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Abstract In this work, we explore a mechanism for abelian
gauge field localization on thick branes based on a five-
dimensional Stueckelberg-like action. A normalizable zero
mode is found through the identification of a suitable cou-
pling function between the brane and the gauge field. The
same mechanism is studied for the localization of the abelian
Kalb–Ramond field.

1 Introduction

In the brane-world scenario, our universe is depicted as a
four-dimensional (4D) sub-manifold (3-brane) embedded in
a higher dimensional space-time. Within this framework,
gravity is able to propagate in all dimensions, but matter fields
are restricted to live on the 3-brane. Among the most attrac-
tive schemes constructed under this hypothesis stand the pro-
posals of Randall and Sundrum [1,2] (resp. RS1, RS2), which
involve only one extra dimension and a non-trivial warp fac-
tor due to the underlying anti-de Sitter (AdS) geometry.

Branes in RS models and their generalizations are very
idealized, they are introduced as infinitely thin (singular)
hyper-surfaces. Besides, such thin branes are static, with
no dynamical mechanism responsible for their formation.
In order to avoid the use of singular branes, thick branes
modeled as domain wall configurations can be implemented
in extra-dimensional theories (for a detailed review on thick
brane solutions, see [3]). The key feature of this approach is
that thick branes are dynamically generated by one or several
background scalar fields coupled with gravity.

In the pursuit of a more realistic picture of the brane-
world, it is also important to provide a natural localization
mechanism of bulk fields on domain walls. As shown in [4,5],
the graviton can be successfully localized on a thick brane
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built with a single background scalar in an asymptotic five-
dimensional (5D) AdS space-time. Massless scalar fields can
also be localized in this minimal setup, but unfortunately
vector gauge fields seem to require a richer brane structure.
The essence of this “no-go theorem” is already captured in
the thin brane limit (RS2 model) [6].

A significant amount of work has been devoted to the
problem of vector gauge field localization in the context of
5D AdS space-time, in both singular and thick domain wall
branes. The models available in literature show a wide vari-
ety of ideas, which include: mass terms for the vector boson
[7–9], coupling between the dilaton and the kinetic term of
gauge fields [10,11], insertion of kinetic terms induced by
localized fermions [12], and a smearing out dielectric func-
tion inspired by the Friedberg–Lee model for hadrons [13].
Recently, new mechanisms of gauge field localization have
also been studied in diverse brane-world models, including
Weyl thick branes [14], two-field thick branes [15], AdS 3-
branes [16], and tachyonic domain walls [17].

The inherent difficulty of trapping gauge fields in a domain
wall is generically present for all antisymmetric form fields,
such as for instance the Kalb–Ramond (KR) tensor, which
arises as a massless bosonic mode in closed string theories
and can act as a source of torsion in a Riemannian manifold
[18]. Any chance of localizing the KR field can be useful to
determine the observable effects of torsion in the 3-brane. The
corresponding zero mode of the KR tensor in five dimensions
is known to be non-localizable on the simplest thick brane,
generated by a single real scalar field [19]. As with its gauge
vector counterpart, the problem concerning the localization
of the KR field has been considered by several authors [13,
19–23].

In this work, a new mechanism for gauge field localiza-
tion on thick branes is explored. The model can be seen as a
domain wall version of the mechanisms presented in [7,8],
within a regularized RS2 scenario. The basic setup of the
model is a thick brane embedded in an asymptotically 5D
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AdS bulk space-time, described by a single real background
scalar field. In this framework, localization is achieved by the
introduction of Stueckelberg-compensating fields in the 5D
action of a gauge field, where the quadratic coefficient of the
gauge fields is modeled as a Yukawa-like brane–gauge cou-
pling. The second part of the paper is devoted to showing that
the same mechanism can be readily generalized to localize
the zero mode of the Stueckelberg-like KR field, through a
suitable modification of the Yukawa coupling. It is important
to notice that the use of Stueckelberg-compensating fields
restricts the application of this mechanism to abelian gauge
fields.

The structure of the paper is the following: In Sect. 2 a
brief review of the brane-world generated by a single real
scalar is presented. In Sect. 3 it is shown that starting from the
Stueckelberg-compensated action of a vector gauge field, a
normalizable zero mode can be localized on the brane when-
ever a suitable brane–gauge coupling function is fixed. A
similar procedure to localize the zero mode of the KR field
is introduced in Sect. 4. Finally, the conclusions of the work
are contained in Sect. 5.

