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Abstract A Casimir dark energy model in a five-dimen-
sional and a six-dimensional spacetime including non-
relativistic matter and a Gauss–Bonnet term is investigated.
The Casimir energy can play the role of dark energy to drive
the late-time acceleration of the universe while the radius
of the extra dimensions can be stabilized. The qualitative
analysis in four-dimensional spacetime shows that the con-
tribution from the Gauss–Bonnet term will effectively slow
down the radion field at the matter-dominated or radiation-
dominated epochs so that it does not pass the point at which
the minimum of the potential will arise before the minimum
has formed. The field then is trapped at the minimum of the
potential after the formation leading to the stabilization of
the extra dimensions.

1 Introduction

The late-time acceleration of the universe was discovered
by observing the behavior of the supernovae of type Ia (SN
Ia) [1,2]. Recent observations imply that about 72 % of the
energy density of the universe consists of an unknown con-
stituent called “dark energy” [3–5]. One of the simple can-
didates which is able to fit with the current observational
data is the cosmological constant. Theoretically, the cosmo-
logical constant can be interpreted as vacuum energy. It is
found that the energy scale of the vacuum energy calculated
from particle physics theory is far larger than the observed
value of the cosmological constant [6]. It is also plagued by
the coincidence problem, which amounts to the fact that the
energy densities of cosmological constant and dark matter
are significantly different throughout the history of the uni-
verse, while their energy densities are of the same order at the
present time [7–10]. Therefore, various kinds of dynamical
models for dark energy were proposed in order to explain
the late-time acceleration of the universe [11,12], for exam-
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ple, quintessence models [13,14], k-essence models [15–17],
Galilean models [18] and their generalization [19,20], vec-
tor field models [21,22], three-form field models [23,24] and
holographic dark energy models [25]. Moreover, there are
many modified gravity models constructed in order to explain
this late-time acceleration of the universe, for example, f (R)
gravity models [26,27] (for viable cosmological models, see
Refs. [28–30]), f (G) gravity models [31] and, recently, mas-
sive gravity models [32,33]. Among the various dark energy
models, there is a model, motivated from fundamental the-
ories such as string theory, called the “Casimir dark energy
model” [34,35]. We will focus on this model in the present
work.

A fundamental theoretical framework that may be able
to provide a description of the late-time acceleration of the
universe is offered by string theory. Generally, string theory
requires the presence of extra dimensions. However, from
the observation point of view, we live in four-dimensional
spacetime. This implies that the extra dimensions have to be
compactified. It is not easy to obtain a mechanism for stabi-
lizing the extra dimensions, while providing a viable model
of dark energy [36–38] and the lack of such a mechanism
is often called the “moduli stabilization problem”. However,
searches for a viable moduli stabilization mechanism are on-
going; for example see [39,40].

One of the most promising dark energy models that pro-
vides a solution for the moduli stabilization problem is the
Casimir dark energy model [34,35,41]. The Casimir energy
is a vacuum energy emerging from imposing boundary con-
ditions on the quantum fluctuations of fields. The Casimir
energy is very tiny compared to the vacuum energy calcu-
lated from particle physics theory. It is worthwhile to inter-
pret the cosmological constant as the Casimir energy instead
of the vacuum energy since the Casimir energy can natu-
rally emerge from the compactification mechanism. More-
over, this dark energy candidate also provides the mech-
anism for stabilizing the extra dimensions automatically.
However, in order to compare the results of the model to
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the standard history of the universe, we need to include non-
relativistic matter. Unfortunately, adding the non-relativistic
matter to the model destroys the stabilization mechanism
of the extra dimensions [35,42]. For the effective theory in
four-dimensional spacetime, the size of the extra dimension
will be characterized by a scalar field, the so-called mod-
uli field or radion field, and the Casimir energy plays the
role of the potential of the moduli field. The dynamics of
the moduli field can be analyzed by using the potential in
effective theory in four-dimensional spacetime. The quali-
tative analysis shows that the minimum of the potential of
the moduli field will disappear and its slope will increase
when non-relativistic matter is included. Hence, the moduli
or radion field will rapidly roll down and then pass away from
the minimum point before it has formed, which eventually
leads to the destabilization of the extra dimensions. In order
to restore the stabilization mechanism, a modified Casimir
dark energy model in which the aether field is added has been
investigated [42]. The effects of the aether field in the higher-
dimensional spacetime were also investigated in [43,44] and
a key result in four-dimensional spacetime is that the slope
of the potential is decreased. In other words, the force act-
ing on the radion field during the matter-dominated period is
reduced. Thus the radion field slowly rolls down during the
matter-dominated period and it has enough time for waiting
for the formation of the potential minimum at the late time.
This eventually leads to the stabilization of the extra dimen-
sions. Unfortunately, the aether field which can provide this
viable model is plagued by ghost instabilities implying an
unstable theoretical model [45–48]. It was also found that
the linear perturbations in the cosmological background of
the aether model grow exponentially.

Braneworld models belong to the most interesting cos-
mological models with extra dimensions. In this scenario,
the observable universe is a (3+1)-dimensional hypersurface
(three-brane) embedded in a higher-dimensional spacetime
(bulk) [52,53] (for a recent review, see [54]). The stabiliza-
tion mechanism of the extra dimensions in this scenario is
an important issue. By introducing a bulk scalar field to the
model, the classical stabilization mechanism for this sce-
nario has been proposed [55] and intensively investigated
(for example [56–58]). Since the boundary conditions of the
bulk are also imposed, a quantum effect corresponding to the
Casimir energy is generated and then used by letting it play
an essential role in the stabilization mechanism [59–63]. It is
important to note that there is a codimension-two brane in 6D
gauge chiral supergravity model which proposes a stabiliza-
tion mechanism for the extra dimensions from the brane–bulk
couplings [49–51]. In this model, the extra dimension geom-
etry is set to be a rug ball where the branes are located at the
tips. This geometry allows one to construct the model in the
presence of supersymmetries in the bulk, while supersym-
metries break on the branes. The Casimir energy calculated

from one-loop corrections of the bulk fields may also play
the role of he cosmological constant to drive the late-time
acceleration of the universe.

The classical stabilization mechanism in the braneworld
scenarios is accomplished by the existence of the radion
mass. However, the radion field shows the trend to have a
negative mass square leading to tachyonic instabilities [64].
By including the Gauss–Bonnet term, the dynamics of the
radion field will be affected such that, for positive Gauss–
Bonnet coupling, the radion mass increases and the inter-
brane distance becomes smaller as the coupling increases
and the radion field can evolve to the region without tachy-
onic instabilities. For the negative coupling case, the radion
field evolves to the tachyonic instability state [65,66]. Thus it
turns out that the Gauss–Bonnet term with a positive coupling
can help to stabilize the extra dimension.

In this paper, we will seek a way to restore the stabilization
mechanism in the Casimir dark energy model by consider-
ing the modification of gravity instead of adding an exotic
matter field. For the modified gravity, we will consider the
generalization of Einstein gravity namely “Lovelock grav-
ity” [67–69]. Lovelock gravity is a generalization of Ein-
stein gravity in higher-dimensional spacetime which gives
rise to Einstein gravity with a cosmological constant in four-
dimensional spacetime. One of the important properties of
this modified gravity is that it still provides the equation
of motion with second order derivatives of the theory and
satisfies the conservation equation of matter field; in other
words, it satisfies the modified Bianchi identities. In five-
and six-dimensional spacetime, Lovelock gravity reduces
to Einstein–Gauss–Bonnet (EGB) gravity which is Einstein
gravity including a Gauss–Bonnet (GB) term. In fact, the GB
term might also arise from string theory [70,71]. Therefore,
it is worthwhile to investigate the effect of the GB term on
the stabilization of the extra dimensions in the Casimir dark
energy model and this is the aim of this work. We find the
equations of motion in five-dimensional spacetime and then
use numerical methods to show that the extra dimensions can
be stabilized. For the numerical method, the minimum radion
potential has to be positive and the potential must be deep
enough to stabilize the extra dimension. This requires a fine
tuning of the model parameters and the most sensitive one
is the mass ratio parameter λ̄. The other mechanisms which
influence the stabilization mechanism are the spectrum of the
particles to generate the Casimir energy as well as the initial
value of the radion field.

