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Abstract In the range of temperatures reached in future
heavy ion collision experiments, hadronic pair annihilations
and creations of charm quarks may take place within the life-
time of the plasma. As a result, charm quarks may increase
the bulk viscosity affecting the early stages of hydrody-
namic expansion. Assuming thermalisation, we estimate the
charm contribution to bulk viscosity within the same effective
kinetic theory framework in which the light parton contribu-
tion has been computed previously. The time scale at which
this physics becomes relevant is related to the width of the
transport peak associated with the trace anomaly correlator
and is found to be �20 fm/c for T � 600 MeV.

1 Introduction

Recently concrete thoughts about a possible successor to the
LHC have been aired [1]. One of the issues under discussion
is whether there is a case for a Heavy Ion Collision pro-
gram at energies much higher than those achievable at the
LHC [2]. An example of a possible new physics observable
is that if temperatures up to ∼1 GeV could be reached, even
charm quarks might become a chemically equilibrated part of
the Quark–Gluon Plasma. As the system cools down, their
interactions slow down much faster than those of the light
partons. Therefore, we might expect a chemical freeze-out
process within an otherwise thermal medium, akin to that
associated with some dark matter scenarios in cosmology.

The purpose of the present paper is to investigate the role
of charm quarks within the weak-coupling expansion. More
precisely, we consider a physical observable, the bulk vis-
cosity, which is intimately related to chemical equilibration.

Determining transport coefficients such as the bulk vis-
cosity is a notoriously difficult task even within perturbation
theory. Starting from massive quarks (of mass M) and very
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low temperatures (T � M/π ), such that thermal resumma-
tions might be expected not to play a role, it turns out that
a field-theoretic determination of the rate of pair annihila-
tion and creation necessitates a 3-loop computation [3]. The
situation becomes worse at higher temperatures T � M/g,
where g2 ≡ 4παs, when all-order resummations are needed
for obtaining the correct leading-order result [4]. It has
been demonstrated, however, that the same results can be
obtained relatively economically by making use of effec-
tive kinetic theory [5,6], which describes quasi-particles hav-
ing temperature-dependent properties.1 We adopt this frame-
work in the present paper.

Our goal is to estimate the charm quark contribution to
bulk viscosity, as well as their chemical equilibration rate, at
temperatures between about 200 and 700 MeV. In this regime
the charm quarks, with a pole mass M ∼ 1.5 GeV, can be
considered dilute and perhaps also kinetically equilibrated,
as is suggested by experiment [9,10]. Ideally, it would be nice
to also consider temperatures in the ultrarelativistic regime
T � M/g in order to be able to compare with a previous
computation [11], but this is not achieved in the present paper.
Note that if chemical equilibration were to take place, charm
quarks should be included in the equation of state, where they
would have a substantial influence already in the temperature
range considered [12–15] (they could be relevant even if not
fully equilibrated [16]).

The plan of this paper is the following. After outlining the
general kinetic theory approach in Sect. 2, the specific setup
relevant for our problem is detailed in Sect. 3. Thermally
averaged annihilation rates are evaluated in Sect. 4. A numer-
ical solution of the basic equations is presented in Sect. 5,
whereas Sect. 6 offers some conclusions and an outlook.

1 Naive kinetic theory, without hard thermal loop (HTL) structures
or Landau–Pomeranchuk–Migdal (LPM) resummed 1 ↔ 2 splittings
included, has been employed as a qualitative tool for estimating QCD
transport coefficients since decades [7]. For example an investigation
similar in spirit to the present one, save for strange quarks, can be found
in Ref. [8].
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2 General approach

We start by outlining the general strategy of the analysis in
the language of kinetic theory and linear algebra. The precise
implementation will be given in Sect. 3. Our notation and
basic philosophy follow closely those presented in Ref. [11],
to which we refer for further details.

Suppressing all indices, let S be a source vector enforcing
a desired “adiabatic” deviation from equilibrium.2 The sys-
tem responds, as dictated by a linearised collision matrix C
(CT = C), by deviating the phase space distributions by an
amount χ around their equilibrium values:

S = Cχ. (2.1)

The bulk viscosity ζ is given by the projection of χ in the
direction of S:

ζ = STχ. (2.2)

Let us assume that we know the normalised eigenfunctions
vn of C (vT

mvn = δmn) and the corresponding eigenvalues
λn ∈ R.