2 Thick brane generated by a single scalar

Consider a model of 5D gravity coupled to a single scalar
field φ:

S = M3∗
∫

d5x
√−g

[
R− 1

2
gM N ∂Mφ ∂Nφ−V (φ)

]
, (1)

with M∗ being the fundamental Planck scale in five dimen-
sions and V (φ) the scalar potential. The scalar field has been
rescaled in units of M∗, such that φ is dimensionless and
V (φ) has mass dimension 2. We are interested in background
solutions where the metric displays 4D Poincaré symmetry

ds2 = gM N dx M dx N = e2A(y)ημνdxμdxν + dy2. (2)

Here the 5D coordinates x M (M = 0, . . . , 4) are sepa-
rated into 4D Minkowski space-time coordinates xμ (μ =
0, . . . , 3), with ημν = diag(−1,+1,+1,+1), and the inf-
initely extended extra dimension y. Assuming that the scalar
field φ depends exclusively on y, the equations of motion of
Eq. (1) become

φ′′ + 4A′φ′ = ∂φV, (3)

12A′2 − 1

2
φ′2 + V = 0, (4)

3A′′ + 1

2
φ′2 = 0, (5)

where the prime denotes derivative with respect to y.

According to the super-potential method [4], a solution for
Eqs. (3)–(4) can be found through the first-order differential
equations

φ′ = ∂φW, A′ = −1

6
W, (6)

if the scalar potential is written in terms of some super-
potential function W (φ) as

V = 1

2
(∂φW )2 − 1

3
W 2. (7)

An example of such super-potential is given by the sinusoidal
function [4]

W (φ) = 6ab sin

(
φ√
6b

)
, (8)

where b > 0. This functional form of the super-potential
determines the following background solution for the scalar
field:

φ(y) = 2
√

6b arctan

[
tanh

a(y − y0)

2

]
, (9)

which yields a domain wall with positive tension

T = M3∗
∫ +∞

−∞
dy (φ′)2 = 12M3∗b|a|, (10)

and a smooth warp factor with

A(y) = A0 − b log[cosh a(y − y0)]. (11)

In the above equations, y0 denotes the center of the domain
wall and A0 determines the value of the warp factor at this
point. Without loss of generality, we can set y0 = 0, A0 = 0.

The background described above is asymptotically Anti-
de Sitter A(|y| → ∞) ∼ −k|y| with AdS scale k = b|a|.
Therefore, it constitutes a regularized version of the RS2
model. It is often convenient to work in a conformally flat
frame, defined by the transformation dy = eAdz, where the
metric takes the form

ds2 = e2A(z)(ημνdxμdxν + dz2). (12)

Notice that this transformation cannot be written in closed
analytical form for arbitrary values of the parameters associ-
ated with brane thickness (a) and curvature (b|a|) in Eqs. (9),
(11). However, particular cases are tractable. For example,
when b = 1 the warp factor reads

A(z) = −1

2
log[1 + a2z2]. (13)
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In this work we do not adopt a particular form of the back-
ground, but only assume the existence of a domain-wall solu-
tion generated by some super-potential W (φ) with asymp-
totic AdS behavior A(|y| → ∞) ∼ −k|y| and well defined
transformation dy = eAdz. We refer to Eq. (13) for a con-
crete realization of this setup.

3 Abelian gauge vector field localization

Our starting point is the Stueckelberg-like 5D U (1) gauge
field action

SA =
∫

d5x
√−g

{
−1

4
F M N FM N − 1

2
G (φ) [∂M B− AM ]2

}
.

(14)

Here AM is the 5D gauge vector field and B is a dynamical
scalar field (see [24] for a review of the Stueckelberg field).
The main advantage of implementing this action is its gauge
invariance in five dimensions under the transformation

AM → AM + ∂M�, B → B +�. (15)

The coupling of the gauge field and the brane is described by
a Yukawa-like interaction G (φ). The aim of this section is to
find if the model defined by SA can lead to the localization of
a gauge field zero mode on thick branes, through the adoption
of a particular functional form for G (φ).

