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F. Zomer23

1 I. Physikalisches Institut der RWTH, Aachen, Germany
2 School of Physics and Astronomy, University of Birmingham, Birmingham, UKc

3 Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerp, Belgiumd

4 National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romaniak

5 STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UKc

6 Institute for Nuclear Physics, Kraków, Polande

7 Institut für Physik, TU Dortmund, Dortmund, Germanyb

8 Joint Institute for Nuclear Research, Dubna, Russia
9 CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France
10 DESY, Hamburg, Germany
11 Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germanyb

12 Physikalisches Institut, Universität Heidelberg, Heidelberg, Germanyb

13 Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germanyb

14 Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovak Republicf

15 Department of Physics, University of Lancaster, Lancaster, UKc

16 Department of Physics, University of Liverpool, Liverpool, UKc

17 School of Physics and Astronomy, Queen Mary, University of London, London, UKc

18 CPPM, Aix-Marseille University, CNRS/IN2P3, 13288 Marseille, France
19 Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, Mexicoi

20 Institute for Theoretical and Experimental Physics, Moscow, Russiaj

21 Lebedev Physical Institute, Moscow, Russia
22 Max-Planck-Institut für Physik, Munich, Germany
23 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
24 LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France
25 Faculty of Science, University of Montenegro, Podgorica, Montenegrol

26 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republicg

27 Faculty of Mathematics and Physics, Charles University, Pragua, Czech Republicg

28 Dipartimento di Fisica, Università di Roma Tre and INFN Roma 3, Rome, Italy

123



65 Page 2 of 48 Eur. Phys. J. C (2015) 75 :65

29 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
30 Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
31 Paul Scherrer Institut, Villigen, Switzerland
32 Fachbereich C, Universität Wuppertal, Wuppertal, Germany
33 Yerevan Physics Institute, Yerevan, Armenia
34 DESY, Zeuthen, Germany
35 Institut für Teilchenphysik, ETH, Zurich, Switzerlandh

36 Physik-Institut der Universität Zürich, Zurich, Switzerlandh

37 Department of Physics, Oxford University, Oxford, UKc

Received: 19 June 2014 / Accepted: 5 December 2014 / Published online: 10 February 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Inclusive jet, dijet and trijet differential cross sec-
tions are measured in neutral current deep-inelastic scattering
for exchanged boson virtualities 150 < Q2 < 15 000 GeV2

using the H1 detector at HERA. The data were taken in the
years 2003 to 2007 and correspond to an integrated lumi-
nosity of 351 pb−1. Double differential jet cross sections are
obtained using a regularised unfolding procedure. They are
presented as a function of Q2 and the transverse momentum
of the jet, P jet

T , and as a function of Q2 and the proton’s
longitudinal momentum fraction, ξ , carried by the parton
participating in the hard interaction. In addition normalised
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double differential jet cross sections are measured as the ratio
of the jet cross sections to the inclusive neutral current cross
sections in the respective Q2 bins of the jet measurements.
Compared to earlier work, the measurements benefit from
an improved reconstruction and calibration of the hadronic
final state. The cross sections are compared to perturbative
QCD calculations in next-to-leading order and are used to
determine the running coupling and the value of the strong
coupling constant as αs(MZ ) = 0.1165 (8)exp (38)pdf,theo.

1 Introduction

Jet production in neutral current (NC) deep-inelastic ep scat-
tering (DIS) at HERA is an important process to study the
strong interaction and its theoretical description by Quan-
tum Chromodynamics (QCD) [1–4]. Due to the asymptotic
freedom of QCD, quarks and gluons participate as quasi-
free particles in short distance interactions. At larger dis-
tances they hadronise into collimated jets of hadrons, which
provide momentum information of the underlying partons.
Thus, the jets can be measured and compared to perturba-
tive QCD (pQCD) predictions, corrected for hadronisation
effects. This way the theory can be tested, and the value of
the strong coupling, αs(MZ ), as well as its running can be
measured with high precision. A comprehensive review of
jets in ep scattering at HERA is given in [5].

In contrast to inclusive DIS, where the dominant effects of
the strong interactions are the scaling violations of the proton
structure functions, the production of jets allows for a direct
measurement of the strong coupling αs . If the measurement
is performed in the Breit frame of reference [6,7], where the
virtual boson collides head on with a parton from the pro-
ton, the Born level contribution to DIS (Fig. 1a) generates no
transverse momentum. Significant transverse momentum PT

in the Breit frame is produced at leading order (LO) in the
strong coupling αs by boson-gluon fusion (Fig. 1b) and the
QCD Compton (Fig. 1c) processes. In LO the proton’s longi-
tudinal momentum fraction carried by the parton participat-
ing in the hard interaction is given by ξ = x(1 + M2

12/Q2).
The variables x , M12 and Q2 denote the Bjorken scaling vari-
able, the invariant mass of the two jets and the negative four-
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(a) (b) (c) (d)

