described in terms of an imperfect fluid
(see [1–42] and references therein). In a FRW Universe, the
dissipation is a scalar and can be therefore described as a

1 More specifically, bulk viscosity effects account for the rapid expan-
sion or compression of a fluid ceasing to be in thermal equilibrium. As
a consequence, the bulk viscosity gives a measure of the pressure that
is necessary for restoring the equilibrium to a compressed or expand-
ing system. This condition arises in a natural way in a cosmological
expanding background, such as the early Universe.

a e-mail: iorio@ipnp.troja.mff.cuni.cz
b e-mail: lambiase@sa.infn.it

bulk viscosity as referred to the thermodynamical approach
[42].

Since bulk viscosity enters into the Einstein field equa-
tions, it is natural to expect that it may affects the evolution
of the primordial Universe. Such a modification of the stan-
dard cosmology alters the thermal histories of (relic) parti-
cles, hence their abundance. This scenario can be realized
before the Big Bang Nucleosynthesis (BBN) epoch, a period
of the evolution of the Universe not directly constrained by
cosmological observations. When the expansion rate of the
Universe is enhanced (as compared to the one derived for a
perfect fluid), thermal relics decouple with larger relic abun-
dance. The change in the Hubble rate may therefore have
its imprint on the relic abundance of dark matter, such as
WIMPs, axions, heavy neutrinos, and so on. These studies
are strongly motivated by recent astrophysical results which
involve cosmic ray electrons and positrons [43–47], antipro-
tons [48], and γ -rays [49–51]. Particular attention is devoted
to the presence of the peak in the cosmic positron spectrum
at energies above 100 GeV observed in PAMELA experi-
ment [43] (see also [52–60]). Moreover, in this paper the
effects of the viscous Universe are also investigated in the
framework of the Big Bang Nucleosynthesis (BBN), i.e. the
primordial light element abundance such as 3He, 4He, D,
7Li , and in the framework of matter–antimatter asymmetry
in the Universe referring in particular to the so called grav-
itational baryogenesis, a mechanism that gives rise to the
origin of matter–antimatter asymmetry through a coupling
between the baryon/lepton currents and the scalar curvature
of the Universe.

The paper is organized as follows. In Sect. 2 we recall the
main features of the bulk viscosity. In Sect. 3 we derive the
constraints provided by Big Bang Nucleosynthesis. Section 4
is devoted to the analysis of relic thermal abundance, and we
derive the order of magnitude of the mass of the dark mat-
ter particles required to explain the PAMELA experiment.
In Sect. 5 we discuss an interesting aspect of bulk viscosity
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in connection with the origin of matter–antimatter asymme-
try in the early Universe. Our conclusions are discussed in
Sect. 6.

2 Imperfect fluid

The general form of the energy-momentum tensor is [61]

Tαβ = ρuαuβ + (p + �)hαβ + qαuβ + qβuα + παβ, (1)

where � is the scalar pressure (the bulk viscous pressure),
hαβ = gαβ +uαuβ is the projector tensor, qα is related to the
energy flux, παβ is the anisotropic stress. qα and παβ satisfy
the relations

qαuα = 0, παβu
β = 0 = πα

α.

Symmetries related to an isotropic and homogeneous Uni-
verse impose qα = 0 = παβ , and only the scalar dissipation
� is possible [42]. The energy-momentum conservation law
T αβ

;β
= 0 reads

ρ̇ + �(ρ + p + �) = 0, (2)

where the dot stands for the derivative with respect to the
cosmic time and � = uα

;α
.

In a homogeneous and isotropic (spatially flat) Universe,
the Einstein equations read [61]

H2 = κρ

3
, Ḣ = −κ

2
(ρ + p + �), (3)

where H = ȧ/a is the Hubble parameter and κ = 8πG =
8πm−2

P (mP � 1.22 × 1019 GeV is the Planck mass).
The general equation for the evolution of the Hubble

parameter is given by [61]

Ḧ

H
− Ḣ2

γ H2

(
ρ + p

T ∂ρ/∂T
+ 1 + ∂p

∂ρ

)

−3Ḣ

[
ρ + p

T ∂ρ/∂T
− 1 − ∂p

∂ρ
+ 1

2

(
∂p

∂ρ
− c2

s

)]

−9H2γ

4

[
2c2

b +
(

ρ + p

T ∂ρ/∂T
− 1 − ∂p

∂ρ

)
−

(
∂p

∂ρ
− c2

s

)]

− (c2
b)

.