The effective four-dimensional theory is obtained by
Kaluza–Klein reduction [72–74]. By using this result, we
show that the contribution from the GB term effectively slows
down the radion field during the matter-dominated period so
that it does not pass the point at which the minimum of the
potential will arise before the minimum has formed. The field
then is trapped at the minimum of the potential after the for-
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mation leading to the stabilization of the extra dimensions.
We also investigate this mechanism in six-dimensional space-
time and show that the radius of the extra dimensions can be
stabilized in the same manner as in the five-dimensional anal-
ysis.

The paper is organized as follows. We review the Casimir
dark energy model in Sect. 2. The stabilization of the extra
dimension when non-relativistic matter is not included is dis-
cussed and the destabilization mechanism of the extra dimen-
sion when the non-relativistic matter is taken into account is
also discussed in this section. In Sect. 3, the Lovelock grav-
ity theory in (4+n)-dimensional spacetime and EGB gravity
are reviewed. The Kaluza–Klein reduction of EGB gravity
theory is also reviewed in this section. In Sect. 4, we use the
results of the two previous sections to modify the Casimir
dark energy model by including the GB term and show how
the GB term affects the dynamics of radion field in both five-
and six-dimensional spacetime. Finally, we conclude with
the results in Sect. 6.

2 Casimir dark energy model

In this section, we will review one of the theoretical mod-
els, the so called “Casimir dark energy model” by following
[35,42]. The stabilization mechanism of the extra dimen-
sion in this model is reviewed. The destabilization of the
extra dimension when non-relativistic matter added is also
reviewed.

2.1 Casimir energy and its interpretation as dark energy

The Casimir energy is the vacuum energy emerging from
imposing boundary conditions on the quantum fluctuations
of fields at small scales [75–78]. This energy is seen to be
a physical energy since the Casimir force can be observed
in terrestrial experiments [79,80]. In this subsection, we will
review the mathematical calculation and physical descrip-
tion of the Casimir energy from the compactification of the
extra dimension. Then we will review an interpretation of the
Casimir energy as dark energy in order to drive the late-time
acceleration of the universe. This dark energy model provides
the mechanism for stabilizing the extra dimension. However,
this mechanism will be destroyed when non-relativistic mat-
ter is added.

Generally, the Casimir energy can be derived in any num-
ber of extra dimensions. In this subsection we will consider
an ansatz in which a single extra dimension is compactified as
a circle, S1, and five-dimensional spacetime can be thought
of as the product space of the four-dimensional flat FLRW
spacetime and this circle space. In six-dimensional space-
time, given by the product space of the four-dimensional flat

FLRW spacetime and a simple two-dimensional torus, T 2,
the Casimir energy can easily be derived using a method
analogous to the derivation in five-dimensional spacetime
[34,35]. However, the calculation for a non-trivial two-
dimensional torus, for example a torus which is characterized
by both its volume and its shape, will be more complicated
since we need more complex mathematical tools [34,41]. In
this paper we will use the results derived in five-dimensional
spacetime to obtain the analogous results in six-dimensional
spacetime with a simple torus, the torus which is character-
ized by only its volume. The line element of this ansatz can
be written as

ds2 = −dt2 + a2(t)dx2 + b(t)2dy2, (1)

where a(t) denotes the scale factor of the 3-spatial non-
compact directions and b(t) denotes the scale factor of the
compact fifth direction which is characterized the volume of
the extra dimension. The range of the coordinate y on the S1

is 0 ≤ y ≤ 2π . Considering a simple massive scalar field
living in this spacetime, the equation of motion for this scalar
field is the Klein–Gordon equation,

(∇A∇ A − m2)φ = 0, (2)

where m is a mass and the uppercase Latin indices, A, B,
C, . . . are five spacetime indices running on {0, 1, 2, 3, 5}.
Since the fifth direction of the spacetime is compactified as
a circle, we can impose the periodic boundary conditions
of the scalar field as φ(y = 0) = φ(y = 2π). Since the
Klein–Gordon equation has the form of a wave equation, the
solution may be written as φ ∝ ei(kμxμ+k5 y), where kμ is
the wave number in the non-compact directions and k5 is the
wave number in the compact direction. By imposing periodic
boundary conditions, the wave number in the compact direc-
tion, k5, becomes an integer and then the dispersion relation
of the scalar field can be written as

− kμkμ = m2 + ñ2

b2 , (3)

where ñ ∈ Z is the momentum number in the compact direc-
tion. For standard quantum field theory in four-dimensional
spacetime, the zero point energy, or vacuum energy, of a
massive scalar field is

̂E =
(

L

2π

)3 ∫

d3k
1

2
ωk, (4)

where ωk = √
k2 + m2, from the dispersion relation,

−kμkμ = m2, and L3 is the spatial volume. We can use
an analogous method to obtain the vacuum energy in the
previous expression with ωk = √

k2 + m2 + ñ2/b2, derived
from the dispersion relation in Eq. (3). The integration of
the compact direction becomes the summation over ñ. We
assume that the relevant vacuum solution in the non-compact
direction is the Cartesian product of flat 4-spacetime. This
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assumption is a basic assumption for calculating the Casimir
energy in a higher-dimensional spacetime, as seen in the lit-
erature, for example [34,82]. Using this method the vacuum
energy of the scalar field in our case can be written as

̂ECas = 1

2

(

L

2π

)3 ∫

d3k
∑

ñ

√

k2 + m2 + ñ2

b2 . (5)

The integration of the summation above seems to be diver-
gent since k runs from 0 to ∞. However, we can regularize
this integration by using the Chowla–Selberg zeta function
[81]. We will not show the explicit calculation for this reg-
ularization procedure. The detailed calculation can be found
in [42]. The result of the regularization is finite and we now
interpret this as the Casimir energy [34]. For the massless and
massive scalar fields, the energy density of each component
can be, respectively, written as

ρmassless
Cas = ̂Ecas

L32πb
= 2Γ (5/2)ζ(5)

Γ (−1/2)(2πb)5π2
, (6)

ρmassive
Cas = −2(mb)5/2

(2πb)5

∞
∑

ñ=1

ñ−5/2 K5/2(2πbmñ), (7)

where ζ is the zeta function, Γ is the gamma function, and
Kν(x) is a modified Bessel function. The main results of
these energy densities is that they are proportional to 1/b5.
This is one of characteristic behaviors of the Casimir energy,
with ρCas ∝ 1/aD , where a is the distance between the
boundaries and D in a number of all spacetime dimensions.
It is not surprising, since the procedure used to calculate
the Casimir energy is the same as the one for calculating
in the case of parallel conducting plates. It is important to
note that, by relaxing our assumption of the vacuum solution
in a non-compact direction, one can consider the vacuum
energy in FLRW spacetime. It was found that the physical
vacuum energy can be obtained by subtracting the bare vac-
uum energy of Minkowski spacetime from the FLRW and
then renormalizing by adjusting non-covariant counterterms
[83,84]. As a result, the physical vacuum energy density is
proportional to the Hubble parameter square ρvac ∝ H2.
For a more general consideration, the covariant approach to
calculate the renormalized energy-momentum tensor of vac-
uum was investigated [85]. As a result, 〈Tμν〉vac ∝ Gμν

where Gμν is component of Einstein tensor. It is obvious
that this physical vacuum energy is totally different from the
Casimir energy and must be distinguished from the Casimir
energy. Since this physical energy influences the dynamics
of the universe, it may yield the stabilization mechanism of
the extra dimensions. We leave this investigation for further
work since our aim is to investigate the effect of the Gauss–
Bonnet terms on the stabilization mechanism of the extra
dimensions.