From the 4D low-energy perspective, the model defined
by Eq. (14) can be understood in terms of massless and mas-
sive sectors. The localization mechanism is expected to give
rise to a massless sector, from the zero mode of SA, and mas-
sive sectors coming from the continuum of non-zero modes.1

The counting of degrees of freedom (d.o.f.) goes as follows:
for a massless p-form, in d dimensions, one has

(d−2
p

)
d.o.f.,

whereas for a massive p-form one has
(d−1

p

)
. The present

model in its 5D form contains a total of 4 on-shell d.o.f.
Thus, matching that number with 4D fields, we naively expect
to obtain a 4D effective theory with a massless sector com-
posed of a 1-form (2 on-shell d.o.f.) plus two real scalar fields
(1 on-shell d.o.f. each), and massive sectors made of a 1-form
(3 on-shell d.o.f.) and one real scalar.

3.1 Equations of motion and gauge fixing

Varying the action SA, we obtain the following 5D equations
of motion for AM and B:

1 Strictly speaking, since the y direction is non-compact, there is no
finite gap between massless and massive modes and the massive spec-
trum forms a continuum. However, the transverse invariant length is
finite, which should ensure a low-energy localization, along the lines of
what happens in the RS2 model.

∂M [e4AgM L gN P FL P ]=−e4AG (φ)gN P(∂P B − AP ), (16)

∂M [e4AG (φ)gM L(∂L B − AL)] = 0, (17)

where the equation of motion for B (cf. Eq. 17) is consistent
with the Noether identity obtained by taking the divergence
of Eq. (16).

For simplicity, in the present work we assume that the
back-reaction of G (φ) into the geometry is negligible, and
thus, the minimum energy solutions for φ(y) and A(y) are
determined by Eq. (6).

The first important task in our analysis is to fix the gauge.
Instead of imposing an explicit gauge fixing condition, we
perform an analogous analysis to the one done in [7,8], where
the 5D field AM is parameterized as

AM = (Aμ, A4) = ( Âμ + ∂μϕ, A4), (18)

with Âμ and ϕ as the transverse (∂μ Âμ = 0) and longitudi-
nal components of Aμ, respectively. The behavior of these
components under the gauge transformation Eq. (15) is

Âμ → Âμ, A4 → A4 +�′,
ϕ → ϕ +�, B → B +�.

(19)

These transformations suggest that it is potentially useful to
redefine the scalar degrees of freedom as

λ = A4 − ϕ′, ρ = B − ϕ, (20)

such that, under Eq. (19), the new fields λ and ρ remain
invariant:

λ → λ, ρ → ρ. (21)

Therefore, the parameterization defined by Eqs. (18, 20) is
roughly equivalent to the gauge fixing condition ∂μAμ =
0, but incorporates the advantage of working directly with
gauge-invariant fields.

Let us now write the 5D equations of motion in terms of
the components Âμ, λ, and ρ. In first place, taking N = ν in
Eq. (16), we obtain

[�+e2A(∂2
y +2A′∂y − G )] Âν = ∂ν[∂y(e

2Aλ)− e2AG ρ],
(22)

with � = ημν∂μ∂ν . The left-hand side of this equation is
purely transverse, while its right-hand side is purely longitu-
dinal. Thus, each side must vanish independently for a non-
trivial solution. Taking this fact into account, in this parame-
terization, Eqs. (16), (17) become equivalent to the following
system of equations:

[� + e2A(∂2
y + 2A′∂y − G )] Âν = 0, (23)

∂y(e
2Aλ)− e2AG ρ = 0, (24)

e2A�λ+ e4AG (ρ′ − λ) = 0, (25)

e2AG �ρ + ∂y[e4AG (ρ′ − λ)] = 0. (26)
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Note also that the decoupling condition Eq. (24) is already
satisfied in a weaker form by a combination of (25) and (26)2:

�[∂y(e
2Aλ)− e2AG ρ] = 0. (27)

Further insight can be gained writing SA in gauge-invariant
components. Substituting Eqs. (18), (20) into Eq. (14), it can
be shown that the transverse vector Âμ decouples from the
scalar fields (up to vanishing surface terms) and the action
becomes

SA = SÂ + SS, (28)

SÂ =
∫

d5x

{
−1

4
F̂2
μν − 1

2
e2A( Â′

μ)
2 − 1

2
e2AG Â2

μ

}
, (29)

SS =
∫

d5x

{
−1

2
e2A(∂μλ)

2 − 1

2
e2AG (∂μρ)

2

−1

2
e4AG (λ− ρ′)2

}
. (30)

The equations of motion for SÂ are given by Eq. (23), while
Eqs. (25), (26) are the corresponding equations of motion for
SS .