In general, the collision matrix has zero modes (Cξ = 0)
and is therefore not invertible. However, if the system can
equilibrate, as is expected, then there should be a non-trivial
solution χ �= 0 to S = Cχ . In this case the zero modes are
necessarily orthogonal to S: ST ξ = χT CT ξ = χT Cξ = 0.
Therefore they do not contribute to ζ and can be omitted. In
other words, we can restrict to a subspace orthogonal to the
zero modes and then invert C in a spectral representation:
C−1 = ∑

n vnv
T
n /λn . Subsequently, inserting χ = C−1S

into Eq. 2.2,

ζ =
∑

n

(ST vn)
2

λn
. (2.3)

We observe that the dominant contribution to ζ is given by
the smallest eigenvalues, provided that the corresponding vn

have a non-vanishing projection in the direction of S.
The physical realisation of this picture is the following.

For bulk viscosity, the source S breaks conformal invariance.
If QCD is approximated as a weakly coupled theory with
Nf = 3 massless flavours and the massive charm quark, then
S is non-zero only because of the presence of the charm
quark, and it is proportional to e−M/T . Elastic scatterings
as well as 1 → 2 splittings of the light partons produced
in charm decays have rates much faster than the charm pair
annihilations and creations. It is the latter processes which
lead to the smallest eigenvalues and are therefore considered
in the following.

2 Local equilibrium is to be maintained, but there should be a flow
velocity u with ∇ · u �= 0.

3 Specific setup

Bulk viscosity can be defined as a transport coefficient cor-
responding to the operator representing (minus) the trace
anomaly,

1

3

(
3∑

i=1

T ii − T 00

)

, (3.1)

where Tμν is the energy-momentum tensor. The part T 00

does not contribute to the bulk viscosity, given that its space
average is exactly conserved. It can therefore be left out, or
subtracted with a suitable coefficient. Within effective kinetic
theory [6], there is a structure related to Eq. 3.1 [5,11], rep-
resenting a shift in pressure (p = T ii ) when subtracting
the contribution of pressure perturbations carrying energy
density ((∂p/∂e)δe ≡ v2

s δe, where v2
s is the sound speed

squared). For a momentum mode k and a particle of species
a, the relevant subtracted perturbation is of the form [11]

qa(k) ≡ 1

3
va

k · k − v2
s
∂(βEa

k )

∂β
. (3.2)

Here va
k = ∇k Ea

k is a group velocity; k ≡ |k|; β ≡ 1/T ;
and Ea

k is an on-shell energy. The associated source vector
will be denoted by

Sa(k) ≡ −T f a(1 ± f a) qa(k), (3.3)

where f a is the equilibrium (Bose or Fermi) distribution of
a particle of type a; and + and − correspond to bosons and
fermions, respectively.

For v2
s = 1/3 and massless particles with Ea

k = k, Sa van-
ishes identically. More generally, as pointed out in Ref. [11],
all Sa vanish identically in a conformal theory. However, with
massive quarks Sa is non-zero even at leading order, as we
now show.

In free SU (Nc) gauge theory with Nf massless flavours
and one massive quark, v2

s evaluates to

v2
s = 1

3
× π2T 5(8CF + 7Nf)+ 60

∫
q q2 fF(1 − fF)

π2T 5(8CF + 7Nf)+ 60
∫

q E2
q fF(1 − fF)

,

(3.4)

where CF ≡ (N 2
c − 1)/(2Nc) and

∫
q ≡ ∫ d3q

(2π)3
. Both for

M 	 πT and M 
 πT this reduces to 1
3 . For M � πT ,

the corrections are exponentially suppressed:

v2
s ≈ 1

3
− 20M2

∫
q e−Eq/T

π2T 5(8CF + 7Nf)
. (3.5)

In this case the source vectors of Eq. 3.3 read, for charm
quarks (Sc), gluons (Sg) and light quarks (Sq ), respectively,
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Sc(k) ≈ T M2

3Ek
e−Ek/T , (3.6)

Sg(k) ≈ −k fB(k)
[
1 + fB(k)

] 20M2
∫

q e−Eq/T

π2T 4(8CF + 7Nf)
, (3.7)