The contribution of the graviton to the Casimir energy
in five-dimensional spacetime is ρgraviton = 5ρscalar [82]
where the number 5 comes from the number of degrees
of freedom of the graviton in five-dimensional spacetime.
This result can be generalized to other bosonic fields using
knowledge of supersymmetry multiplets. It is found that
the contribution from other bosonic fields to the Casimir
energy can be written in terms of the scalar contribution
as ρboson = Nbρscalar, where Nb is the number of degrees
of freedom of the bosonic fields. This generalization can
be applied to fermionic fields and it is found that the con-
tribution from the fermionic fields to the Casimir energy
is given by an equivalent expression, but with a negative
sign, ρfermion = −N f ρscalar [34], where N f is a number
of degrees of freedom of the fermionic fields. In order to
interpret the Casimir energy as a cosmological constant, the
total Casimir energy density can be expected to occur as the
potential term of the radion field in four-dimensional space-
time. The radion field with a potential contributing from the
Casimir energy density can play the role of dark energy if
there exists a positive minimum of the potential. In order
to obtain the positive minimum of the potential, one has to
choose the proper contribution from both massive/massless
bosons and fermions as well as the mass ratio between them
λ̄ = mb/m f . Since the metric gAB is the dynamical field
of our ansatz, the massless bosonic contribution must come
from, at least, the graviton. As we have mentioned above,
the number of degrees of freedom of the graviton is Nb = 5.
For massless fermionic fields, we assume that there are two
quantum fluctuations of the Dirac fermionic fields living in
the bulk. In five-dimensional spacetime, the physical degree
of freedom of the Dirac fermions is four. Therefore, the total
number of degrees of freedom for massless fermionic field is
N f = 8. For massive fermions, with mass m f , we also use
the same assumption as for the massless ones. Therefore, the
total number of degrees of freedom of the massive fermionic
field is Ñ f = 8. The massive boson contribution may come
from eight massive scalar fields with mass mb. By using this
particular choice, the total Casimir energy density can be
written as

ρCas = ρmassless
boson + ρmassless

fermion + ρmassive
boson + ρmassive

fermion ,

= −3ρmassless
Cas + 8ρmassive

Cas (mb)− 8ρmassive
Cas (m f ). (8)

It is important to note that there is no unique choice of bulk
particle spectrum for this purpose; other combinations of the
fields can probably also create a minimum for the vacuum
energy [35]. Note also that we do not attempt to justify the
existence of these bulk fields phenomenologically because
we seek only to demonstrate that a stabilization mechanism
of the extra dimensions can be achieved if these fields are
present.
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Fig. 1 The evolution of the
radius of the extra dimension (in
the left panel) and the scale
factor (in the right panel) in the
Casimir dark energy model
without non-relativistic matter.
From the left panel, we see that
the radius of the extra dimension
can be stabilized and from the
right panel we see that our
3-spatial universe is accelerated

2.2 Dynamics of Casimir dark energy

In order to obtain the dynamics of the Casimir dark energy,
we add the energy-momentum tensor contributing from the
Casimir effect into the Einstein field equation. The general
form of the Casimir energy-momentum tensor which is com-
patible with the metric in Eq. (1) can be written as [35]

Tμν(Cas) = diag(−ρCas, pa, pa, pa, pb, . . . , pb) (9)

where pa and pb are the Casimir pressure in the non-compact
and compact dimensions, respectively. These pressures can
be defined as [35]

pa ≡ − ∂

∂Va

(

ρCasVa

)

, (10)

pb ≡ − ∂

∂Vb

(

ρCasVb

)

, (11)

where Va ∝ ad−n and Vb ∝ bn . Here, d is the number of
spatial dimensions, n is the number of the extra dimensions
and d = 4, n = 1 for this model. It is important to note
that the equation of state (eos) defined in Eqs. (10) and (11)
can be applied to any perfect fluid which obeys the equation
p = wρ where p is the pressure, ρ is the energy density and
w is the equation of state parameter. For example, one can
check this definition by substituting ρ = ρ0a−(1+w)/3 into
Eq. (10), and then one can obtain p = wρ.

Since the Casimir energy density, ρCas, depends only on b,
the pressure in the non-compact and compact directions can,
respectively, be written as pa = −ρCas and pb = −ρCas −
b∂bρCas. The equation of state for the cosmological constant
is p� = −ρ�. It is found that the equation of state of the
Casimir energy has the same form as the equation of state
of the cosmological constant. It is convenient to consider the
general form of the metric with n extra dimensions as

ds2 = −dt2 + a2(t)dx2 + b(t)2dy2, (12)

where y denotes the coordinates in the n-extra dimensions.
By using this metric, the conservation equation of the energy

momentum tensor, ∇μTμν , reads

ρ̇Cas + 3Ha(ρCas + pa)+ nHb(ρCas + pb) = 0, (13)

where Ha = ȧ/a and Hb = ḃ/b. Using the metric in Eq.
(12) and the energy-momentum tensor in Eq. (9), the fields
equation [86] are

3H2
a + n

2
(n − 1)H2

b + 3nHa Hb = M−(n+2)∗ ρCas, (14)

n
b̈

b
+2

ä

a
+ n

2
(n − 1)H2

b +H2
a +2nHa Hb =−M−(n+2)∗ pa,

(15)

(n − 1)

(

b̈

b
+ (3n − 2)

2
H2

b + 3Ha Hb

)

+3
ä

a
+ 3H2

a = −M−(n+2)∗ pb, (16)

where M∗ is the mass scale in (4+n)-dimensional spacetime.
Note that we generalized the Einstein field equations into
(4+n)-dimensional spacetime for convenience.

For n = 1, the numerical results of these equations are
shown in Fig. 1. From this figure, we can see that the radius
of the extra dimension can be stabilized at b(t) ∼ 0.0145
and the scale factor is accelerated. In order to get the positive
minimum in which the radion can be stabilized, we must
choose the value of λ̄ from a very narrow range, 0.516 ≤ λ̄ ≤
0.527. In these numerical results, we have chosen λ̄ = 0.516,
which is the lower bound of the range. It is important to note
that a fine tuning problem is also found in this model since one
needs to fine tune the parameter λ̄ for three digits to stabilize
the extra dimension. This fine tuning problem is different
from the one from the cosmological constant model since
the parameter is fine tuned to stabilize the extra dimension,
while the initial value of the cosmological constant is fine
tuned to obtain the consistent value at the present time. For
this model, the value dark energy at the present time gives
a prediction of the mass of the fermionic bulk field [35]. To
obtain the realistic cosmological history of the universe, the
contribution from non-relativistic matter must be added. The
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Fig. 2 The evolution of the
radius of the extra dimension (in
the left panel) and the scale
factor (in the right panel) in the
Casimir dark energy model
including non-relativistic matter.
From the left panel, we see that
the radius of the extra dimension
cannot be stabilized and from
the right panel we see that our
3-spatial universe cannot be
accelerated