3.2 Brane coupling and gauge field localization

Once the gauge has been fixed, we can study the role played
by the brane–gauge coupling G in the gauge vector field
localization. Decomposing the gauge field as

Âμ =
∑

n

aμn (x)αn(y), (31)

Equation (23) reduces to

[∂2
y + 2A′∂y − G ]αn(y) = −e−2Am2

nαn(y), (32)

with �aμn (x) = m2
naμn (x).

In order to proceed further, it is now necessary to specify
the functional form of the brane–gauge coupling G . At this
point we do not attempt to study the most general form of G ,
but instead we investigate if there is a particular choice for
this function endowed with physical significance that ensures
the existence of a normalizable zero-energy ground state for
the gauge field. In this regard, our choice for the coupling
is guided in first place by the observation that the Ghoroku–
Nakamura mass term [7] successfully localizes a gauge field
in a singular brane, so our Yukawa coupling must repro-
duce that behavior in the thin brane limit. Secondly, our cou-
pling must be of scalar nature and it must have its origin
in the underlying geometry. In our minimal setup there are
two scalars readily available for the construction of G : the

2 For a 4D massive vector theory Eq. (24) corresponds to obtaining
(� − m2) Âν = 0, starting from the Stueckelberg description.

scalar field φ, responsible for the brane formation, and the
scalar curvature R. We adopt φ as the basic building block
of the Yukawa-like coupling, having in mind that although a
coupling dependent on R can have a different interpretation
[25,26], it can be effectively modeled on the same footing
by the minimum energy solution of φ, as the functional

R(φ) = 4

3
(∂φW (φ))2 − 5

9
W (φ)2 (33)

is numerically equivalent to the scalar curvature in this con-
text:

R = −4[5(A′)2 + 2A′′]. (34)

As a first approach, we adopt the following set of require-
ments for the construction of the Yukawa brane–gauge cou-
pling:

(a) G (φ) is an even function of y,
(b) it has mass dimension 2,
(c) for simplicity, we assume that the coupling is determined

by the super-potential W (φ) and its derivatives.

From Eq. (7), it is evident that the potential V (φ)–which can
be written as a combination of W (φ)2 and [∂φW (φ)]2–does
indeed satisfy these three requirements. Thus, taking V (φ) as
a guideline, we propose the following Ansatz for the brane–
gauge field coupling:

Gc1,c2(φ) = −c1

6
[∂φW (φ)]2 + c2

36
W (φ)2, (35)

where c1, c2 are arbitrary real constants. Using Eqs. (4), (6),
this functional can be written as

Gc1,c2 [φ(y)] = c1 A′′(y)+ c2[A′(y)]2. (36)

Plugging this functional into Eq. (32) and switching to the
conformally flat frame defined in Eq. (12), the equation for
the mode profiles becomes

[∂2
z + Ȧ∂z − c1 Ä − (c2 − c1) Ȧ

2]αn(z) = −m2
nαn(z), (37)

where the dot denotes derivative with respect to z. This equa-
tion can be cast into the form of a typical quantum mechanical
problem through the rescaling

αn(z) = e−A(z)/2ψn(z), (38)

where the auxiliary wavefunction ψn satisfies the Schröd-
inger equation

[−∂2
z + U (z)]ψn(z) = m2

nψn(z), (39)
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with QM potential

U (z) =
(

c1 + 1

2

)
Ä(z)+

(
c2 − c1 + 1

4

)
[ Ȧ(z)]2. (40)

As a last step, in order to guarantee an effective 4D theory
with a normalizable zero-energy ground state, we require the
Schrödinger equation (39) to be rewritten as