Fig. 1 Deep-inelastic ep scattering at different orders in αs : a Born contribution O(α2
em), b example of boson-gluon fusion O(α2

emαs), c example
of QCD Compton scattering O(α2

emαs) and d example of a trijet process O(α2
emα2
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Fig. 2 Mean values of the PT,bal-distributions and the double-ratio of
data to MC simulations as function of Pda

T , as measured in the one-
jet calibration sample and in an independent dijet sample. Results for
data are compared to RAPGAP and DJANGOH . The open boxes and

the shaded areas illustrate the statistical uncertainties of the MC sim-
ulations. The dashed lines in the double-ratio figure indicate a ±1 %
deviation

Table 1 Summary of the
extended analysis phase space
and the measurement phase
space of the jet cross sections

Extended analysis phase
space

Measurement phase space
for jet cross sections

NC DIS phase space 100 < Q2 < 40 000 GeV2 150 < Q2 < 15 000 GeV2

0.08 < y < 0.7 0.2 < y < 0.7

Jet polar angular range −1.5 < η
jet
lab < 2.75 −1.0 < η

jet
lab < 2.5

Inclusive jets P jet
T > 3 GeV 7 < P jet

T < 50 GeV

Dijets and trijets 3 < P jet
T < 50 GeV 5 < P jet

T < 50 GeV

M12 > 16 GeV

momentum transfer squared, respectively. In the kinematic
regions of low Q2, low PT and low ξ , boson-gluon fusion
dominates jet production and provides direct sensitivity to
terms proportional to the product of αs and the gluon com-
ponent of the proton structure. At high Q2 and high PT the
QCD Compton processes are dominant, which are sensitive

to the valence quark densities and αs . Calculations in pQCD
in LO for inclusive jet and dijet production in the Breit frame
are of O(αs) and for trijet production (Fig. 1d) of O(α2

s ).
Recent publications by the ZEUS collaboration concern-

ing jet production in DIS dealt with cross sections of dijet [8]
and inclusive jet production [9], whereas recent H1 publica-
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Fig. 3 Distributions of Q2 and y for the selected NC DIS data on detec-
tor level in the extended analysis phase space. The data are corrected for
the estimated background contributions, shown as gray area. The pre-

dictions from DJANGOH and RAPGAP are weighted to achieve good
agreement with the data. The ratio of data to prediction is shown at the
bottom of each figure
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Fig. 4 Distributions of P jet
T and η

jet
lab for the selected inclusive jet data

on detector level in the extended analysis phase space. The are been
corrected for the estimated background contributions, shown as gray

area. The predictions from DJANGOH and RAPGAP are weighted to
achieve good agreement with the data. The ratio of data to prediction is
shown at the bottom of each figure

tions dealt with multijet production and the determination of
the strong coupling constant αs(MZ ) at low Q2 [10] and at
high Q2 [11].

In this paper double-differential measurements are pre-
sented of absolute and normalised inclusive jet, dijet and trijet
cross sections in the Breit frame. Two different jet algorithms,
the kT [12] and the anti-kT [13] algorithm, are explored. The
cross sections are measured as a function of Q2 and the trans-

verse jet momentum P jet
T for the case of inclusive jets. Dijet

and trijet cross sections are measured as a function of Q2 and
the average jet transverse momentum. In addition, dijet and
trijet cross sections are measured as a function of Q2 and the
proton’s longitudinal momentum fraction ξ . The measure-
ments of the ratios of the number of inclusive jets as well
as dijet and trijet events to the number of inclusive NC DIS
events in the respective bins of Q2, referred to as normalised
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Fig. 5 Distributions of 〈PT〉2 and ξ2 for the selected dijet data on detec-
tor level in the extended analysis phase space. The data are corrected for
the estimated background contributions, shown as gray area. The pre-

dictions from DJANGOH and RAPGAP are weighted to achieve good
agreement with the data. The ratio of data to prediction is shown at the
bottom of each figure
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Fig. 6 Distributions of 〈PT〉3 and ξ3 for the selected trijet data on detec-
tor level in the extended analysis phase space. The data are corrected for
the estimated background contributions, shown as gray area. The pre-

dictions from DJANGOH and RAPGAP are weighted to achieve good
agreement with the data. The ratio of data to prediction is shown at the
bottom of each figure

multijet cross sections, are also reported. In comparison to
absolute jet cross sections these measurements profit from a
significant reduction of the systematic experimental uncer-
tainties.

The analysis reported here profits from improvements
in the reconstruction of tracks and calorimetric energies,

together with a new calibration of the hadronic energy. They
lead to a reduction of the jet energy scale uncertainty to 1 %
[14] and allow an extension of the pseudorapidity1 range of

1 The pseudorapidity is related to the polar angle θ , defined with respect
to the proton beam direction, by η = − ln tan(θ/2).
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the reconstructed jets in the laboratory rest frame from 2.0
to 2.5 in the proton direction and from −0.8 to −1.0 in the
photon direction, compared to a previous analysis [11]. The
increase in phase space allows the trijet cross section to be
measured double-differentially for the first time at HERA.
The measurements presented in this paper supersede the pre-
viously published normalised multijet cross sections [11],
which include in addition to the data used in the present
analysis data from the HERA-I running period, yielding an
increase in statistics of about 10 %. However, the above men-
tioned improvements in the present analysis, which uses only
data from the HERA-II running period, outweigh the small
benefit from the additional HERA-I data and yield an overall
better precision of the results.