2c2
b

(
Ḣ

H
+ 3

2
γ H

)
+ 1

τ

(
Ḣ

H
+ 3

2
γ H

)
= 0, (4)

where τ is the relaxation time (the mean free time of the
relativistic particle), which in general is time dependent, τ =
τ(t),

γ = 1 + p

ρ
= 1 + ω,

c2
s = ∂p

∂ρ

∣∣∣
ad

= n

ρ + p

∂p

∂n
+ T

ρ + p

(∂p/∂T )2

∂ρ/∂T
,

c2
b ≡ ζ

(ρ+p)τ is the propagation velocity of a viscous pulse
[62], and ζ is the coefficient of the bulk viscosity. In a viscous
medium the sound velocity is v2 = c2

s + c2
b � 1, i.e. the

sound propagates with a subluminal velocity. We also used
� = 3H .

In the ultra-relativistic regime (radiation dominated era)
one has

p = ρ

3
, ρ = π2g∗

30
T 4,

where g∗ � 106.7 are the relativistic degrees of freedom, the
field equation (4) reads [61]

Ḧ

H
− 2

Ḣ2

H2 − 6H2c2
b + 1

τ

(
Ḣ

H
+ 2H

)
= 0. (5)

2.1 The universe with particle production

In this section we study the case of isentropic (or adia-
batic) particle production, i.e. the number of particle is not
conserved. Although the isentropic condition implies a con-
stant entropy for particle, entropy production is still present
because of the enlargement of the phase space of the system
due to the increasing number of perfect fluid particles.

If the number of particles is not conserved, one has to use
[61]

∇μN
μ = ṅ + �n = n�, (6)

where � = Ṅ/N and N = na3 (N is number of particles
in the comoving volume a3). � > 0 (<0) means particle
creation (annihilation). It is important to stress that a non-
vanishing particle production rate gives rise to an effective
bulk pressure of the cosmic fluid. Moreover, in a phenomeno-
logical description, � is an input quantity whose expression
is calculated from the microphysics underlying the physical
phenomena.2

Using the Gibbs equation T ds = d
ρ

n
− p d

1

n
and Eqs. (2)

and (6) one gets

nT ṡ = −�� − (ρ + p)�. (7)

2 A more realistic scenario requires one to consider a Universe with
two or more fluids. For the case of two fluids, the continuity equations
read

ρ̇i + �(ρi + pi ) =
∑
i

εi�iρi ,

with i = 1, 2 and ε1 = 1 = −ε2. Although these fluids do not separately
satisfy the energy-momentum conservation, the total energy density
does ρ̇ + �(ρ + p) = 0, with ρ � ρ1 + ρ2 and p � p1 + p2. In our
case we are assuming for simplicity ρ � ρ1 � ρ2.
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The condition ṡ = 0 (isentropic particle production) implies
that the viscous pressure is entirely determined by the particle
production rate

� = −(ρ + p)
�

�
. (8)

It then follows [61]

ṅ

n
= −(� − �),

Ṫ

T
= −(� − �)

∂p

∂ρ
. (9)

ρ̇ = −(� − �)(ρ + p), ṗ = −c2
s (� − �)(ρ + p). (10)

In this description the cosmic substratum is a perfect fluid
with varying particle number (and not a conventional dissi-
pative fluid).

The combination of Eqs. (3) and (8) yields

�

�
= 1 + 2

3γ

Ḣ

H2 . (11)

The time evolution of the Hubble expansion rate H is given
by [61]

Ḧ

H
− Ḣ2

γ H2

(
1 + c2

s + ∂p

∂ρ

)
+ 3Ḣ

[
1 − 1

2

(
∂p

∂ρ
− c2

s

)]

(12)

− 9

2
γ H2

(
c2

b
nsT

ρ + p
− 1

2

)

−1

2

(c2
b)

.

c2
b

(
Ḣ

H
+ 3

2
γ H

)
+ 1

τ

(
Ḣ

H
+ 3

2
γ H

)
= 0.

This is the counterpart of (5) for � �= 0. In the particular
case p = ρ/3 and ns = (ρ + p)/T , Eq. (12) reduces to the
following expression:

Ḧ

H
− 5

4

Ḣ2

H2 + 3Ḣ − 6H2
(
c2

b − 1

2

)
+ 1

τ

(
Ḣ

H
+ 2H

)
= 0.