Sq(k) ≈ −k fF(k)
[
1 − fF(k)

] 20M2
∫

q e−Eq/T

π2T 4(8CF + 7Nf)
. (3.8)

Let us elaborate on the nature of the approximation that
led to Eqs. 3.6–3.8. It is well known that when consid-
ering massive particles at finite temperature, two different
types of thermal effects appear: exponential corrections and
power corrections. As an example, consider the integral∫

k(k
m/Ek) fB(Ek). The Bose distribution can be expanded

as fB(Ek) = ∑∞
n=1 e−nEk/T . Given that e−Ek/T < 1, this

series is absolutely convergent. The individual terms in the
series lead to
∫

k

km e−nEk/T

Ek
= �

( 3+m
2

)

2π5/2

(2MT

n

)1+ m
2

K1+ m
2

(nM

T

)
,

(3.9)

where K is a modified Bessel function. The modified Bessel
function is of the form

K1+ m
2

(nM

T

)
= e−nM/T

∞∑

i=0

ci

( T

nM

)i+ 1
2
. (3.10)

However, the coefficients ci grow factorially; the series is
asymptotic, with a zero radius of convergence. The purpose
of the present paper is to compute the bulk viscosity to leading
order in e−M/T but to all orders in T/M , avoiding asymptotic
series. This may be called a dilute approximation, in contrast
to a non-relativistic approximation which would also truncate
the power corrections to a finite order in T/M .

It can easily be verified that the source of Eqs. 3.6–3.8
carries no energy,

∑

a ∈{c,g,q}

∫

k
νa Sa(k)Ea

k = 0, (3.11)

where the degeneracies are νc ≡ 4Nc, νq ≡ 4Nc Nf and
νg ≡ 2(N 2

c − 1). This is related to the discussion above
Eq. 2.3 concerning zero modes; Ea

k plays the role of ξ .
Indeed the full collision term of a Boltzmann equation van-
ishes at any temperature if equilibrium distributions are
used; the temperature derivative of this statement asserts that
χa(k) ∝ Ea

k is a zero-mode of the linearised collision matrix
C . So, Eq. 3.11 represents a crosscheck that Sa(k) sources a
deviation from equilibrium in a subspace orthogonal to the
zero mode.

It may be noted that for T 	 M , all the terms in Eqs. 3.6–
3.8 are parametrically of a similar magnitude ∼ e−M/T .
However, the rates at which different particles respond to
this perturbation are different: number changing rates for
charm quarks are ∼ α2

s e−2M/T , whereas for light partons

they are � α2
s for k 	 M , or � α2

s e−M/T for k ∼ M .
Putting the sources Sa on the left-hand side of the equa-
tion (cf. Eq. 2.1) and the rates on the right-hand side, we
may estimate the magnitudes of the perturbations χa . We
get χc ∼ eM/T / α2

s 
 χ g, χq . For this reason χ g, χq give
an exponentially suppressed contribution in Eq. 2.2. In other
words, we can assume light partons to be completely ther-
malised (χ g, χq ∼ 0) and consider in essence only the block
Ccc of the linearised collision matrix.

An important further point concerns kinetic equilibration.
The elastic scatterings of charm quarks on light partons are
∼α2

s e−M/T . These reactions are again faster than those cor-
responding to chemical equilibration, so we may assume full
kinetic equilibrium to be reached. Full kinetic equilibrium
implies that χc is a k-independent constant. Even though
we consider this situation for our results, we do show the
k-dependence in our equations for the moment, in order to
take the limit of a constant χc in a correct way through a
consideration to be carried out in Sect. 5.

For later reference, we add an additional oscillatory time
dependence to the problem, characterised by a frequencyω �=
0. Then Eq. 2.1 becomes [17,18]

Sa(k1) = −iω f a(1 ± f a)χa(k1;ω)
+

∫

k2

Cab(k1; k2)χ
b(k2;ω), (3.12)

and the bulk viscosity is obtained as

ζ = lim
ω→0

ζ(ω), ζ(ω) ≡ 4Nc

T 3

∫

k1

Sc(k1)Re
[
χc(k1;ω)

]
.