In order to match the improved experimental precision,
the results presented here are extracted using a regularised
unfolding procedure which properly takes into account detec-
tor effects, like acceptance and migrations, as well as statis-
tical correlations between the different observables.

The measurements are compared to perturbative QCD pre-
dictions at NLO corrected for hadronisation effects. Next-
to-next-to-leading order (NNLO) jet calculations in DIS
or approximations beyond NLO are not available yet. The
strong coupling αs is extracted as a function of the hard scale
chosen for jet production in DIS.

2 Experimental method

The data sample was collected with the H1 detector at HERA
in the years 2003 to 2007 when HERA collided electrons
or positrons2 of energy Ee = 27.6 GeV with protons of
energy Ep = 920 GeV, providing a centre-of-mass energy of√

s = 319 GeV. The data sample used in this analysis cor-
responds to an integrated luminosity of 351 pb−1, of which
160 pb−1 were recorded in e− p collisions and 191 pb−1 in
e+ p collisions.

2.1 The H1 detector

A detailed description of the H1 detector can be found else-
where [15–17]. The right-handed coordinate system of H1 is
defined such that the positive z-axis is in the direction of the
proton beam (forward direction), and the nominal interaction
point is located at z = 0. The polar angle θ and azimuthal
angle φ are defined with respect to this axis.

The essential detector components for this analysis are
the Liquid Argon (LAr) calorimeter and the central track-
ing detector (CTD), which are both located inside a 1.16 T
solenoidal magnetic field.

2 Unless otherwise stated, the term “electron” is used in the following
to refer to both electron and positron.
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Fig. 7 Schematic illustration of the migration matrix for the regu-
larised unfolding, which includes the NC DIS (E), the inclusive jet (J1),
the dijet (J2) and the trijet (J3) MC events. The observables utilised
for the description of migrations are given in the boxes referring to the
respective submatrices. The submatrices which connect the hadron level
NC DIS data with the detector level jet data ((B1),(B2), and (B3)) help
to control detector-level-only entries. An additional vector, �ε, is used
for efficiency corrections and to preserve the normalisation

Electromagnetic and hadronic energies are measured
using the LAr calorimeter in the polar angular range 4◦ <

θ < 154◦ and with full azimuthal coverage [17]. The LAr
calorimeter consists of an electromagnetic section made of
lead absorbers between 20 and 30 radiation lengths and a
hadronic section with steel absorbers. The total depth of the
LAr calorimeter varies between 4.5 and 8 hadronic inter-
action lengths. The calorimeter is divided into eight wheels
along the beam axis, each consisting of eight absorber stacks
arranged in an octagonal formation around the beam axis.
The electromagnetic and the hadronic sections are highly
segmented in the transverse and the longitudinal directions
with in total 45000 readout cells. The energy resolution is
σE/E = 11 %/

√
E /GeV⊕1 % for electromagnetic energy

deposits and σE/E � 50 %/
√

E /GeV ⊕ 3 % for pions,
as obtained from electron and pion test beam measurements
[18,19]. In the backward region (153◦ < θ < 174◦) energy
deposits are measured by a lead/scintillating fibre Spaghetti-
type Calorimeter (SpaCal), composed of an electromagnetic
and an hadronic section [20,21].

The CTD, covering 15◦ < θ < 165◦, is located inside the
LAr calorimeter and consists of drift and proportional cham-
bers, complemented by a silicon vertex detector covering the
range 30◦ < θ < 150◦ [22]. The trajectories of charged par-
ticles are measured with a transverse momentum resolution
of σPT/PT � 0.2 % PT/GeV ⊕ 1.5 %.
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Table 2 Summary of the phase
space boundaries of the
measurements

Measurement NC DIS phase space Phase space for jet cross sections

σjet(Q2, P jet
T )

150 < Q2 < 15 000 GeV2

0.2 < y < 0.7
7 < P jet

T < 50 GeV
−1.0 < η

jet
lab < 2.5

Njet ≥ 1

σdijet(Q2, 〈PT〉2)
Njet ≥ 2
7 < 〈PT〉2 < 50 GeV

σtrijet(Q2, 〈PT〉3)
150 < Q2 < 15 000 GeV2

0.2 < y < 0.7

5 < P jet
T < 50 GeV

−1.0 < η
jet
lab < 2.5

M12 > 16 GeV

Njet ≥ 3
7 < 〈PT〉3 < 30 GeV

σdijet(Q2, ξ2)
Njet ≥ 2
0.006 < ξ2 < 0.316

σtrijet(Q2, ξ3)
Njet ≥ 3
0.01 < ξ3 < 0.50

The luminosity is determined from the rate of the elas-
tic QED Compton process with the electron and the photon
detected in the SpaCal calorimeter [23].