Q†
ξ Qξψn(z) = m2

nψn(z), (41)

which is of the form of a supersymmetric quantum mechanics
problem, with

Qξ = −∂z +
(
ξ + 1

2

)
Ȧ, Q†

ξ =∂z +
(
ξ + 1

2

)
Ȧ, (42)

for a positive real parameter ξ . This restriction imposes the
following tuning among the constants c1, c2, and ξ :

c1 = ξ, c2 = ξ2 + 2ξ, (43)

such that the functional G [φ(y)] and the QM Potential U (z)
become

G [φ(y)] = Gξ [φ(y)] ≡ ξ [(ξ + 2)[A′(y)]2 + A′′(y)], (44)

U (z)=Uξ (z) ≡
(
ξ+ 1

2

)2

[ Ȧ(z)]2 +
(
ξ + 1

2

)
Ä(z). (45)

Note that in the thin brane limit, our choice for the Yukawa
coupling Gξ coincides with the Ghoroku–Nakamura 5D mass
term [7,8].

For a background like that of Eq. (13), the masses of the
modes are distributed in a continuous spectrum, as Uξ (z) →
0 when |z| → ∞. The hermiticity and positive definiteness
of Q†

ξ Qξ in Eq. (41) ensure that no normalizable negative
energy modes are allowed. On the other hand, the zero-energy
wavefunction annihilated by Qξ is normalizable

ψ0(z) = k0e

(
ξ+ 1

2

)
A(z)

, (46)

and the corresponding zero-mode profile α0(y) turns out to
be

α0(y) = k0eξ A(y), (47)

with k0 as a normalization constant.

3.3 Scalar sector

Now we turn our attention to the scalar sector of the model.
Let us first analyze in detail the localization of the zero modes.
We start by decomposing the scalar fields as

λ =
∑

n

λn(x)βn(y), ρ =
∑

n

ρn(x)γn(y), (48)

with

�λn = m2
Snλn, �ρn = m2

Snρn . (49)

It can be shown, using Eqs. (25), (26), that the scalar zero
modes satisfy

λ0(x)β0(y) = ρ0(x)γ
′
0(y). (50)

From this relation, we observe that the 4D profiles λ0(x)
and ρ0(x) are constrained to be proportional in order to have
a non-trivial solution. Thus, there is only one independent
scalar d.o.f. in zero mode of the scalar sector, instead of the
two expected, and its localization properties are determined
by the two profilesβ0(y) and γ0(y). Substituting Eq. (50) into
Eq. (24), we obtain the following equation for the zero-mode
profile γ0(y):

γ ′′
0 (y)+ 2A′γ ′

0(y)− Gξ γ0(y) = 0, (51)

which coincides with Eq. (32) in the massless case. There-
fore, for ξ > 0, there is only one normalizable solution, given
by

γ0(y) = k0eξ A. (52)

Plugging this solution and Eq. (50) back in Eq. (30), it is
clear that there is only one massless scalar in the low-energy
spectrum of the theory, with effective action

S0
S =

∫
d4x

[
−1

2
(∂μρ0)

2
] ∫ +∞

−∞
dy e2A[(γ ′

0)
2 + Gξ γ

2
0 ].

(53)

However, a straightforward calculation shows that the inte-
gral over y vanishes
∫ +∞

−∞
dy e2A[(γ ′

0)
2 + Gξ γ

2
0 ] = k0ξ A′e2(ξ+1)A

∣∣∣+∞
−∞ = 0.

(54)

Thus, despite being apparently normalizable, the scalar zero
mode fails to be localized in the brane. It turns out to be a null
state. This feature could be pathological and deserves further
investigation, which will be presented in a future work.

Let us focus now on the general equations for the mode
profiles. The decoupling condition Eq. (24) implies that ρn

can be eliminated in favor of λn for all massive and massless
modes as

Gξ ρnγn = e−2Aλn∂y(e
2Aβn). (55)

Again, a non-vanishing solution requires that there is only
one scalar d.o.f. contained in each mode. Combining this
relation with Eq. (25) and using Eq. (48), the equations for
the mode profiles become

{∂2
y − [(log Gξ )

′ + 2A′]∂y − Gξ }(e2Aβn)

= −m2
Snβn, (56)
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and
{
∂2

y +
{

2A′ + m2
Sn[(log Gξ )′ + 2A′]

e2AGξ − m2
Sn

}
∂y − Gξ

}
γn

= −e−2Am2
Snγn . (57)