(3.13)

4 Scattering matrix elements

In order to solve Eq. 3.12, we need to determine the linearised
collision matrix Ccc. The relevant processes are shown in
Fig. 1. Summing over all indices, the well-known expressions
for the matrix elements squared read (cf. e.g. Refs. [19,20])

M1 = + + ,

M2 = .

Fig. 1 Processes for pair annihilation or pair creation of charm quarks.
A double line indicates heavy quarks, a single line light quarks, and a
wiggly line gluons
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∑ |M1|2 = 4g4CF Nc

{

4Nc
(M2 − t)(M2 − u)

s2

+ (2CF − Nc)
2M2(s − 4M2)

(M2 − t)(M2 − u)

+ 2CF

[
(M2 − t)(M2 − u)− 2M2(M2 + t)

(M2 − t)2

+ (M2 − t)(M2 − u)− 2M2(M2 + u)

(M2 − u)2

]

− 2Nc

[
(M2 − t)(M2 − u)+ M2(u − t)

s(M2 − t)

+ (M2 − t)(M2 − u)+ M2(t − u)

s(M2 − u)

]}

, (4.1)

∑ |M2|2 = 4g4CF Nc Nf

s2

×
[
(M2 − t)2 + (M2 − u)2 + 2M2s

]
, (4.2)

where s, t, u are the standard kinematic variables. The bulk
viscosity is given by Eq. 3.13, where χc(k1;ω) is deter-
mined (up to a discussion concerning kinetic equilibration,
cf. Sect. 5) from Eq. 3.12, viz.

Sc(k1) = −iω fF(Ek1)
[
1 − fF(Ek1)

]
χc(k1;ω)

+
∫

k2,p1,p2

(2π)4δ(4)(K1 + K2 − P1 − P2)

16Ek1 Ek2 p1 p2

× fF(Ek1) fF(Ek2)

2Nc

[
χc(k1;ω)+ χc(k2;ω)

]

×
{

1

2

∑ |M1|2
[
1 + fB(p1)

][
1 + fB(p2)

]

+∑ |M2|2
[
1 − fF(p1)

][
1 − fF(p2)

]
}

. (4.3)

Here Ki ≡ (Eki ,ki ), Eki ≡
√

k2
i + M2, Pi ≡ (pi ,pi ).

Recalling Eq. 3.6 and noting that, because of energy conser-
vation, fB(pi ) and fF(pi ) are exponentially suppressed, the
basic equation can be reduced to

T M2

3Ek1

e−Ek1/T = −iωe−Ek1/Tχc(k1;ω)

+
∫

k2

e−(Ek1+Ek2 )/T

4Ek1 Ek2

[
χc(k1;ω)+ χc(k2;ω)

]
Φ(k1, k2),

(4.4)

where we have defined an average over the angles between
k1 and k2 as

Φ(k1, k2) ≡
∫

d�k1,k2

4π

×
∫

p1,p2

(2π)4δ(4)(K1 + K2 − P1 − P2)

4p1 p2

×
1
2

∑ |M1|2 + ∑ |M2|2
2Nc

. (4.5)

The integrals in Eq. 4.5 can be carried out in closed form.
WritingΦ(k1, k2) = Φb(k1, k2)+Φf(k1, k2), whereΦb orig-
inates from the bosonic final states (the amplitude M1 in
Fig. 1) andΦf from the fermionic ones (the amplitude M2),
the fermionic part reads

Φf(k1, k2) = g4CF Nf

6π

{

1 − M2

2k1k2
ln

(
�+−
�++

)}

, (4.6)

where

�στ ≡ Ek1 Ek2 + σ M2 + τ k1 k2. (4.7)

For k1, k2 → 0 this reduces to Φf(0, 0) = g4CF Nf/(4π). In
the bosonic case we get

2π Φb(k1, k2)

g4CF

= Nc

{

−1

3
+ M2

k1k2

[√
�−+
�++

atanh

√
�−+
�++

−
√
�−−
�+−

atanh

√
�−−
�+−

+ 11

12
ln

(
�+−
�++

)]}

+ CF

{

−2 + 1

k1k2

[
�

3/2
−+

�
1/2
++

atanh

√
�−+
�++

−�
3/2
−−

�
1/2
+−

atanh

√
�−−
�+−

+ 3M2
(

atanh2

√
�−+
�++

− atanh2

√
�−−
�+−

)]}

. (4.8)

For k1, k2 → 0, we get Φb(0, 0) = g4CF

(
2CF − Nc

2

)
/(4π).