(13)

3 Bulk viscosity and big bang nucleosynthesis
constraints

Since pre BBN epoch is a period of the evolution of the Uni-
verse not directly constrained by cosmological observations,
one has to require that the effects of bulk viscosity could
be well manifested before the BBN starts, hence for times
t∗ (or temperatures T∗) smaller than those characterizing

BBN: t∗ � tBBN ∼ (10−2–102) s (or T∗ � TBBN ∼ (10–
0.1) MeV). However, it is worth to investigate what con-
straints the BBN provides once bulk viscosity effects are
taken into account in the evolution of the Universe (this anal-
ysis is performed for a power law evolution of the scale factor
a(t) ∝ tς ).

During the BBN, the relevant weak interactions are gov-
erned by the processes

νe + n ←→ p + e−,

e+ + n ←→ p + ν̄e,

n ←→ p + e− + ν̄e.

The weak interaction rate of particles in thermal equilibrium
is given by [63,64]

�(T ) � qT 5 + O
(Q
T

)
, (14)

where

q = 9.6 × 10−46 eV−4, Q = mn − mp � T,

with mn,p the neutron and proton masses. Here

� ≡ �νe+n↔p+e− + �e++n↔p+ν̄e + �n↔p+e−+ν̄e

is the sum of the weak interaction rates.
To estimate the primordial mass fraction of 4He, one usu-

ally defines [63,64]

Yp ≡ λ
2x(tf)

1 + x(tf)
, (15)

where λ = e−(tn−tf )/τ , tf and tn are the time of the freeze-
out of the weak interactions and of the nucleosynthesis,
respectively, τn � 887 s is the neutron mean life, and
x(tf) = e−Q/T (tf ) is the neutron to proton equilibrium ratio.
The function λ(t) represents the fraction of neutrons that
decay into protons in the time t ∈ [tf , tn]. Deviations from
Yp (generated by the variation of the freezing temperature
Tf ) are given by

δYp = Yp

[(
1 − Yp

2λ

)
ln

(
2λ

Yp
− 1

)
− 2tf

τn

]
δTf

Tf
. (16)

In the above equation we have set δT (tn) = 0 because Tn is
fixed by the deuterium binding energy [65,66]. By making
use of the current estimation on Yp [67]

Yp = 0.2476, |δYp| < 10−4, (17)

one obtains
∣∣∣∣δTf

Tf

∣∣∣∣ < 4.7 × 10−4. (18)
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Exact solutions of Eq. (4) are, in general, extremely difficult
to determine. We make therefore the ansatz ω ≈ p/ρ ≈
∂p/∂ρ ≈ 1/3 (the Universe evolves isotropically) and that
the scale factor evolves, due to bulk viscosity, as a(t) ∝ tς ,
where ς = 1/2 + δ with δ � 1. Therefore, the expansion
rate of the Universe can be written in the form

H = 2ςHGR, (19)

where HGR = 1
2t is the expansion rate obtained in General

Relativity with perfect fluids. Imposing that the expansion
rate of the Universe is equal of the interaction rate, � � H ,
one derives the freeze-out temperature T = Tf(1+ δTf

Tf
), with

Tf ∼ 0.6 MeV and

δTf

Tf
= δ

4π

15

√
πg∗

5

1

qmPT 3
f

� 1.0024δ. (20)

Equations (20) and (18) imply

|δ| � δBBN, δBBN ≡ 4.7 × 10−4, (21)

i.e.∣∣∣∣ς − 1

2

∣∣∣∣ � 4.7 × 10−4

Hence, in the case � = 0, from Eq. (5) it follows that
the relaxation time is given by τH = Cς(1 − 2ς), with

C = [ 17
16 − 3

2c
2
b

]−1 ∼ O(1). For � �= 0, Eq. (13)

implies τH = 1
3

(
1 − 1

2ς

) [
c2

b − 1
2

(
1 − 1

2ς

)]−1
(this rela-

tion shows τH > 0 provided cb > 1
2

√
2ς−1

ς
and ς > 1/2,

i.e. the internal fluid dynamics limits the amplitude of the
effective viscous pressure [61]).

The trace of the energy-momentum tensor (Eq. 1) reads

T = T α
α � 3�,

which implies (R = −κT )

Ṙ = −κṪ = −3κ�̇.

Using the definition of the scalar curvature R = −6(ä/a +
ȧ2/a2) and a ∼ tς , one infers

Ṙ = 12ς(2ς − 1)

t3 , (22)

hence

�(t) = −2ς(2ς − 1)

κt2 . (23)

Both τ and � vanish in the limit ς = 1/2 (δ = 0). Since

|�| = 2ς |ς − 1/2|ρ � δρ � ρ,

the dissipative � term in (3) represents indeed a tiny pertur-
bation to the energy density.