2.2 Reconstruction and calibration of the hadronic final
state

In order to obtain a high experimental precision in the mea-
surement of jet cross sections and the determination of
αs(MZ ), the hadronic jet energy scale uncertainty needs to
be minimised. It has been so far the dominant experimen-
tal uncertainty in jet measurements. Details on an improved
procedure to achieve a jet energy scale uncertainty of 1 %
can be found elsewhere [14] and are briefly summarised
here.

After removal of the compact energy deposit (cluster) in
the electromagnetic part of the LAr calorimeter and the track
associated with the scattered electron, the remaining elec-
tromagnetic and hadronic clusters and charged tracks are
attributed to the hadronic final state (HFS). It is reconstructed
using an energy flow algorithm [24–26], combining infor-
mation from tracking and calorimetric measurements, which
avoids double counting of measured energies. This algorithm
provides an improved jet resolution compared to a purely
calorimetric jet measurement, due to the superior resolution
of the tracking detectors for charged hadrons.

For the final re-processing of the H1 data and subsequent
analyses using these data, further improvements have been
implemented. The track and vertex reconstruction is per-
formed using a double-helix trajectory, thus taking multi-
ple scatterings in the detector material better into account.
The calorimetric measurement benefits from a separation
of hadronic and electromagnetic showers based on shower
shape estimators and neural networks [27,28] for determin-
ing the probability that the measured energy deposit of a
cluster in the electromagnetic part of the LAr calorimeter
is originating from an electromagnetic or hadronic shower.
This improves the calorimetric measurement, since the non-

compensating LAr calorimeter has a different response for
incident particles leading to hadronic or electromagnetic
showers. The neural networks are trained [14] for each
calorimeter wheel separately, using a mixture of neutral
pions, photons and charged particles for the simulation of
electromagnetic and hadronic showers. The most important
discriminants are the energy fractions in the calorimeter lay-
ers and the longitudinal first and second moments. Addi-
tional separation power is gained by the covariance between
the longitudinal and radial shower extent and the longitu-
dinal and radial kurtosis. The neural network approach was
tested on data using identified electrons and jets and shows
an improved efficiency for the identification of purely elec-
tromagnetic or hadronic clusters, compared to the previously
used algorithm.

The overconstrained NC DIS kinematics allows for the
in situ calibration of the energy scale of the HFS using a
single-jet calibration event sample [14], employing the mean
value of the PT-balance distribution, defined as PT,bal =
〈Ph

T/Pda
T 〉. The transverse momentum of the HFS, Ph

T , is
calculated by summing the momentum components Pi,x and
Pi,y of all HFS objects i

Ph
T =

√
√
√
√

(

∑

i∈h

Pi,x

)2

+
(

∑

i∈h

Pi,y

)2

. (1)

The expected transverse momentum Pda
T is calculated using

the double-angle method, which, to a good approximation, is
insensitive to the absolute energy scale of the HFS measure-
ment. It makes use of the angles of the scattered electron θe

and of the inclusive hadronic angle γh [29,30], to define Pda
T

as

Pda
T = 2Ee

tan γh
2 + tan θe

2

. (2)

Calibration functions for calorimeter clusters are derived,
depending on their probability to originate from electromag-
netically or hadronically induced showers. They are chosen
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the cross section measurement. Shown are the statistical uncertainties,
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cally have negative correlation coefficients for the statistical uncertainty.
The uncertainties shown are of comparable size for the corresponding
normalised jet cross sections

to be smooth functions depending on the cluster energy and
polar angle. The free parameters of the calibration functions
are obtained in a global χ2 minimisation procedure, where
χ2 is calculated from the deviation of the value of PT,bal from
unity in bins of several variables. Since no jets are required at
this stage, all calorimeter clusters are calibrated. The uncer-
tainty on the energy measurement of individual clusters is
referred to as residual cluster energy scale (RCES). In addi-
tion, further calibration functions for clusters associated to
jets measured in the laboratory frame are derived. This func-
tion depends on the jet pseudorapidity, η

jet
lab, and transverse

momentum, P jet
T,lab. It provides an improved calibration for

those clusters which are detected in the dense environment of
a jet. The calibration procedure described above is applied
both to data and to Monte Carlo (MC) event simulations.

Track-based four-vectors of the HFS are not affected by the
new calibration procedure.

The double-ratio of the PT,bal-ratio of data to MC simula-
tions, after the application of the new calibration constants, is
shown for the one-jet calibration sample and for a statistically
independent dijet sample in Fig. 2 as a function of Pda

T . Good
agreement between data and simulation is observed over the
full detector acceptance. This corresponds to a precision of
1 % on the jet energy scale in the kinematic domain of the
measurements.

