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Abstract The generalized logarithmic electrodynamics
with two parameters β and γ is considered. The indexes
of refraction of light in the external magnetic field are calcu-
lated. In the case β = γ we come to results obtained by Gaete
and Helayël-Neto (Eur Phys J C 74:2816, 2014). The bound
on the values of β, γ was obtained from the Biréfringence
Magnétique du Vide (BMV) experiment. The symmetrical
Belinfante energy-momentum tensor and dilatation current
are found.

1 Introduction

Nonlinear classical electrodynamics in vacuum is of interest
because of the one-loop quantum corrections in QED which
give non-linear terms [1,2]. In addition, to solve the problem
of singularity of a point-like charge giving an infinite elec-
tromagnetic energy, Born and Infeld (BI) [3,4] introduced a
new parameter with the dimension of length. BI non-linear
electrodynamics results in a finite electromagnetic energy of
point-like particles. Other examples of non-linear electro-
dynamics were introduced in [5–9]. In the vacuum, in the
presence of strong external magnetic field, non-linear effects
can be observed in experiments. Thus, PVLAS [10] and BMV
[11] experiments can give the bounds on dimensional param-
eters introduced in non-linear electrodynamics. In this letter
we calculate the values of indexes of refraction of light in
the external magnetic field in generalized logarithmic elec-
trodynamics and estimate the bound on the values of the
parameters β, γ from the BMV experiment.

The Heaviside–Lorentz system with h̄ = c = ε0 = μ0 =
1 and Euclidian metric are explored.

2 The model of generalized logarithmic electrodynamics

Let us consider the Lagrangian density of non-linear gener-
alized logarithmic electrodynamics
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L = −β2 ln

(
1 + F

β2 − G2

2β2γ 2

)
, (1)

whereβ,γ are dimensional parameters andF = (1/4)F2
μν =

(B2 − E2)/2, G = (1/4)Fμν F̃μν = E · B are the Lorentz-
invariants. The field strength is Fμν = ∂μ Aν − ∂ν Aμ, and
F̃μν = (1/2)εμναβ Fαβ is a dual tensor (ε1234 = −i). At
γ = β we arrive at logarithmic electrodynamics considered
in [7].

We obtain from Eq. (1), and the Euler–Lagrange equa-
tions, the equations of motion

∂μ

[
1

�

(
Fμν − G F̃μν

γ 2

)]
= 0, (2)

where

� = 1 + F
β2 − G2

2β2γ 2 . (3)

From Eq. (1) and the expression for the electric displacement
field D = ∂L/∂E (E j = i Fj4), one finds

D = 1

�

[
E + (E · B)B

γ 2

]
. (4)

Defining the tensor of the electric permittivity εi j by the rela-
tion Di = εi j E j , we obtain

εi j = 1

�

[
δi j + 1

γ 2 Bi B j

]
. (5)

Using the definition of the magnetic field H = −∂L/∂B
(B j = (1/2)ε j ik Fik) and Eq. (1), one finds

H = 1

�

[
B − (E · B)E

γ 2

]
. (6)

Introducing the magnetic induction field Bi = μi j H j , the
inverse magnetic permeability tensor (μ−1)i j is given by
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(μ−1)i j = 1

�

[
δi j − 1

γ 2 Ei E j

]
. (7)

From the field equations (2) and the Bianchi identity
∂μ F̃μν = 0, one can write Maxwell’s equations as follows:

∇ · D = 0,
∂D
∂t

− ∇ × H = 0.

∇ · B = 0,
∂B
∂t

+ ∇ × E = 0, (8)

where the electric permittivity εi j and magnetic permeability
μi j depend on the fields E and B and are given by Eqs. (5),
(7).

3 Vacuum birefringence

Let us consider the presence of the external constant and
uniform magnetic induction field B0 = (B0, 0, 0) and the
plane electromagnetic wave, (e, b),

e = e0 exp [−i (ωt − kz)] , b = b0 exp [−i (ωt − kz)] .(9)

which propagates in the z-direction. As a result, the electro-
magnetic fields become E = e, B = b + B0. We investigate
the case when amplitudes of electromagnetic wave e0, b0 are
smaller comparing with the strong magnetic induction field,
e0, b0 � B0. In this approximation, up to O(e2

0), O(b2
0), the

Lagrangian density (1) is

L ≈ −β2 ln

[
1 + (B0 + b)2 − e2

2β2 − (e · B0)
2

2β2γ 2

]
. (10)

Defining the fields [12] di = ∂L/∂ei , hi = −∂L/∂bi and
linearizing these equations with respect to the wave fields
e and b, we obtain the electric permittivity and magnetic
permeability tensors

εi j = 1

λ

(
δi j + 1

γ 2 B0i B0 j

)
,

(μ−1)i j = 1

λ

(
δi j − B0i B0 j

λβ2

)
, λ = 1 + B2

0

2β2 .