4 Dark matter relic abundance

As we have seen in the previous sections, scalar pressure
can give rise to a different evolution of the early universe,
which may deviate from the standard cosmology provided by
general relativity. In this section we wish to discuss how these
modifications of the standard cosmology affect the thermal
relic abundance.

It is nowadays a very consolidate fact that our Universe
is dominated by dark matter (as well as by dark energy,
responsible of the accelerated expansion of the Universe),
whose ratio with the critical density satisfies the bounds [68]
0.092 ≤ �CDMh2 ≤ 0.124, where h = 100 km s−1 Mpc−1

is the reduced Hubble constant. Favorite candidates for non-
baryonic cold dark matter seem to be the weakly interacting
massive particles (WIMPs), which decoupled from the ther-
mal plasma in the early Universe. The interest in these parti-
cles as dark matter follows from the fact that the abundance of
WIMPs in chemical equilibrium in the early Universe agrees
with the expected one in the context of cold dark matter.

According to standard cosmology and particle physics,
the calculation of the relic densities of particles is based on
the assumption that the period of the Universe dominated
by radiation began before the main production of relics and
that the entropy of matter is conserved during this epoch and
the subsequent one. Once these assumptions are relaxed, a
different relic density of particles is expected. In this scenario,
therefore, any contribution to the energy density modifies the
Hubble expansion rate, which is reflected in a modification
of the relic density values [69–78].

To account for the enhancement of the expansion rates, it
is usual to write [77,78]

H(T ) = A(T )HGR(T ). (24)

Here H refers to the expansion rate of the cosmological
model modified by bulk viscosity effects discussed in the
previous sections, while HGR refers to the expansion rate of
standard cosmology with perfect fluids.

The function A(T ) assumes values greater than 1 (A(T ) >

1) at large temperatures, and A(T ) → 1 before BBN set up.
The latter value is imposed by successful predictions of BBN
on the abundance of primordial light elements. The function
A(T ) can be conveniently parameterized as [77,78] (see also
[79,80])

A(T ) = 1 + η

(
T

Tf

)ν
η�1−→ η

(
T

Tf

)ν

, (25)
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where η and ν are free parameters that characterize the spe-
cific cosmological model, and Tf � 17.3 GeV is the normal-
ization temperature: A(Tf) = 1+η. The factor 1+η is hence
the enhancement factor of the Hubble rate at the time of the
WIMPs’ freeze-out.3

To explain the PAMELA data, together with �χh2 =
�h2

∣∣WMAP
CDM = 0.1131 ± 0.0034 [81] for dark matter anni-

hilation into e+e− (here � ≡ ρ/ρc, where ρc � 8.1 ×
10−47 GeV4 is the critical energy density, and χ refers to
dark matter particles), the values of the parameter η must be
[77,78]

0 � η � 103. (27)

In this range, the values of the WIMPs dark matter masses
are

102 GeV � mχ � 103 GeV. (28)

In particular, one has

mχ ∼ 102 GeV for 0 � η � 1. (29)

Let us now apply these results to an expanding Universe
in presence of bulk viscosity, considering the cases of both
� = 0 and � �= 0.

4.1 The case � = 0

Owing to the presence of a scalar pressure, a tiny deviation
from standard cosmological evolution is expected. Let us
therefore assume that the evolution of the Universe during
the radiation dominated era is governed by the scale factor
a ∼ tς . The Hubble expansion rate can be written as

H = 2ςHGR, HGR = 1

2t
, (30)

i.e. it corresponds to an overall boost of the Hubble expansion
rate. Equations (24) and (25) imply 2ς = 1 + η and ν = 0.

3 To be more precise, the function A(T ) is parameterized such that for
temperatures T > Tre it assumes the form

A(T ) = 1 + η

(
T

Tf

)ν

tanh
T − Tre

Tre
, (26)

while for T ≤ Tre it approaches 1. The temperature Tre denotes the tem-
perature at which the Hubble rate reenters the standard rate of general
relativity, while Tf is a reference temperature, assumed in [77,78] as the
temperature at which the WIMPs dark matter freezes out in the standard
cosmology (Tf � 17.3 GeV). In general, Tf varies by varying the dark
matter mass, mχ . To avoid contradictions with big bang nucleosynthe-
sis, it is required that Tre � 1 MeV. Estimations carried out in [77,78]
have been obtained by setting Tre = 1 MeV. In the regime T � Tre, the
function (26) behaves as (25).