Einstein equations including non-relativistic matter in five-
dimensional spacetime are

3H2
a + 3Ha Hb = M−3∗ (ρCas + ρm), (17)

b̈

b
+ 2

ä

a
+ H2

a + 2Ha Hb = −M−3∗ pa, (18)

3
ä

a
+ 3H2

a = −M−3∗ pb, (19)

where ρm is the energy density of non-relativistic mat-
ter. The energy density of non-relativistic matter in (4+n)-
dimensional spacetime, obeying the conservation equation
ρ̇m + 3Ha + nHb = 0, can be written as

ρm =
(

bmin

b

)n
ρm0

a3 , (20)

where ρm0 is the energy density of non-relativistic mat-
ter at the present epoch (corresponding to b = bmin

and a = 1). From the observational data [3], ρ(4)m0 =
(2.8/7.2)ρ� = (2.8/7.2)(2.3×10−3eV )4. Therefore ρm0 =
(2.8/7.2)ρCas(b = bmin), since ρ� = (2πbmin)

nρCas(b =
bmin) and ρ

(4)
m0 = (2πbmin)

nρm0. Using this relation
the energy density of non-relativistic matter in (4+n)-
dimensional spacetime can be written as

ρm = 2.8

7.2

(

bmin

b

)n

ρCas(b = bmin)a
−3. (21)

The numerical results of the evolution of b(t) and a(t) for
Eqs. (17)–(19) are shown in Fig. 2. We can see that the radius
of the extra dimension cannot be stabilized and the scale
factor will not be accelerated. The destabilization of the extra
dimension will be examined by considering the potential of
the radion field in four-dimensional spacetime. The minimum
of the potential for the radion field does not exist at early times
since the contribution of non-relativistic matter is dominant.
Therefore, the radion field will roll down and pass away from
the minimum point before it exits [35]. We will consider this
issue in detail in Sect. 4. By including the effect of an aether

field, the stabilization of the extra dimension can be restored
[42]. However, the aether field itself is not stable [45–48].
Hence the stabilization mechanism obtained by including the
aether field may not be worthy of the effort.

3 Einstein–Gauss–Bonnet theory

In this section, we briefly review the concept of Lovelock
invariance by following [67–69]. This leads to a general-
ization of Einstein gravity keeping second order equations
of motion and covariant conservation of the matter field.
This generalization does not change Einstein gravity in four-
dimensional spacetime but gives a non-trivial modification
when the theory is considered in higher-dimensional space-
time. For five- or six-dimensional spacetime, it is well known
that this generalization is Einstein–Gauss–Bonnet (EGB)
theory. We will review this theory especially in this section
since we restrict our attention to a Casimir dark energy model
emerging from a compactification of spacetime dimensions
from five and six to four. The Kaluza–Klein compactifica-
tion of EGB theory is also reviewed in the final part of this
section.

We begin this section with considering the EGB action in
D-dimensional spacetime as follows:

SEG B =
∫

d Dx
√−g

(

M D−2∗
2

(−2�+ R + λ2G)+ Lm

)

,

(22)

where M∗ is the fundamental mass scale of the D-dimensional
theory, � is the cosmological constant corresponding to the
zero order Lovelock Lagrangian, and R is the Ricci scalar
corresponding to the first order Lovelock Lagrangian, G is
the Gauss–Bonnet term corresponding to the second order
Lovelock Lagrangian; λ is a coupling constant parameteriz-
ing the presence of the Gauss–Bonnet term. Note that Lm is
the Lagrangian of non-relativistic matter. The Gauss–Bonnet
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term can be defined as

G = R2 − 4Rν1ν2 Rν1ν2 + Rμ1μ2
μ3μ4 Rμ3μ4

μ1μ2 . (23)

By varying the action in Eq. (22) with respect to the met-
ric, the generalized version of the Einstein equation can be
written as

�δμν + Gμ
ν + λ2 Hμ

ν = M2−D∗ Tμ(m)ν , (24)

where T (m)μν = 2δ(
√−gLm)/δgμν is the energy-momentum

tensor of the matter field. Hμ
ν is the second order Lanczos ten-

sor obtained by varying the Gauss–Bonnet term with respect
to the metric. This tensor can be written as

Hμ
ν = 2

(

Rμμ1μ2μ3 Rνμ1μ2μ3 − 2Rμ1μ2 Rμμ1ν μ2

−2Rμμ1 Rνμ1 + R Rμν

)

− 1

2
Gδμν . (25)

It is important to note that Lovelock invariance can be
considered in terms of the vierbein or tetrad formalism [87–
89]. In this formalism, the Lovelock Lagrangian can be con-
structed from powers of the curvature two-form. The advan-
tages of this formalism are that it provides a clear geomet-
ric interpretation and it is easy to show that the equations
of motion corresponding to the Lovelock Lagrangian are of
second order.

Since observations suggest that the universe is four-
dimensional, any extra dimensions have to be compact-
ified. In this subsection, we consider the Kaluza–Klein
compactification from (4+n)-dimensional spacetime to four-
dimensional spacetime where n is the number of the extra
dimensions [72,73,73]. In this paper, we will review a spe-
cial case of the generalized Kaluza–Klein compactification
[89]. We also restrict our attention only to the diagonal met-
ric of the internal extra dimensions for simplicity. Note that
the existence of off-diagonal parts of the metric in five-
dimensional spacetime corresponds to the existence of a
gauge field, Aμ, in four-dimensional effective theory. Since
the goal of this paper is to investigate the stabilization mech-
anism of the extra dimensions, more degrees of freedom in
four-dimensional theory may lead to difficulties in analyz-
ing the result. This investigation is outside the scope of this
work. It is important to note that one can eliminate the gauge
field from our consideration by requiring more symmetry, for
example, Z2 symmetry of the interval ds2. Since this sym-
metry does not affect the form of the Casimir energy density
[34], the interpretation of the cosmological constant in terms
of the Casimir energy is still applicable. The metric for this
ansatz can be written as

ds2 = gABdx Adx B,

= e−√ n
n+2φ ḡμνdxμdxν + e

√

4
n(n+2) φ g̃abdyadyb, (26)

where the indices A, B, . . . run over the whole D-dimensional
spacetime, the indices μ, ν, . . . run over the (3 + 1)-
dimensional spacetime and the indices a, b, . . . run over the
internal space in n dimensions. For simplicity, we assume that
ḡμν is diagonal and φ depends only on the external spacetime

coordinates, φ = φ(xμ). The conformal factor, e−√ n
n+2φ , of

the metric ḡμν is inserted for convenience in the calculation
procedure. Note that the metric g̃ab is assumed to be a flat
Euclidean metric which is the one we have used for calculat-
ing the Casimir energy density. More detailed calculations
with generic Euclidean metrics are given in the appendix.
Using this ansatz together with the calculation in the standard
procedure of the Kaluza–Klein reduction, the EGB action
with matter in D-dimensional spacetime in Eq. (22) can be
reduced to

SEG B =
∫

d4x
√−ḡ

M2
Pl

2

[

λ2e

√

n
(n+2) φ

(

Ḡ−4 f1Ḡμν∂μφ∂νφ

−2 f2(∂φ)
2�φ − f3(∂φ)

2(∂φ)2
)

− 2�e
−

√

n
(n+2) φ

+
(

R̄ − 1

2
(∂φ)2

)

+ 2(2π)n

M2
Pl

e
−

√

n
(n+2) φLm

]

, (27)

where f1, f2, and f3 are functions depending on n, defined in
the appendix. The EGB theory in five-dimensional spacetime
also reduces to