2.3 Event selection

The NC DIS events are triggered and selected by requiring
a cluster in the electromagnetic part of the LAr calorime-
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Table 3 Overview of the tables
of cross sections Observable kT anti-kT kT (normalised) anti-kT (normalised)

σjet(Q2, P jet
T ) Table 6 Table 11 Table 16 Table 21

σdijet(Q2, 〈PT〉2) Table 7 Table 12 Table 17 Table 22

σdijet(Q2, ξ2) Table 8 Table 13 Table 18 Table 23

σtrijet(Q2, 〈PT〉3) Table 9 Table 14 Table 19 Table 24

σtrijet(Q2, ξ3) Table 10 Table 15 Table 20 Table 25

Table 4 Overview of the tables
of correlation coefficients. The
correlation coefficients between
the 〈PT〉 and ξ measurements
are not available

Observable σjet(Q2, P jet
T ) σdijet(Q2, 〈PT〉2) σtrijet(Q2, 〈PT〉3) σdijet(Q2, ξ2) σtrijet(Q2, ξ3)

σjet(Q2, P jet
T ) Table 26 Table 29 Table 30 Table 36 Table 37

σdijet(Q2, 〈PT〉2) Table 29 Table 27 Table 31 – –

σtrijet(Q2, 〈PT〉3) Table 30 Table 31 Table 28 – –

σdijet(Q2, ξ2) Table 36 – – Table 32 Table 38

σtrijet(Q2, ξ3) Table 37 – – Table 38 Table 35
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Fig. 9 Correlation matrix of the three jet cross section measurements.
The bin numbering is given by b = (q − 1)n PT + p, where q stands for
the bins in Q2 and p for the bins in PT (see Table 5). For the inclusive

jet and dijet measurements n PT = 4, and for the trijet measurement
n PT = 3. The numerical values of the correlation coefficients are given
in the tables indicated

ter. The scattered electron is identified as the isolated cluster
of highest transverse momentum, with a track associated to
it. Details of the isolation criteria and the electron finding
algorithm can be found elsewhere [31]. The electromagnetic

energy calibration and the alignment of the H1 detector are
performed following the procedure as in [31]. The recon-
structed electron energy E ′

e is required to exceed 11 GeV,
for which the trigger efficiency is close to unity. Only those
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regions of the calorimeter where the trigger efficiency is
greater than 98 % are used for the detection of the scattered
electron, which corresponds to about 90 % of the η–φ-region
covered by the LAr calorimeter. These two requirements, on
E ′

e and η–φ, ensure the overall trigger efficiency to be above
99.5 % [32]. In the central region, 30◦ < θe < 152◦, where
θe denotes the polar angle of the reconstructed scattered elec-
tron, the cluster is required to be associated with a track mea-
sured in the CTD, matched to the primary event vertex. The
requirement of an associated track reduces the amount of
wrongly identified scattered leptons to below 0.3 %. The z-
coordinate of the primary event vertex is required to be within
±35 cm of the nominal position of the interaction point.

The total longitudinal energy balance, calculated as the
difference of the total energy E and the longitudinal com-
ponent of the total momentum Pz, using all detected parti-
cles including the scattered electron, has little sensitivity to
losses in the proton beam direction and is thus only weakly
affected by the incomplete reconstruction of the proton rem-
nant. Using energy-momentum conservation, the relation
E − Pz � 2Ee = 55.2 GeV holds for DIS events. The
requirement 45 < E − Pz < 65 GeV thus reduces the con-
tribution of DIS events with hard initial state photon radia-
tion. For the latter events, the undetected photons, propagat-
ing predominantly in the negative z-direction, lead to values
of E − Pz significantly lower than the expected value of

55.2 GeV. The E − Pz requirement together with the scat-
tered electron selection also reduces background contribu-
tions from photoproduction, where no scattered electron is
expected to be detected, to less than 0.2 %. Cosmic muon
and beam induced backgrounds are reduced to a negligible
level after the application of a dedicated cosmic muon finder
algorithm. QED Compton processes are reduced to 1 % by
requiring the acoplanarity A = cos(|π − 
φ|) to be smaller
than 0.95, with 
φ being the azimuthal angle between the
scattered lepton and an identified photon with energy larger
than 4 GeV. The background from lepton pair production
processes is found to be negligible. Also backgrounds from
charged current processes and deeply virtual Compton scat-
tering are found to be negligible. The backgrounds originat-
ing from the sources discussed above are modelled using a
variety of MC event generators as described in [14].

The event selection of the analysis is based on an extended
analysis phase space defined by 100 < Q2 < 40 000 GeV2

and 0.08 < y < 0.7, where y = Q2/(sx) quantifies the
inelasticity of the interaction. Jets are also selected within an
extended range in P jet

T and η
jet
lab as described in Sect. 2.4. The

extended analysis phase space and the measurement phase
space are summarised in Table 1.