In particular, if one takes into account BBN constraints,
Eq. (21), then it follows that η = 2δ � 10−3, hence, accord-
ing to (29), the dark matter mass satisfying this condition is
of the order mχ ∼ 102 GeV.

4.2 The case � �= 0

The ansatz for the scale factor a ∼ tς implies that during the
radiation dominated era, the rates H and �, related by Eq.
(11), can be written in the form

� =
(

1 − 1

2ς

)
3H. (31)

Moreover, it also follows that

n ∝ a−3/(2ς), T ∝ a−1/(2ς), ρ ∝ a−2/ς . (32)

These relations imply ρ ∼ T 4.
The exponent ς in the scalar factor a cannot be therefore

arbitrary, but it is determined by Eq. (31). For simplicity we
consider the case� = αH , withα �= 3. One gets ς = 3

2(3−α)
.

For 0 � α < 3, the Universe hence evolves more rapidly

(a ∼ t
3

2(3−α) ) with respect to the standard case (a ∼ t1/2),
leading to an enhancement of the Hubble expansion rate. The
latter is related to the standard one, HGR, by the relation (30).
Comparing with (24) and (25), one hence obtains

η = α

3 − α
, ν = 0. (33)

According to (28), the dark matter mass is the order of
mχ ∼ (102–103) GeV for α ≈ 3, i.e. η � 1, while α � 1,
i.e. η < 1, yields mχ ∼ 102 GeV, as follows from (29).

4.3 A general solution for � = 0 and � �= 0

In this section we discuss a more general solution to Eq. (5).
During the pre-BBN, the expansion rate of the Universe can
be parameterized as

H(t) = HL

(
t

tL

)ϒ

, (34)

where HL , tL , and ϒ are constants. The relation between the
cosmic time and the temperature T follows from the field
equation (3). One infers

t = tL

(
8π3g∗

90

)1/2ϒ (
T 2

mPHL

)1/ϒ

. (35)

It is straightforward to determine the enhancement factor
A(T ). Writing H = A(T )HGR = A(T )/(2t), one imme-
diately obtains
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A(T ) = η

(
T

Tf

)ν

, (36)

η ≡ 2HLtL

[(
4π3g∗

45

)1/2 T 2
f

mPHL

](ϒ+1)/ϒ

, ν ≡ 2(ϒ + 1)

ϒ
.

By fixing parameters entering into (36) one can obtain the
conditions for which Eqs. (27), (28), and (29) are fulfilled.
Therefore, dark matter particles with mass of the order of
(102–103) GeV can be accommodated in this model.

The characteristic time τ(t) can be obtained by substitut-
ing (34) into Eq. (5),

τH =
1 + ϒ

2HLtL

(
HL
H

)1+1/ϒ

3c2
b + ϒ(ϒ+1)

2t2L H
2
L

(
HL
H

)2+1/ϒ
.

To give an estimation of τH , we consider some special cases:

(a) Taking ϒ � 1, one gets ν ∼ 2, tL ∼ η

√
45

4π3g∗
mP

Tf
,

from which it follows that τ ∼ tL/ϒ .
(b) In the opposite limit ϒ � 1, and for HL � H , one

infers τH ∼ 1/3c2
b.

Mutatis mutandis, similar results follow for � �= 0 by
using (13), i.e. in the case of particle production.

5 Gravitational baryogenesis

In this section we would like discuss an interesting effect of
the bulk viscosity related to the generation of baryon asym-
metry. The origin of the baryon number asymmetry in the
Universe is still an unsolved problem [64,82–89]. The suc-
cess of the big bang nucleosynthesis [90,91] and the observa-
tions of Cosmic Microwave Background anisotropies (com-
bined with the large structure of the Universe [92,93]) show
that the parameter characterizing such an asymmetry is of
the order

ηB ≡ nB − nB̄

s
� (9.2 ± 0.5) 10−11, (37)

where nB (nB̄) is the baryon (antibaryon) number density
and s the entropy of the Universe (s = 2π2g∗T 3/45).