SEG B =
∫

d4x
√−ḡ

[

M2
Pl

2

{

R̄ − 2� e
− ψ
ψ0 + λ2e

ψ
ψ0 Ḡ

}

+λ2e
ψ
ψ0

(

4

3
Ḡμν∂μψ∂νψ + (∂ψ)2

�ψ
ψ0

)

−1

2
(∂ψ)2 + 2πe

− ψ
ψ0 Lm

]

, (28)

where we have rescaled the scalar field as follows:

φ =
√

2ψ

MPl
= √

3
ψ

ψ0
. (29)

In order to relate the radius of the extra dimension b(t) with
the scalar φ(t), we note that the explicit relation can be
expressed as

b(t) = e
φ√

n(n+2) . (30)

4 Casimir dark energy model with
Einstein–Gauss–Bonnet theory

In this section, we will consider the EGB theory with the
action (22). In our ansatz, the cosmological constant is inter-
preted as the Casimir energy density as follows: M3∗� =
ρCas = LCas(φ). By substituting this result into Eq. (22), the
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Fig. 3 The evolution of the
radius of the extra dimension (in
the left panel) and the scale
factor (in the right panel) in the
Casimir dark energy model
including non-relativistic matter
and the Gauss–Bonnet term.
From the left panel, we see that
the radius of the extra dimension
can be stabilized and from the
right panel we see that our
3-spatial universe can be
accelerated. We have used
λ = 0.1 in this simulation

action can be expressed as

S5 =
∫

d5x
√−g

(

M3∗
2
(R + λ2G)− LCas(φ)+ Lm

)

.

(31)

The equations of motion are obtained from Eq. (24) as

Gμ
ν + λ2 Hμ

ν = M−3∗
(

Tμν(Cas) + Tμν(m)

)

, (32)

where Tμν(Cas) is defined in Eq. (9). By using the metric in Eq.
(12), each component of the above equation can be expressed
as

3H2
a + 3Ha Hb + 12λ2 H3

a Hb = M−3∗ (ρCas + ρm), (33)

b̈

b
+ 2

ä

a
+ H2

a + 2Ha Hb + λ2
(

8Ha Hb
ä

a
+ 4H2

a
b̈

b

)

= −M−3∗ pa, (34)

3
ä

a
+ 3H2

a + λ2 H2
a

ä

a
= −M−3∗ pb. (35)

The numerical results of these equations of motion are
illustrated in Fig. 3. We can see that the extra dimension can
be stabilized and the universe is accelerated. Note that we
use λ = 0.1 in the simulation. The range in which the extra
dimension can be stabilized is approximately 0.005 ≤ λ2 ≤
5.0. This range depends on the initial velocity of the extra
dimension, ḃi . By setting λ = 1, the initial velocity required
is ḃi < 0.002 in order to stabilize the extra dimension. To
compare the results of the model with the standard history of
the universe, we need to include the contribution of radiation.
This contribution may alter the behavior of the stabilization
mechanism. This modification can be done by changing the
initial conditions to their values at the radiation-domination
epoch and substituting the energy density and pressure of
the radiation instead of matter. By doing this, we found that
the stabilization mechanism still hold. In order to see how

the stabilization mechanism can be restored, we will ana-
lyze this mechanism using the equations of motion in four-
dimensional spacetime.

5 Dynamics in radion picture

From Eq. (31), the cosmological constant term can be inter-
preted as a Casimir energy density L(5)Cas(φ). The effect of
dimensional reduction to this term will come only from the
part of

√−g. In fact, the amount of the factor is the same

as for the matter term as 2πe
− ψ
ψ0 . By using the rescaling

field in Eq. (29), the reduced action of this term becomes

2πe
− ψ
ψ0 L(5)Cas(ψ). Since this term does not contain the con-

tribution of the derivative of the scalar field, we can pro-
mote it to the potential term of the scalar field as V (ψ) =
2πe

− ψ
ψ0 L(5)Cas(ψ) = e

−2 ψ
ψ0 L(4)Cas(ψ), where we have used

the relation of the energy densities in five-dimensional and
four-dimensional spacetime, ρ(4) = 2πbρ(5). By using the
reduced action in Eq. (28) and our interpretation of the cos-
mological constant term above, the reduced action in four-
dimensional spacetime can be written as

S(4) =
∫

d4x
√−ḡ

[

M2
Pl

2

{

R̄ + λ2e
ψ
ψ0 Ḡ

}

− 1

2
(∂ψ)2−V (ψ)

+ L(4)m

e
2 ψ
ψ0

+ λ2e
ψ
ψ0

(

4

3
Ḡμν∂μψ∂νψ + (∂ψ)2

�ψ
ψ0

)]

.

(36)

Note that, without the last two terms and the potential, this
action can be derived from the heterotic or type IIB string
and there is a tachyonic instability for the tensor mode and
a tachyon free case for the scalar mode [90,91]. This model
has also been investigated in Bianchi type I [92] and type
IX [93]. It is found that this kind of the model seems to be
unstable. However, by including the last two terms, the stabil-
ity conditions in the tensor mode will be modified. Without
the potential term, the theory appears to be stable but the
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matter phase is absent [94,95]. Adding the potential term
corresponding to the Casimir energy may therefore provide
the required matter phase in the history of the universe. We
leave this investigation for further work. The components of
the equation of motion obtained by varying this action with
respect to gμν can be written as

3M2
Pl H2

a = ρψ + e
−2 ψ

ψ0 ρ(4)m , (37)

M2
Pl(3H2

a + 2Ḣa) = −pψ, (38)

where

ρψ = 1

2
ψ̇2 + V

+λ̃2e
ψ
ψ0

(

− 8H3
a
ψ̇

ψ0
+ 12H2

a
ψ̇2

ψ2
0

+ 6Ha
ψ̇3

ψ3
0

− ψ̇4

ψ4
0

)

,

(39)

pψ = 1

2
ψ̇2 − V

+λ̃2e
ψ
ψ0

(

16

3
Ha(H

2
a + Ḣa)

ψ̇

ψ0
− 4

3
(H2

a + 2Ḣa)
ψ̇2

ψ2
0

−8

3
Ha
ψ̇3

ψ3
0

− ψ̇
4

ψ4
0

+ 2

3

(

4H2
a −8Ha

ψ̇

ψ0
− 3ψ̇2

ψ2
0

)

ψ̈

ψ0

)

.

(40)

The conservation of the energy-momentum tensor provides
the field equation for the radion field as

ψ̈ + 3Haψ̇ = −V ′
eff + 2e

−2 ψ
ψ0
ρ
(4)
m

ψ0
, (41)

where

V ′
eff = V ′ + λ̃2e

ψ
ψ0

(

− 8

ψ0
H2

a (H
2
a + Ḣa)

+8Ha(3H2
a + 2Ḣa)

ψ̇

ψ2
0

+ (22H2
a + 6Ḣa)

ψ̇2

ψ3
0

− ψ̇
4

ψ5
0

+ 4

(

2H2
a + 3Ha

ψ̇

ψ0
− ψ̇2

ψ2
0

)

ψ̈

ψ2
0

)

, (42)

λ̃2 = ψ2
0λ

2 = 3

2
M2

Plλ
2. (43)

Considering Eqs. (37) and (39) with λ̃ = 0, neglecting the
effect of the Gauss–Bonnet term, one can see that the con-
tribution from the matter field will dominate at early times
since ρ(4)m ∝ a−3 and a � 1. Therefore, the minimum of
the potential will disappear. From Eqs. (41) and (42) with
λ̃ = 0, the contribution from the matter field also increases
the slope of the potential. Hence, the radion field will rapidly
roll down and then pass away from the point at which the
minimum of the potential will arise before the minimum has
formed. This is the destabilization mechanism of the extra
dimension discussed in [35].