The variables Q2 and y are reconstructed from the four-
momenta of the scattered electron and the hadronic final state
particles using the electron-sigma method [33,34],

Q2 = 4Ee E ′
e cos2 θe

2
and y = y�

2Ee

� + E ′
e(1 − cos θe)

(3)

with y� = �

�+E ′
e(1−cos θe)

and �=
∑

i∈h

(Ei −Pi,z),

(4)

where � is calculated by summing over all hadronic final
state particles i with energy Ei and longitudinal momentum
Pi,z .

2.4 Reconstruction of jet observables

The jet finding is performed in the Breit frame of reference,
where the boost from the laboratory system is determined by
Q2, y and the azimuthal angle φe of the scattered electron
[35]. Particles of the hadronic final state are clustered into jets
using the inclusive kT [12] or alternatively the anti-kT [13]
jet algorithm. The jet finding is implemented in FastJet [36],
and the massless PT recombination scheme and the distance
parameter R0 = 1 in the η–φ plane are used. MC studies
of the reconstruction performance and comparisons between
jets on detector, hadron and parton level indicate that R0 = 1
is a good choice for the phase space of this analysis. This
is also in agreement with the result reported in [37]. The
transverse component of the jet four-vector with respect to
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the z-axis in the Breit frame is referred to as P jet
T . The jets

are required to have P jet
T > 3 GeV.

The jet axis is transformed to the laboratory rest frame,
and jets with a pseudorapidity in the laboratory frame of
−1.5 < η

jet
lab < 2.75 are selected. Furthermore, the trans-

verse momentum of jets with respect to the beam-axis in
the laboratory frame is restricted to P jet

T,lab > 2.5 GeV. This
requirement removes only a few very soft jets which are not
well measured and is not part of the phase space definition.

Inclusive jets are defined by counting all jets in a given
event with P jet

T > 3 GeV. Dijet and trijet events are selected

by requiring at least two or three jets with 3 < P jet
T <

50 GeV, such that the trijet sample is a subset of the dijet
sample. The measurement is performed as a function of the
average transverse momentum 〈PT〉2 = 1

2 (P jet1
T + P jet2

T ) and

〈PT〉3 = 1
3 (P jet1

T + P jet2
T + P jet3

T ) of the two or three lead-
ing jets for the dijet and trijet measurement, respectively.
Furthermore, dijet and trijet cross sections are measured as
a function of the observables ξ2 = x

(

1 + M2
12/Q2

)

and
ξ3 = x

(

1 + M2
123/Q2

)

, respectively, with M123 being the
invariant mass of the three leading jets. The observables ξ2

and ξ3 provide a good approximation of the proton’s longi-
tudinal momentum fraction ξ carried by the parton which
participates in the hard interaction.

2.5 Measurement phase space and extended analysis phase
space

The NC DIS and the jet phase space described above refers to
an extended analysis phase space compared to the measure-
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eigenvector set at a confidence level of 68 %

ment phase space for which the results are quoted. Extending
the event selection to a larger phase space helps to quantify
migrations at the phase space boundaries, thereby improv-
ing the precision of the measurement. The actual measure-
ment is performed in the NC DIS phase space given by
150 < Q2 < 15 000 GeV2 and 0.2 < y < 0.7. Jets are
required to have −1.0 < η

jet
lab < 2.5, which ensures that they

are well contained within the acceptance of the LAr calorime-
ter and well calibrated. For the inclusive jet measurement,
each jet has to fulfil the requirement 7 < P jet

T < 50 GeV.
For the dijet and trijet measurements jets are considered with
5 < P jet

T < 50 GeV, and, in order to avoid regions of phase

space where calculations in fixed order perturbation theory
are not reliable [38,39], an additional requirement on the
invariant mass of M12 > 16 GeV is imposed. This ensures a
better convergence of the perturbative series at NLO, which
is essential for the comparison of the NLO calculation with
data and the extraction of αs . The extended analysis and the
measurement phase space are summarised in Table 1.

2.6 Monte Carlo simulations

The migration matrices needed for the unfolding procedure
(see Sect. 3) are determined using simulated NC DIS events.
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The generated events are passed through a detailed GEANT3
[40] based simulation of the H1 detector and subjected to the
same reconstruction and analysis chains as are used for the
data. The following two Monte Carlo (MC) event generators
are used for this purpose, both implementing LO matrix ele-
ments for NC DIS, boson-gluon fusion and QCD Compton
events. The CTEQ6L [41] parton density functions (PDFs)
are used. Higher order parton emissions are simulated in
DJANGOH [42] according to the colour dipole model, as
implemented in Ariadne [43,44], and in RAPGAP [45,46]
with parton showers in the leading-logarithmic approxima-
tion. In both MC programs hadronisation is modelled with
the Lund string fragmentation [47,48] using the ALEPH tune
[49]. The effects of QED radiation and electroweak effects
are simulated using the HERACLES [50] program, which
is interfaced to the RAPGAP, DJANGOH and LEPTO [51]
event generators. The latter one is used to correct the e+ p
and e− p data for their different electroweak effects (see
Sect. 5.3).