In this paper we refer to the model proposed in [94]. Here
the baryon number asymmetry is due to a dynamical breaking
of CPT (and CP) symmetry that is generated by the coupling
of the derivative of the Ricci scalar curvature R with the
baryon current Jμ [94],

1

M2∗

∫
d4x

√−gJμ∂μR, (38)

where M∗ is the cutoff scale characterizing the effective the-
ory. If there exist interactions that violate the baryon number

B in thermal equilibrium, then a net baryon asymmetry can
be generated and gets frozen in below the decoupling tem-
perature TD. Here the thermal equilibrium of interaction that
violate B does not refer to those interactions that generate
the bulk viscosity, as discussed in the Sect. 1. From (38) it
follows that

M−2∗ (∂μR)Jμ = M−2∗ Ṙ(nB − nB̄),

where Ṙ = dR/dt . The effective chemical potential for
baryons and antibaryons is μB = Ṙ/M2∗ = −μB̄ , and the net
baryon number density at the equilibrium turns out to be (as
T � mB , where mB is the baryon mass) nB = gbμBT 2/6.
gb ∼ O(1) is the number of intrinsic degrees of freedom of
baryons. The baryon number to entropy ratio, which defines
the baryon asymmetry, is therefore [94]

ηB = nB

s
� − 15gb

4π2g∗
Ṙ

M2∗T

∣∣∣
TD

, (39)

where g∗ ∼ 106.7. The trace of the field equations gives

Ṙ = −κṪ = −κ3/2(3ω − 1)(ω + 1)ρ3/2 − 3κ�̇.

Deviations from the standard cosmology provide a non-
vanishing Ṙ, so that a net baryon asymmetry can be gen-
erated also during the radiation dominated era (ω = 1/3).
Notice that casual effects are not relevant in this context. To
compute �̇ we confine ourselves to the case4 � �= 0.

Using Eqs. (8) and (10), and taking � ∼ H and M∗ =
mP/

√
8π , it follows that

�̇ = 32

27

√
8π

ρ3/2

mP
,

so that the baryon number asymmetry (39) is

ηB = 40(8π)5/2

3

gbπ
2g1/2∗

(30)3/2

T 5
D

M2∗m3
P

� 5.24 × 104
(
TD

mP

)5

.

(41)

The net baryon asymmetry (37) follows for a decoupling tem-
perature of the order TD ∼ 10−3mP, i.e. at GUT scales. An
interesting model of baryogenesis related to bulk viscosity
and noise has been discussed in [95–97].

4 In the case � = 0 the expression of � is [61] κ� = −3γ H2 − 2Ḣ ,
and its time derivative turns out to be

κ�̇ = −2Ḧ − 6H Ḣ

(
1 + ∂p

∂ρ

)
+ 9γ H3

(
c2

s − ∂p

∂ρ

)
. (40)

Assuming that during the pre-BBN the Universe evolves according to
(34), direct calculations show that a net baryon asymmetry can be gen-
erated, and that the observed value (37) can be obtained for appropriate
fine tuning of free parameters {ϒ, HL , tL }. Instead, in the case in which
the scale factor evolves as ∼ tς , and BBN constraints are taking into
account, a net baryon asymmetry is still generated, but it is too small
with respect to the observed value (37).
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6 Conclusion

In this paper we have analyzed some cosmological conse-
quences of imperfect fluids, which are characterized by an
energy-momentum tensor that contains, in general, the bulk
viscosity pressure, the energy flux and the anisotropic stress.
The bulk viscosity term, which we were mainly interested in,
arises in mixture of matter (either of different species as in a
radiative fluid or of the same species but with different ener-
gies as in a Maxwell–Boltzmann gas) or particle production.

Deviation from the standard cosmological evolution,
induced in our case by scalar pressure, have important impact
on the problem of dark matter in the Universe. The recent
results of PAMELA experiment may be interpreted as iden-
tifying relic particles as the main constituents of dark mat-
ter. The scalar pressure generates in the early Universe an
enhancement of the Hubble expansion rate, giving rise to
thermal relics with a larger abundance. We have estimated
that the mass of the WIMPs dark matter, required to explain
the excess of positron events found in PAMELA experiment,
must be ∼102 GeV. Moreover, the consequences of the bulk
viscosity on the big bang nucleosynthesis have been dis-
cussed for a Universe whose scale factor evolves as a power
law, a(t) ∼ tζ , yielding |ζ − 1/2| < 10−4, and, finally, we
have shown that bulk viscosity effects could play a non-trivial
role for the generation of the matter–antimatter asymmetry,
at least in those models in which such an asymmetry is gener-
ated by means of a coupling of the curvature scalar derivative
to the baryon current.
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