Now we will see how the Gauss–Bonnet contribution
alters the dynamics of the radion field. From Eq. (37),
the effect of the Gauss–Bonnet term does not significantly
change the existence of the potential minimum at early times
since the effect of the matter field is still dominant. However,
the contribution of the Gauss–Bonnet term can significantly
change the dynamics of the radion field through the slope
of the potential as seen in Eq. (42). Initially, the radion field
begins at some points of the potential away from the min-
imum with a tiny fraction velocity, ψ̇/ψi � 0. Note that
this assumption is also required in order to stabilize the extra
dimension in normal Casimir dark energy models. There-
fore, the first term from the Gauss–Bonnet contribution in
Eq. (42) is dominant and effectively reduces the slope of
the potential corresponding to a reduction of the magnitude
of the force acting on the radion field. Note that, initially,
ä/a = Ḣa + H2

a < 0 and V ′ < 0. This term effectively
slows down the radion field and then the radion field does
not pass the point at which the minimum of the potential will
arise before the minimum has formed.

The value of the potential minimum is very important to
address the cosmological constant problem. As we have men-
tioned in Sect. 2, the existence of a positive minimum of
the potential depends on the spectrum of particles contribut-
ing to the Casimir energy. By fixing the particle spectrum,
the value of the potential minimum can be adjusted by the
mass ratio λ̄ = mb/m f . The value of λ̄ may be obtained
from supersymmetric theories, but in this work, we do not
try to address this issue. We choose λ̄ as the lower bound
(λ̄ = 0.516) of the range in which the potential minimum
can exist. By using the approximation, bm f << 1, it is
found that Vmin ∝ m D

f and bmin = eψ/ψ0 ∝ m−1
f [35,41].

In order to find the constant of proportionality, one can use
the numerical method of the dynamical equations. Therefore,
one can determine the fermion mass m f and the radius of the
extra dimension bmin from the observed value of the cos-
mological constant. It turns out that m f ∼ 4.18 × 10−2 eV
and bmin ∼ 2.75 × 10−6 m [42]. Note that the contribution
from the Gauss–Bonnet term does not alter this calculation
since it vanishes when the radion stabilizes at the minimum
of the potential. One may interpret this kind of fermion as
the sterile neutrino, which may play the role of dark mat-
ter [35]. By using this value of bmin together with the rela-
tion M2

Pl = M2+n∗ (2πbmin)
n , the quantum gravity scale in

the bulk is M∗ ∼ 1.19 × 109 GeV. This mass scale does
not provide a solution for the mass hierarchy problem. In
order to address this problem, one may consider a theory
in which the number of spacetime dimensions is larger than
five. As discussed in Sect. 3, the contribution from the Gauss–
Bonnet term can be applied for the five- or six-dimensional
cases. Therefore, it is worthwhile to investigate whether
the stabilization mechanism still works in six-dimensional
spacetime.
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In six-dimensional spacetime, the calculation can be eval-
uated in the same manner as in the five-dimensional case.
We show here only the reduced action and the significant
changes of the equations of motion. The reduced action from
six-dimensional spacetime can be written as

S(4) =
∫

d4x
√−ḡ

[

M2
Pl

2

{

R̄+λ2e
ψ
ψ0 Ḡ

}

− 1

2
(∂ψ)2−V (ψ)

+λ2e
ψ
ψ0

(

Ḡμν∂μψ∂νψ − (∂ψ)2(∂ψ)2

4ψ2
0

)

+ L(4)m

e
2 ψ
ψ0

]

,

(44)

where V (ψ) = (2π)2e
− ψ
ψ0 L(6)Cas(ψ) = e

−2 ψ
ψ0 L(4)Cas(ψ) and

the constant ψ0 is now redefined as ψ0 = MPl . The fields φ
and ψ are related via φ = √

2ψ/ψ0. Comparing this to the
reduced action from five-dimensional spacetime in Eq. (36),
the higher-derivative part coming from the Gauss–Bonnet
term differs; it is proportional to (∂ψ)2(∂ψ)2 for the six-
dimensional case and it is proportional to (∂ψ)2�ψ for five-
dimensional case. Using the same procedure for finding the
equations of motion in the five-dimensional case, the energy
density, pressure, and V ′

eff can be rewritten as

ρψ = 1

2
ψ̇2 + V

+λ̃2e
ψ
ψ0

(

− 12H3
a
ψ̇

ψ0
+ 9H2

a
ψ̇2

ψ2
0

− 3

4

ψ̇4

ψ4
0

)

, (45)

pψ =
(

1

2
ψ̇2 − V

)

+λ̃2e
ψ
ψ0

(

8Ha(H
2
a + Ḣa)

ψ̇

ψ0
+ (H2

a − 2Ḣa)
ψ̇2

ψ2
0

−2Ha
ψ̇3

4ψ3
0

− ψ̇4

ψ4
0

+ 4

(

H2
a − 2Ha

ψ̇

ψ0

)

ψ̈

ψ0

)

, (46)

V ′
eff = V ′ + λ̃2e

ψ
ψ0

×
(

− 12

ψ0
H2

a (H
2
a + Ḣa)− 3H2

a
ψ̇2

ψ3
0

− 3

4

ψ̇4

ψ5
0

+6Ha(3H2
a + 2Ḣa)

ψ̇

ψ2
0

+ 3

(

2H2
a − ψ̇2

ψ2
0

)

ψ̈

ψ2
0

)

.

(47)

At the initial time, t = ti , ψ̇/ψi � 0, V ′
eff can be approxi-

mated as

V ′
eff ∼ V ′ − λ̃2e

ψ
ψ0

12

ψ0
H2

a (H
2
a + Ḣa). (48)

Again, the effective force acting on the radion field is reduced
at the initial time. Using the same method in the five-
dimensional case, the decreasing of the effective force will
lead to restoration of the stabilization mechanism. This anal-
ysis is confirmed by numerical simulation of the equations

of motion in six-dimensional spacetime. In six-dimensional
spacetime, we have nine degrees of freedom for the graviton.
We choose this also as the number of degrees of freedom for
the massless boson in the total Casimir energy density. The
other numbers are obtained in the same way as discussed in
the five-dimensional case. The number of degrees of free-
dom for the massless fermion, massive boson, and massive
fermion can be chosen, respectively, as N f = Ñb = Ñ f =
16. By using this particle spectrum, the total Casimir energy
density in six-dimensional spacetime can be written as

ρ
(6)
Cas = −7ρmassless

Cas + 16ρmassive
Cas (mb)− 16ρmassive

Cas (m f ),

(49)

where the mass ratio is chosen as the lower bound, λ̄ = 0.456.
The range of the parameter λ for restoring the stabilization
mechanism is 0.61 < λ < 1.44. The range is sensitive to
the mass ratio and also depends on the initial value of b(t).
We note that, replacing the non-relativistic matter with radi-
ation, the stabilization mechanism in six-dimensional space-
time still holds. The action in four-dimensional spacetime
reduced from five-dimensional spacetime in Eq. (36) and
six-dimensional spacetime in Eq. (44) can be considered as
a modified gravity theory. The modification provides some
corrections to Einstein gravity which can be constrained by
experiments at the solar system scale, for example [96–98].
Note that the potential form in [96–98] is chosen to be an
exponential function of the scalar field, since most of the
investigations do not try to address the moduli stabilization
problem. In order to constrain our theoretical parameters such
as λ̄ and λ, one may find some corrections of our model in
the same manner as done in the literature but the potential
form in our case comes from Casimir energy density. It is
important to note that the allowed region of the parameters
may not be consistent with the stability condition in order to
avoid ghost degrees of freedom in the model [99–102]. We
leave this investigation of our model including the constraints
of the theoretical parameters for further work.