The above equations can be written in Schrödinger form
by defining the appropriate wavefunctions ψλn (z) and ψρn (z)
through

βn(z) = G
1/2
ξ e−A/2ψλn (z), (58)

γn(z) =
(

Gξ − e−2Am2
Sn

Gξ

)1/2

e−A/2ψρn (z), (59)

such that their corresponding potentials become

Uλ(z) = (3 Ȧ + ∂z log Gξ )2

4
− (3 Ä + ∂2

z log Gξ )

2
+ e2AGξ , (60)

Uρ(z) = 1

4

[
Ȧ + ∂z log

(
Gξ

Gξ − e−2Am2
Sn

)]2

+ 1

2

[
Ä + ∂2

z log

(
Gξ

Gξ − e−2Am2
Sn

)]
+ e2AGξ . (61)

Summarizing, the model defined by Eqs. (14), (44) contains a
normalizable zero-energy ground state described by a mass-
less 1-form in four dimensions and a continuous tower of
massive 1-forms and massive real scalars. There is one addi-
tional massless scalar with apparently normalizable profile
in the spectrum, but according to our analysis, this scalar
field becomes a null state in four dimensions. There are three
important ingredients involved in this result: Gauge invari-
ance, decoupling between transverse and longitudinal modes,
and the functional form of Gξ . From gauge invariance, both
fields λ and ρ should be considered as physical, as they are
gauge-independent. The decoupling condition forces their
4D profiles to be proportional. This means that their zero
modes λ0 and ρ0 describe the same d.o.f. in four dimensions,
but now the localization of such a scalar zero mode requires
the interplay of two different mode profiles instead of one.
At this point, the tuning of the parameters in G , imposed
to ensure the existence of a zero-energy ground state in the
gauge sector, seems to be the condition needed to remove the
scalar zero modes from the low-energy spectrum. However,
a better understanding on this phenomenon is still required.

We can compare our results with two closely related
works: [25,26]. Both papers treat the problem of gauge field
localization by explicitly breaking the 5D gauge symmetry
through the introduction of a geometrical coupling propor-
tional to the scalar curvature R that plays the role of a 5D

mass. In our gauge-invariant analysis, their results for the
gauge boson localization can be obtained straightforwardly
upon the identification Gξ (φ) = χR(φ), with R defined in
Eq. (33), which holds for the parameter values ξ = 1/2 and
χ = −1/16.

Finally, as stated in the introduction, our Stueckelberg-like
mechanism is only suitable for abelian fields and a possible
generalization to non-abelian fields is not straightforward.
In fact the localization of non-abelian fields is an issue in
many (warped) compactifications as, naively, the cubic and
quartic terms in the four-dimensional effective action get dif-
ferent couplings since the overlap integrals are different [27].
Within the RS1 scenario, a possible way-out was investigated
in [28] where a spontaneously broken 5D model was consid-
ered, and brane couplings were added to restore the four-
dimensional gauge symmetry. However, it is also shown that
additional scalar fields are needed to generate the necessary
spontaneous symmetry breaking, and that the scalar mixing
can in principle lead to strong coupling problems or quan-
tum instabilities (ghosts). Within the smooth brane scenario
a possibility that is similar in spirit to the one considered here
might be to take a scalar-field dependent gauge coupling [10].
Still, in both cases, charge universality of non-abelian gauge
theories coupled to matter must be carefully addressed.

4 Localization of the Kalb–Ramond field

The KR field can also be localized on the brane using an
analogous procedure to the one presented in the previous
section. We start with the 5D Stueckelberg-like formulation
of the KR action

SKR =
∫

d5x
√−g

{
− 1

12
H M N L HM N L

−1

4
F (φ)

{
∂ [M C N ] − BM N

}2
}
, (62)

with the KR field strength defined as

HM N L = ∂M BN L + ∂L BM N + ∂N BL M . (63)

Here CM plays the role of a Stueckelberg compensator and
the function F (φ)models the coupling between the KR field
and the domain wall. Again, the back-reaction of F (φ) to
the geometry is neglected.