3 Unfolding

The jet data are corrected for detector effects using a regu-
larised unfolding method which is described in the follow-
ing. The matrix based unfolding method as implemented in
the TUnfold package [52] is employed. A detector response
matrix is constructed for the unfolding of the neutral cur-

rent DIS, the inclusive jet, the dijet and the trijet measure-
ments simultaneously [53]. The unfolding takes into account
the statistical correlations between these measurements as
well as the statistical correlations of several jets originating
from a single event. The corrections for QED radiation are
included in the unfolding procedure. Jet cross sections and
normalised jet cross sections at hadron level are determined
using this method. The hadron level refers to all stable par-
ticles in an event with a proper lifetime larger than cτ >

10 mm. It is obtained from MC event generators by select-
ing all particles after hadronisation and subsequent particle
decays.

3.1 Weighting of MC models to describe data

Both RAPGAP and DJANGOH provide a fair description of
the experimental data for the inclusive NC DIS events and the
multijet samples. To further improve the agreement between
reconstructed Monte Carlo events and the data, weights are
applied to selected observables on hadron level. The weights
are obtained iteratively from the ratio of data to the recon-
structed MC distributions and are applied to events on hadron
level. The observables of the inclusive NC DIS events are
in general well described and are not weighted. An excep-
tion is the inelasticity y. The slope of this distribution is not
described satisfactorily, where at low values of y the disagree-
ment amounts to about 5 % between the data and the LO MC
prediction. Since this quantity is important, as it enters in the
calculation of the boost to the Breit frame, it was weighted
to provide a good description of the data.

The MC models, simulating LO matrix elements and par-
ton showers, do not provide a good description of higher
jet multiplicities. Event weights are applied for the jet mul-
tiplicity as a function of Q2. The MC models are also not
able to reproduce well the observed P jet

T spectra at high

P jet
T and the pseudorapidity distribution of the jets. Thus,

weights are applied depending on the transverse momentum
and pseudorapidity of the jet with the highest (most forward)
pseudorapidity in the event as well as for the jet with the
smallest (most backward) pseudorapidity in the event. Addi-
tional weights are applied for trijet events as a function of the
sum of P jet

T of the three leading jets. The weights are typi-
cally determined as two-dimensional 2nd degree polynomi-
als with either P jet

T,fwd, P jet
T,bwd or Q2 as the second observ-

able to ensure that no discontinuities are introduced [14].
These weights are derived and applied in the extended anal-
ysis phase space (see Sect. 2.3 and Table 1) in order to con-
trol migrations in the unfolding from outside into the mea-
surement phase space. After application of the weights, the
simulations provide a good description of the shapes of all
data distributions, some of which are shown in Figs. 3, 4, 5
and 6.
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3.2 Regularised unfolding

The events are counted in bins, where the bins on hadron
level are arranged in a vector �x with dimension 1370, and
the bins on detector level are arranged in a vector �y with
dimension 4562. The vectors �x and �y are connected by a
folding equation �y = A�x , where A is a matrix of probabili-
ties, the detector response matrix. It accounts for migration
effects and efficiencies. The element Ai j of A quantifies the
probability to detect an event in bin i of �y, given that it was
produced in bin j of �x . Given a vector of measurements �y,
the unknown hadron level distribution �x is estimated [52] in
a linear fit, by determining the minimum of

χ2 = χ2
A + χ2

L := (�y − A�x)TV−1
y (�y − A�x)

+τ 2(�x − �x0)
T(LTL)(�x − �x0) , (5)

where V y is the covariance matrix on detector level, and
χ2

L is a regularisation term to suppress fluctuations of the
result. The regularisation parameter τ is a free parameter.
The matrix L contains the regularisation condition and is
set to unity. The bias vector �x0 represents the hadron level
distribution of the MC model. The detector response matrix
A is constructed from another matrix M [52], called migra-
tion matrix throughout this paper. The migration matrix is
obtained by counting MC jets or events in bins of �x and �y. It
is determined by averaging the matrices obtained from two
independent samples of simulated events by the DJANGOH
and RAPGAP generators. It also contains an extra row, �ε,
to account for inefficiencies, i.e. for events which are not
reconstructed in any bin of �y.