6 Conclusions

The concept of a Casimir dark energy model has been
reviewed. The important idea of this model is that it is natural
to interpret the Casimir energy emerging from the compact-
ification of the extra dimensions as dark energy to drive the
late-time accelerating universe [35]. However, this model of
dark energy encounters the problem that the extra dimen-
sions cannot be stabilized when non-relativistic matter is
taken into account. One solution of this problem is adding an
exotic field such as an aether field to the model [42]. How-
ever, the aether theory itself is not stable [45–48]. In this
paper, we seek another solution by generalizing the Einstein
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gravity theory to Einstein–Gauss–Bonnet (EGB) gravity the-
ory. It is worthwhile to investigate EGB theory since it is
a generalization of Einstein gravity in higher-dimensional
spacetime which keeps second order derivatives in the equa-
tions of motion and satisfies the conservation equation of
the matter field. It is also compatible with the low-energy
effective field theory of string theory [70,71]. The results
of our investigation in five-dimensional spacetime showed
that the radius of the extra dimension can be stabilized when
the Gauss–Bonnet (GB) term and non-relativistic matter are
taken into account. The extension by including radiation into
the model was also investigated and the result showed that
the stabilization mechanism still holds. We used the radion
picture in four-dimensional spacetime to analyze how the GB
term can provide the stabilization mechanism. It was found
that the Gauss–Bonnet contribution effectively reduces the
slope of the radion potential at the initial time corresponding
to a reduction of the magnitude of the force acting on the
radion field. Therefore, the radion field slowly rolls down
and does not pass the point at which the minimum of the
potential will arise before the minimum has formed so that
the stabilization mechanism is eventually restored. We also
investigated this behavior in a six-dimensional spacetime.
The extra dimensions can be stabilized in the same manner
as in the five-dimensional case. The stability of the model
by itself is an important issue for investigation. The effective
four-dimensional GB theory with an exponential potential
and without terms corresponding to a nonminimal coupling
to gravity are found to be unstable due to the tachyonic insta-
bility [102,103]. The extension of the model including non-
minimal coupling terms, without a potential, implies that the
model is stable but the matter phase is absent in the history of
the universe [94,95]. Adding the potential term correspond-
ing to the Casimir energy may provide this matter phase.
We leave this investigation, including the constraints on the
model, parameters for further work. Finally, the interplay
between the Gauss–Bonnet term and the dynamical radion
field in our model may shed some light on the connec-
tion between modified gravity theories and the fundamen-
tal high-energy theories which require higher-dimensional
spacetimes.
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Appendix A: Diagonal Kaluza–Klein compactification

In this appendix we review a special case of generalized
Kaluza–Klein compactification [89]. We restrict our atten-
tion to diagonal metrics for the internal extra dimensions for
simplicity. The metric can be written as

ds2 = gABdx Adx B ,

= e2αφ ḡμνdxμdxν + e2βφ g̃abdyadyb, (A.1)

where the indices A, B, . . . run over the whole D-dimensional
spacetime, the indices μ, ν, . . . run over the (3 + 1)-
dimensional spacetime and the indices a, b, . . . run over the
internal space of n dimensions. For simplicity, we assume
that ḡμν and g̃ab are diagonal and φ depends only on the
external spacetime coordinates, φ = φ(xμ). α and β are
parameters which we will choose later in order to compare
the results with four-dimensional theory. Note that the scalar
field φ is not an external field. It is a scalar degree of free-
dom of the metric g̃ab such that g̃ab → e2βφ g̃ab. This leads
to the transformation of the determinant of the metric as
√

det(g̃ab) → enβφ
√

det(g̃ab), where the quantity
√

det(g̃ab)

on the right hand side of the arrow needs to be a constant.
In our derivation of the Kaluza–Klein reduction, we show
the explicit expression including

√

g̃ even though it is just
a constant which can be absorbed into the scalar field φ by
rescaling. In the standard procedure of Kaluza–Klein reduc-
tion [104], we do not need to put the conformal factor e2αφ

over the metric ḡμν and the parameter β can be set as a
constant before being absorbed into the field φ. Using this
procedure, the quantity

√−gR in D-dimensional spacetime
will be related to the quantity

√−ḡ R̄ in (1+3)-dimensional
spacetime via

√−gR = √−ḡenφ R̄ + · · · , where the ellip-
sis denotes other terms. In order to obtain the theory in the
Einstein frame, we have to use a conformal transformation
to get rid of the factor enφ over the Ricci scalar in a non-
compact spacetime. Therefore, it is convenient to put the
conformal factor to the metric ḡμν at the beginning time as
shown in above equation. In this sense, one can find the rela-
tion between the parameters α and β to get rid of the overall
factor of R̄, as we will show below. Using this ansatz and the
calculation as in standard procedure of Kaluza–Klein reduc-
tion [104], the Ricci scalar can be written as

√−gR = √−ḡ
√

g̃e(2α+nβ)φ
(

e2(α−β) R̃ − 2(3α + nβ)�φ

+R̄ − (6α2 + n(n + 1)β2 + 4nαβ)(∂φ)2
)

.

(A.2)
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We note that the quantities with a “bar”, X̄ , stand for quan-
tities in (3 + 1)-external spacetime and the quantities with a
“tilde”, X̃ , stand for quantities in n-internal space. In order
to get our usual (3 + 1)-dimensional spacetime, one can set
β = −2α/n to get rid of the overall factor of R̄. Substituting
β back into Eq. (A.2), we have

√−gR = √−ḡ
√

g̃

(

R̄ + e
2
n (n+2)αφ R̃

−2α�φ − 2

n
(n + 2)α2(∂φ)2

)

. (A.3)

For the Gauss–Bonnet term, the calculation is very lengthy
but straightforward. After integrating by parts and then set-
ting the total derivative terms to zero, the Gauss–Bonnet term
can be written as

√−gG = √−ḡ
√

g̃

[

enβφ
(

Ḡ − 4 f1Ḡμν∂μφ∂νφ

−2 f2(∂φ)
2�φ − f3(∂φ)

2(∂φ)2
)

+e(4α+(n−4)β)φG̃
+e(2α+(n−2)β)φ R̃(R̄ + f4(∂φ)

2)

]

, (A.4)

where

f1 = 2nαβ + n(n − 1)β2, (A.5)

f2 = 6nα2β + 6n(n − 1)αβ2 + n(n−1)(n−2)β3, (A.6)

f3 = 8nα3β + 4n(4n − 3)α2β2

+8n(n − 1)2αβ3 + 8n(n − 1)2(n − 2)β4, (A.7)

f4 = 6α2 + 6(n − 2)αβ + (n − 2)(n − 3)β2. (A.8)

This reduction of the Gauss–Bonnet term is a special case of
the result given in Ref. [89]. Note that the reduction in [89]
is performed from (1 + p + n)-dimensional spacetime to
(1 + p)-dimensional spacetime. If we choose the parameter
as β = −2α/n, the Gauss–Bonnet term becomes

√−gG = √−ḡ
√

g̃

[

e−2αφ
(

Ḡ − 4 f1Ḡμν∂μφ∂νφ

−2 f2(∂φ)
2�φ − f3(∂φ)

2(∂φ)2
)

+e4αφ/n R̃(R̄ + f4(∂φ)
2)+ e2(n−4)αφ/nG̃

]

.