(11)

The electric permittivity and magnetic permeability tensors
are diagonal with the elements

ε11 = 1

λ

(
1 + B2

0

γ 2

)
,

ε22 = ε33 = 1

λ
, μ11 = λ(

1 − B2
0

λβ2

) , μ22 = μ33 = λ.

(12)

If the polarization is parallel to external magnetic field,
e = e0(1, 0, 0), and one finds from Maxwell’s equations

that μ22ε11ω
2 = k2. As a result, the index of refraction is

given by

n‖ = √
μ22ε11 =

√
1 + B2

0

γ 2 . (13)

In the case when the polarization of the electromagnetic wave
is perpendicular to external induction magnetic field, e =
e0(0, 1, 0), and μ11ε22ω

2 = k2. The index of refraction is

n⊥ = √
μ11ε22 =

√
1 + B2

0/(2β2)

1 − B2
0/(2β2)

. (14)

At β = γ we arrive at the expressions for n‖, n⊥ obtained
in [7]. The phase velocity depends on the polarization of the
electromagnetic wave. With the help of the approximation
B2

0/β2 � 1, B2
0/γ 2 � 1 we find from Eqs. (13), (14)

n‖ ≈ 1 + B2
0

2γ 2 , n⊥ ≈ 1 + B2
0

2β2 .

At the case β = γ , one has n‖ = n⊥ and the effect of birefrin-
gence disappears. But in QED with one loop corrections, we
have the relation n‖ > n⊥ [12]. Therefore in the generalized
logarithmic electrodynamics with two parameters which we
introduced the phenomenon of birefringence takes place if
γ < β (n‖ > n⊥).

In the presence of a transverse external magnetic field the
phenomenon of birefringence is named the Cotton–Mouton
(CM) effect [13]. The difference in indexes of refraction is
defined by the relation

�nC M = n‖ − n⊥ = kC M B2
0 . (15)

From Eqs. (13), (14) at B2
0/β2 � 1, B2

0/γ 2 � 1 one finds

�nC M ≈ B2
0

2

(
1

γ 2 − 1

β2

)
, (16)

and CM coefficient becomes

kC M ≈ 1

2

(
1

γ 2 − 1

β2

)
. (17)

The vacuum magnetic linear birefringence by the BMV
experiment for a maximum field of B0 = 6.5 T gives the
value [11]

kC M = (5.1 ± 6.2) × 10−21T−2. (18)

From Eqs. (17), (18), we obtain the bound on the parameters
β, γ :

1

γ 2 − 1

β2 ≈ 10−20T. (19)
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We note that the value obtained from QED, using one loop
approximation, is [11] kC M ≈ 4.0 × 10−24T−2 which is
much less than the experimental value (18).

4 The energy-momentum tensor and dilatation current

From Eq. (1) using the method of [14], we obtain the sym-
metrical Belinfante tensor

T B
μν = − 1

�
Fνα

(
Fμα − G F̃μα

γ 2

)
− δμνL, (20)

where � is given by Eq. (3). The energy density found from
Eq. (20) is1

T B
44 = 1

�

(
E2 − G2

γ 2

)
+ β2 ln �. (21)

The trace of the energy-momentum tensor (20) is as follows:

T B
μμ = − 4

�

(
F − G2

γ 2

)
+ 4β2 ln �, (22)

and the trace of the energy-momentum tensor is not zero
contrarily to classical electrodynamics. According to [14],
we obtain the dilatation current (the field-virial Vμ is zero)

DB
μ = xαT B

μα, (23)

and the divergence of dilatation current is

∂μ DB
μ = T B

μμ. (24)

As a result, the scale (dilatation) symmetry is broken because
the dimensional parameters β, γ were introduced. In BI elec-
trodynamics the dilatation symmetry is also broken [15] in
opposite to the linear Maxwell electrodynamics.

5 Conclusion

We have considered the model of generalized logarithmic
electrodynamics with two parameters β and γ . At β = γ

1 There is a typo in [7, Eq. (26)].

we arrive at logarithmic electrodynamics considered in [7].
We show that at β = γ in the approximation B2

0/β2 �
1, B2

0/γ 2 � 1 the phenomenon of birefringence is absent.
Classical electrodynamics with QED corrections gives the
effect of birefringence and, therefore, the case β 	= γ is
important. From the BMV experiment we have obtained the
bound on the parameters β and γ . Another bound on the
parameter β from the point of view that the electron mass
has pure electromagnetic nature was proposed in [16]. The
scale symmetry is broken and dilatation current was found
in the model under consideration.
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