4.1 Equations of motion and gauge fixing

The action SKR in Eq. (62) is gauge invariant under the trans-
formation

BM N → BM N + ∂ [M � N ], CM → CM +�M , (64)
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and its 5D equations of motion are

∂M (e
4AgM Q gN RgL S HQ RS)

= −e4AF gN RgL S{∂ [RCS] − BRS}, (65)

∂M {e4AF gM Q gN R{∂ [QCR] − BQ R}} = 0. (66)

Parallel to the analysis of the previous section, we parame-
terize the 5D field BM N as

BM N =
(

B̂μν + ∂μϕν − ∂νϕμ B4ρ

Bρ4 0

)
, (67)

where B̂μν are the transverse components of Bμν (∂μ B̂μν =
0, Ĥμνρ = ∂μ B̂νρ + ∂ν B̂ρμ+ ∂ρ B̂μν), while ϕμ stand for the
corresponding vector components (∂μϕνρ+∂νϕρμ+∂ρϕμν =
0, with ϕμν = ∂μϕν−∂νϕμ). Their behavior under the gauge
transformation Eq. (64) is given by

B̂μν → B̂μν,
ϕμ → ϕμ +�μ,

B4μ → B4μ + ∂y�μ − ∂μ�4.

(68)

Again, upon integration by parts, the transverse field B̂μν
decouples from the vector fields and the action SKR can be
written as

SKR = SB̂ + SV , (69)

SB̂ =
∫

d5x

{
− 1

12
e−2A Ĥ2

μνρ − 1

4
(B̂ ′
μν)

2 − 1

4
F B̂2

μν

}
,

(70)

SV =
∫

d5x

{
−1

4
λ2
μν − 1

4
Fρ2

μν − 1

2
e2AF (λμ − ρ′

μ)
2
}
,

(71)

together with the field redefinitions

λμ = B4μ − ϕ′
μ + ∂μC4, ρμ = Cμ − ϕμ,

λμν = ∂μλν − ∂νλμ, ρμν = ∂μρν − ∂νρμ,
(72)

where the new fields λμ and ρμ are now invariant under
Eqs. (64), (68):

λμ → λμ, ρμ → ρμ. (73)

In terms of the gauge-invariant fields B̂μν , λμ, and ρμ,
Eqs. (65), (66) read

[e−2A� + (∂2
y − F )]B̂μν = 0, (74)

λ′
μ − Fρμ = 0, (75)

∂μλμν + e2AF (ρ′
ν − λν) = 0, (76)

F∂μρμν + ∂y[e2AFκ(ρ
′
ν − λν)] = 0. (77)

Notice here that Eqs. (74), (75) follow from

[e−2A� + (∂2
y − F )]B̂μν = λ′

μν − Fρμν, (78)

after isolating its transverse and vector parts, while Eq. (75)
is again satisfied in a weaker form by a combination of the
Eqs. (76), (77):

∂μ[λ′
μν − Fρμν] = 0. (79)

4.2 Brane coupling

Decomposing the antisymmetric field B̂μν as

B̂μν =
∑

n

bμνn (x)ηn(y), (80)

Equation (74) becomes

η′′
n(y)− Fηn(y) = −e−2A M2

nηn(y). (81)

Taking an analogous course of action as that for the gauge
vector case, we propose as an Ansatz for F (φ) the following
uni-parametric family of functions that admit a normalizable
zero-energy ground state:

F (φ) = Fκ(φ)

≡ −
(
κ + 1

6

) {
[∂φW (φ)]2 −

(
κ + 1

6

)
W (φ)2

}
,

(82)

or equivalently

Fκ [φ(y)] = (κ + 1)[(κ + 1)[A′(y)]2 + A′′(y)], (83)

with real positive parameter κ . Inserting this functional into
Eq. (81) the mode profiles are then determined by

η′′
n(y)− (κ + 1)[(κ + 1)[A′(y)]2 + A′′(y)]ηn(y)

= −e−2A M2
nηn(y), (84)

or in conformally flat space-time coordinates

[−∂2
z + Uκ(z)]θn(z) = Q†

κQκθn(z) = M2
n θn(z), (85)

with

ηn(z) = eA(z)/2θn(z). (86)

Now the zero-energy wavefunction annihilated by Qκ is

θ0(z) ∝ e(κ+
1
2 )A(z), (87)

and the corresponding zero-mode profile η0(y) becomes

η0(y) ∝ e(κ+1)A(y), (88)

which is normalizable for κ > 0.
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4.3 Vector sector