(A.9)

For the cosmological constant and matter terms, the reduction
factor comes from

√−g. These terms can be written as
√−g� = √−ḡ

√

g̃ e(4α+nβ)φ�

= √−ḡ
√

g̃ e2αφλ−2, (A.10)√−gLm = √−ḡ
√

g̃ e(4α+nβ)φLm

= √−ḡ
√

g̃ e2αφLm . (A.11)

We assume that g̃μν is a Euclidean metric. Note that we also
use this assumption for calculating the Casimir energy den-
sity. Hence, we can integrate out the extra dimension coor-
dinates. To obtain the Newton gravitational constant in four-
dimensional spacetime, the mass scale must relate to the
Planck mass as follows:

M2
Pl = Mn+2∗

∫

dn y
√

g̃ = Mn+2∗ (2π)n . (A.12)

Since g̃μν is a Euclidean metric, R̃ = G̃ = 0, the EGB action
can be written as

SEG B =
∫

d4x
√−ḡ

M2
Pl

2

[

λ2e−2αφ
(

Ḡ − 4 f1Ḡμν∂μφ∂νφ

−2 f2(∂φ)
2�φ − f3(∂φ)

2(∂φ)2
)

− 2�e2αφ

+
(

R̄ − 2

n
(n + 2)α2(∂φ)2

)

+ 2(2π)n

M2
Pl

e2αφLm

]

,

(A.13)

where we have set α0 = −2, α1 = α2 = 1. In order to obtain
the canonical form of the scalar field, one has to set

α = −
√

n

4(n + 2)
, (A.14)

and then the EGB action becomes

SEG B =
∫

d4x
√−ḡ

M2
Pl

2

[

λ2e

√

n
(n+2) φ

(

Ḡ−4 f1Ḡμν∂μφ∂νφ

−2 f2(∂φ)
2�φ − f3(∂φ)

2(∂φ)2
)

− 2�e
−

√

n
(n+2) φ

+
(

R̄ − 1

2
(∂φ)2

)

+ 2(2π)n

M2
Pl

e
−

√

n
(n+2) φLm

]

.

(A.15)

Appendix B: Pressure regularization

The pressure of the Casimir vacuum energy compatible with
the metric in Eq. (1) can be defined as

pa ≡ − ∂

∂Va

(

ρCasVa

)

= −ρCas, (B.16)

pb ≡ − ∂

∂Vb

(

ρCasVb

)

= − b

Vb

∂

∂b

(

̂ECas

L3

)

, (B.17)

where Va ∝ a3, Vb ∝ b and ρCas = ̂ECas/(L3Vb). These
definitions are valid for any kinds of perfect fluid obeying
the equation of state p = wρ. One can check this state-
ment by substituting the energy density of perfect fluid in a
non-compact spacetime, ρ = ρ0a−(1+w)/3, into Eq. (B.16).
These forms of the pressure also satisfy the conservation
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equation of the energy-momentum tensor in Eq. (13). Note
that pa = −ρCas in Eq. (B.16) is obtained by the fact that
̂ECas does not depend on a and then ρCas is independent of
Va . In order to find the expression of pb, let us consider the
quantity ̂ECas/L3 where ̂ECas is defined in Eq. (4). By using
the relation

∫

dnk f (k) = 2πn/2/(Γ (n/2))
∫

dkkn−1 f (k),
where Γ (x) is the gamma function, one obtains

̂ECas

L3 = π−3/2

24Γ (3/2)

∫

dk k2
∑

ñ

√

k2 + m2 + ñ2

b2 , (B.18)

Using the integral representation of the gamma function and
its properties, one obtains

̂ECas

L3 = Γ (−2)π5/2

(2πb)4Γ (−1/2)

∑

ñ

(

(mb)2 + ñ2
)2
. (B.19)

Note that taking the derivative with respect to b before or after
rearrange this expression yields the same result, since both
integral representation and properties of the gamma function
used for the above procedure do not depend on the variable
b.

For the massless case, it is obvious that the summation can
be written in the form of zeta function which is independent
of b. Using relation of zeta function, Γ (s/2)ζ(s)π−s/2 =
Γ ((1 − s)/2)ζ(1 − s)π−(1−s)/2, one obtains

̂E (massless)
Cas

L3 = 2Γ (5/2)ζ(5)

Γ (−1/2)(2πb)4π2 . (B.20)

Substituting this quantity into Eq. (B.17), the vacuum pres-
sure contributed from compact direction can be written as

pml
b = 4

2Γ (5/2)ζ(5)

Γ (−1/2)(2πb)5π2
= 4ρmassless

Cas . (B.21)

For the massive case, one can find finite part of the pres-
sure by using Chowla–Selberg zeta function. The result of
regularization will be the same whether we take the deriva-
tive first and then regularize or regularize first and then take
the derivative. This will be shown below. For the first option,
substituting Eq. (B.19) into Eq. (B.17), one obtains

pms
b = bΓ (−2)π2

2Vb(2πb)4

×
(−4

b

∑

ñ

(

(mb)2 + ñ2
)2 + 2m2b

∑

ñ

(

(mb)2 + ñ2
)

)

.

(B.22)

Using the Chowla–Selberg zeta function and keeping only
the finite part, the summation can be expressed as

∑

l

(

q2 + l2
)−s = 4π sq1/2−s

Γ (s)

∞
∑

ñ=1

ñs−1/2 K1/2−s(2πqñ).

(B.23)

Substituting this expression into Eq. (B.22), one obtains

pms
b = 4ρmassive

Cas − 2π(mb)7/2

(2πb)5

∞
∑

ñ=1

ñ−3/2 K3/2(2πmbñ).

(B.24)

For the second option, one can use the regularized energy
density in Eq. (7) and then take the derivative through Eq.
(B.17) as follows:

pms
b = 2b

Vb

∂

∂b

(

(mb)5/2

(2πb)4

∞
∑

ñ=1

ñ−5/2 K5/2(2πmbñ)

)

, (B.25)

= 4ρmassive
Cas + 2b

Vb(2πb)4
∂

∂b

×
(

(mb)5/2
∞
∑

ñ=1

ñ−5/2 K5/2(2πmbñ)

)

, (B.26)

= 4ρmassive
Cas − 2π(mb)7/2

(2πb)5

∞
∑

ñ=1

ñ−3/2 K3/2(2πmbñ),

(B.27)

where we have used the differential equation of the modified
Bessel function as

d

dx

(

xνKν(x)
)

= −xν Kν−1(x). (B.28)

Since the total Casimir energy density is a particular choice of
a linear combination of massless, massive boson, and massive
fermion Casimir energy density expressed in Eq. (8), the total
Casimir pressure can be written as

pa = −ρCas = −3ρmassless
Cas + 8ρmassive

Cas (mb)

−8ρmassive
Cas (m f ), (B.29)

pb = −3pml
b + 8pms

b (mb)− 8pms
b (m f ),

= 4ρCas − 16π

(2πb)5

∞
∑

ñ=1

ñ−3/2

×
(

K3/2(2πmbbñ)

(mbb)−7/2 − K3/2(2πm f bñ)

(m f b)−7/2

)

, (B.30)

where the explicit dependence of ρCas on b can be expressed
as

ρCas = − 1

(2πb)5

(

− 3
Γ ( 5

2 )ζ(5)

π5/2
+ 16

∞
∑

ñ=1

ñ−5/2

×
(

K5/2(2πmbbñ)

(mbb)−5/2
− K5/2(2πm f bñ)

(m f b)−5/2

))

. (B.31)
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