In the extreme limit T 	 M/π , the integrals in Eqs. 3.13,
4.4 are saturated by k1, k2 ∼ √

2T M 	 M . Then we may
invoke an approximation in which the energies appearing
in the exponentials are set to their non-relativistic forms,
Eki ≈ M + k2

i /(2M), and the energies in the prefactors
are expanded to first non-trivial order in k1, k2. This leads
to power-suppressed thermal corrections. As mentioned in
the paragraph following Eq. 3.8, in our main results (Sect. 5)
we avoid making such an approximation because of its ques-
tionable convergence. However, for future reference, let us
work out the limiting values in the remainder of the present
section.

Setting k1, k2 → 0 where their effects are subleading;
making use of the expressions forΦf (0, 0) andΦb(0, 0)men-
tioned above; and carrying out the integral over k2, Eq. 4.4
can be solved as

χc(0;ω) = T M

3

1

−iω + �chem

, (4.9)
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where we have defined (following Ref. [3])

�chem ≡ 1

2M2

(
T M

2π

) 3
2

e−M/T
[
Φb(0, 0)+Φf(0, 0)

]

= g4CF

8πM2

(

Nf + 2CF − Nc

2

)(
T M

2π

) 3
2

e−M/T .

(4.10)

Inserting Eqs. 3.6 and 4.9 into Eq. 3.13 yields

ζ = lim
ω→0

M2

9T

χ f �chem

ω2 + �2
chem

= 32πM4 Nc

9g4T CF(Nf + 2CF − Nc/2)
≡ ζ0, (4.11)

where the charm quark susceptibility was defined as χ f ≡
4Nc

( T M
2π

)3/2
e−M/T . Equation 4.11 agrees with an expres-

sion given in Ref. [21] and is used for normalisation below.

5 Numerical solution

The purpose of this section is to present a numerical eval-
uation of the final integrals that are needed for determining
the bulk viscosity to leading order in e−M/T but to all orders
in T/M . As has been discussed in Sect. 3, for theoretically
consistent results this is to be done by assuming full kinetic
equilibrium, whereby the function χc is constant. However,
a constant value needs to be imposed in a correct way. Allow-
ing first for general k-dependence, we define a quadratic form
as Q[χ ] ≡ 〈S, χ〉 − 1

2 〈χ, [C − iω fF(1 − fF)]χ〉. The bulk
viscosity is formally given as the extremal value:

ζ = 2 lim
ω→0

Re Q(χ)|δQ/δχ=0. (5.1)

At this point we can restrict the function space to that of
constant functions. Then Eq. 4.4 yields, for the observable
defined in Eq. 3.13,

ζ(ω) = 4Nc S̃2 C̃

T 3 (C̃
2 + ω̃2)

, (5.2)

where

S̃ ≡
∫

k

T M2e−Ek/T

3Ek
, (5.3)

C̃ ≡
∫

k1,k2

e−(Ek1 +Ek2 )/T

2Ek1 Ek2

Φ(k1, k2), (5.4)

ω̃ ≡ ω

∫

k
e−Ek/T , (5.5)

and the weight Φ is from Eqs. 4.6 and 4.8.
In Fig. 2, we plot the results for ζ obtained with the above

procedure. The physics conclusion is that when the tempera-
ture increases, ζ/ζ0, where ζ0 is from Eq. 4.11, decreases
below unity. Our approximation, which assumed e−M/T

0.0 0.5 1.0 1.5 2.0
T / M 

0.0

0.5

1.0

1.5

ζ 
/ ζ

0

numerical solution (χc = const)
asymptotics (T >> M)

Fig. 2 The bulk viscosity, normalised to Eq. 4.11, as a function of
T/M , for Nc = Nf = 3. We have also compared with the value for
T 
 M 
 αsT from Ref. [11], for αs = 0.2 . . . 0.3 and Nf = 3