The fate of the vector sector can be studied decomposing the
vector fields as

λμ =
∑

n

λμn (x)un(y), ρμ =
∑

n

ρμn (x)vn(y), (89)

and defining the modes as

∂μλ
μν
n = M2

V nλ
ν
n, ∂μρ

μν
n = M2

V nρ
ν
n . (90)

From Eq. (76), the vector zero modes satisfy

λ
μ
0 (x)u0(y) = ρ

μ
0 (x)v

′
0(y). (91)

Substituting this relation into Eq. (75), one has

v′′
0 (y)− Fκv0(y) = 0. (92)

Thus, for κ > 0, there is only one normalizable solution,
given by

v0(y) ∝ e(κ+1)A, (93)

but again this mode fails to be localized in the brane, as
its effective action vanishes upon integration over the extra
dimension:

S0
V =

∫
d4x

[
−1

4
(ρ
μν
0 )2

] ∫ +∞

−∞
dy [(v′

0)
2 + Fκv

2
0] = 0.

(94)

Thus, in this case there is also a null state in the low-energy
spectrum, whose properties must be studied in detail.

On the other hand, from Eq. (75) the following relation
holds for all modes:

Fκρ
μ
n vn = λμn u′

n . (95)

Plugging this relation into Eq. (76) we obtain the definitive
equation for the mode profiles

Fκu′′
n(y)−F ′

κu′
n(y)+Fκ (e

−2A M2
V n −Fκ )un(y) = 0.

(96)

As a summary of the results obtained in this section, we can
state that the model defined by Eqs. (62), (82) contains a nor-
malizable zero-energy ground state described by a massless
2-form in four dimensions and a continuous tower of massive
2-forms and 1-forms. The spectrum also includes a massless
1-form, which is again a null state in the 4D effective low-
energy action.

Before closing this section, let us point out a possible
natural connection between the functions Gξ and Fκ . If we
require the brane–gauge coupling to be universal, imposing

Gξ
2

= Fκ

4
(97)

in Eqs. (14), (62), then, from Eqs. (44), (82) the only solution
of Eq. (97) satisfying the conditions ξ > 0 and κ > 0 is
ξ = 2, κ = 3. This particular choice renders functions which
are simply proportional to the scalar potential V (φ):

1

2
G2[φ(y)] = 1

4
F3[φ(y)] = −1

3
V (φ). (98)

Thus, in this special case, the localization of abelian gauge
fields is driven by the very same function that determines the
background geometry.

5 Conclusions

We have proposed a new mechanism for abelian gauge field
localization on thick branes. The key feature of the model
is the presence of Stueckelberg-compensating fields, which
allow for the introduction of Yukawa-like interactions in a
gauge-invariant (and Einstein-covariant) way.

In the vector case, the interaction between the brane and
the gauge field is modeled by a function G (φ) that depends
on the classical background responsible for the brane forma-
tion. Identifying the brane with a domain-wall solution gen-
erated by a single real scalar φ through some super-potential
W (φ), with asymptotic AdS behavior in five dimensions, we
have shown that there is a whole family of functions Gξ (φ)—
constructed from W (φ) and its derivatives—which guarantee
the existence of a normalizable zero-energy vector ground
state in the theory. We have also studied the scalar sector of
the model, concluding that despite being apparently normal-
izable, the scalar zero mode is not trapped by the brane. It
turns out to be a null state in the effective 4D low-energy the-
ory. The presence of such a null state might indicate either
the presence of a hidden left-over gauge symmetry or the
presence of a quantum instability (a ghost mode) in the bulk
spectrum. In fact it is interesting to notice how the cosmo-
logical setup of [17] also displays an instability, of tachyonic
type. It would be interesting to investigate further on these
aspects.

The same localization mechanism can be straightfor-
wardly applied to the abelian KR field. In this case, we have
also found a one-parameter family of brane–gauge coupling
functions Fκ compatible with the presence of a normalizable
zero mode. Such a straightforward generalization is expected
to be kept for a generic antisymmetric form field.
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Finally, we have shown that if the brane–gauge coupling is
universal, then it must be proportional to the scalar potential
V (φ), the same function that triggers the brane formation.
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