0.0 0.1 0.2 0.3 0.4 0.5
T / M 

1

10

100

1000

1 
/ Γ

ch
em

[f
m

/c
]

purely perturbative
with lattice χf

0 1 2 3 4 ω / Γchem
0

1

ζ(
ω

) /
 ζ

0

T / M = 0.20

T / M = 0.35

T / M = 0.50

Fig. 3 The inverse of �chem in physical units, for M = 1.5 GeV and
an effective thermal gauge coupling from Ref. [22] (we set �MS �
360 MeV from Ref. [23]; this leads to αs � 0.3 at T/M � 0.2 and
αs � 0.2 at T/M � 0.5). For comparison we also plot the result from
Ref. [3] where partial lattice input [15,24] has been included. The insert
shows the ω-dependence of the transport peak from Eq. 5.2. The axes
are normalised to Eqs. 4.10 and 4.11

small, is reliable at most for T � M/π . Nevertheless, it
seems conceivable that the solution eventually extrapolates
to the result obtained for T 
 M 
 αsT in Ref. [11] (shown
with a grey band).

The frequency dependence of the transport peak is plotted
in the insert of Fig. 3. Frequency has been normalised to
�chem from Eq. 4.10; �chem is plotted in physical units in Fig. 3.
The inverse of the width of the Lorentzian shape serves as
an estimate for the microscopic time scale above which the
charm contribution to the bulk viscosity plays a role within an
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effective hydrodynamic description. If the actual time scale
characterizing the hydrodynamic expansion of the system
is shorter than the microscopic one, a different approach,
with the charm density appearing as an additional dynamical
variable on par with the temperature and flow velocity, would
be needed.

6 Conclusions

We have shown that in the limit M � πT , the bulk viscosity
of deconfined QCD plasma grows as ζ � 0.04M4/(α2

s T ),
cf. Eq. 4.11 and Fig. 2 which shows that Eq. 4.11 provides
for a reasonable estimate in this temperature range. Com-
pared with the result ζ � 0.25α2

s T 3 for M 	 αsT [11], we
note that massive quarks dominate the QCD bulk viscosity if
M � 1.6αsT . If the system lived for an infinitely long time,
this would be true for charm quarks at all temperatures that
can conceivably be reached in current or future heavy ion
collision experiments. However, it is very important to keep
in mind that dynamical reactions need to take place in order
for this contribution to the bulk viscosity to be physically
relevant for the hydrodynamical evolution of a system with
a finite lifetime.3

The time scale needed for the bulk viscosity to “build up”
can be estimated from the inverse of the width of the transport
peak associated with the trace anomaly and is parametrically
of the form τ � 0.45M1/2eM/T /(α2

s T 3/2), cf. Eq. 4.10 and
Fig. 3 which suggests that Eq. 4.10 is a conservative esti-
mate in the temperature range considered. The associated
processes take place within the lifetime of the plasma gen-
erated in heavy ion collision experiments only if a tempera-
ture T � 600 MeV can be reached for an extended period.
For T � 400 MeV charm and anticharm quarks constitute
separate conserved charges like in a statistical model [27].
In between, a partial chemical equilibration may take place,
and a dynamical simulation, perhaps as a further ingredient
in an existing one for kinetic equilibration as reviewed in
Ref. [28], would be needed for judging the practical impor-
tance of charm quarks. For a recent study of the practical
effects of a bulk viscosity, see e.g. Ref. [29].

Apart from their effect on bulk viscosity, chemically equi-
librated charm quarks would also be relevant for basic ther-
modynamic quantities such as the equation of state [12–15].
In addition they could change the shear viscosity by a notice-
able amount.

3 This requirement is much easier to satisfy in cosmology than in heavy
ion collision experiments, because the expansion rate of the Universe
is inversely proportional to the Planck mass and thus much smaller.
Correspondingly effects from particle mass thresholds could have a
favourable influence e.g. on scalar field friction coefficients directly
proportional to the bulk viscosity [25,26].

We end by stressing that obtaining complete leading-order
results for T ∼ M necessitates implementing more compli-
cated resummations than have been considered here [11].
The same is also true if we decrease the temperature down
to T � α2

s M [30], which is in principle a regime relevant for
bottom quarks. Beyond resummed computations, it would
also be interesting to address the corresponding physics on
the lattice. Comparisons of NLO perturbation theory [21,31]
and lattice simulations [24] for imaginary-time correlators
suggest that lattice data are already close to the continuum
limit, so that future progress may be expected.
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