QED radiative corrections are included in the unfolding as
efficiency corrections [53]. The running of the electromag-
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Fig. 17 Ratio of the dijet and trijet cross sections to NLO QCD predic-
tions as a function of Q2 and ξ . The error bars on the data indicate the
statistical uncertainties of the measurements while the total experimen-

tal systematic uncertainties are given by the open boxes. The shaded
bands show the theory uncertainties
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Table 5 Bin numbering scheme for Q2, PT, and ξ -bins. Bins of the
double-differential measurements are for instance referred to as 3γ for
the bin in the range 270 < Q2 < 400 GeV2 and 18 < P jet

T < 30 GeV

Bin labels Q2

Bin number q Q2 range in GeV2

1 150 ≤ Q2 < 200

2 200 ≤ Q2 < 270

3 270 ≤ Q2 < 400

4 400 ≤ Q2 < 700

5 700 ≤ Q2 < 5000

6 5000 ≤ Q2 < 15 000

Bin labels PT

Label PT range in GeV

α 7 ≤ PT < 11

β 11 ≤ PT < 18

γ 18 ≤ PT < 30

δ 30 ≤ PT < 50

Bin labels ξ2 dijet

Label ξ2 range

a 0.006 ≤ ξ2 < 0.02

b 0.02 ≤ ξ2 < 0.04

c 0.04 ≤ ξ2 < 0.08

d 0.08 ≤ ξ2 < 0.316

Bin labels ξ3 trijet

Label ξ3 range

A 0.01 ≤ ξ3 < 0.04

B 0.04 ≤ ξ3 < 0.08

C 0.08 ≤ ξ3 < 0.5

netic coupling αem(μr ) is not corrected for. The size of the
radiative corrections is of order 10 % for absolute jet cross
sections and of order 5 % for normalised jet cross sections.

Prior to solving the folding equation, the remaining small
backgrounds in the data from the QED Compton process and
from photoproduction after the event selection are subtracted
from the input data [52] using simulated MC jets or events.
Also MC simulated DIS events with inelasticity y > 0.7 on
hadron level, and thus from outside the accepted phase space,
are considered as background and are subtracted from data.
These contributions cannot be determined reliably from data,
since the cut on E ′

e results in a low reconstruction efficiency
for events with y > 0.7 on detector level. The contribution
from such events is less than 1 % in any bin of the cross
section measurement.

A given event with jets may produce entries in several bins
of �y. This introduces correlations between bins of �y which
lead to off-diagonal entries in the covariance matrix V y .

3.3 Definition of the migration matrix

The migration matrix is composed of a 4×4 structure of sub-
matrices representing the four different data samples (NC
DIS, inclusive jet, dijet and trijet), thus enabling a simul-
taneous unfolding of NC DIS and jet cross sections. It is
schematically illustrated in Fig. 7. The four submatrices E,
J1, J2 and J3 represent the migration matrices for the NC
DIS, the inclusive jet, the dijet and the trijet measurements,
respectively. Hadron-level jets or events which do not fulfil
the reconstruction cuts are filled into the additional vector �ε.
The three submatrices B1, B2 and B3 connect the jet mea-
surements on detector level with the hadron level of the NC
DIS measurement. They are introduced to account for cases
where a jet or an event is reconstructed, although it is absent
on hadron level. Such detector-level-only contributions are
present due to different jet multiplicities on detector and on
hadron level, caused by limited detector resolution and by
acceptance effects. The unfolding procedure determines the
normalisation of these detector-level-only contributions from
data. Each entry in one of the submatrices Bi is compensated
by a negative entry in the efficiency bin (denoted as βi in
Fig. 7), in order to preserve the normalisation of the NC DIS
measurement. The four submatrices, E, J1, J2 and J3, are
explained in the following. More details can be found in [53].

• NC DIS (E): For the measurement of the NC DIS cross
sections a two-dimensional unfolding considering migra-
tions in Q2 and y is used. On detector level 14 bins in Q2

times 3 bins in y (0.08 < y < 0.7) are used to determine
8 bins in Q2 times 2 bins in y on hadron level. Out of
these 16 bins, only 6 bins are used for the determination
of the normalised cross sections.

• Inclusive jets ( J1): The unfolding of the inclusive jet
measurement is performed as a four-dimensional unfold-
ing, where migrations in the observables Q2, y, P jet

T

and η
jet
lab are considered. To model the migrations, jets

found on hadron level are matched to detector-level jets,
employing a closest-pair algorithm with the distance
parameter R = √


φ2 + 
η2 and a requirement of
R < 0.9. Here 
φ and 
η are the distances between
detector level and hadron level jets in φ and η in the
laboratory rest frame, respectively. Detector-level-only
jets which are not matched on hadron level are filled
into the submatrix B1 and are therefore determined from
data. Hadron-level jets which are not matched on detec-
tor level are filled into the vector �ε1. The bin grid in Q2

and y is defined in the same way as for the NC DIS case.
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Table 6 Double-differential inclusive jet cross sections measured as a
function of Q2 and P jet

T using the kT jet algorithm. The bin labels are
defined in Table 5. The data points are statistically correlated, and the
bin-to-bin correlations are given in the correlation matrix in Table 26.
The correlation with the dijet measurements as a function of 〈PT〉2 and
ξ2 are given in Tables 29 and 36, respectively. The correlations with
the trijet measurements as a function of 〈PT〉3 and ξ3 are shown in
Tables 30 and 37, respectively. The experimental uncertainties quoted
are defined in Sect. 4.2. The total systematic uncertainty, δsys, sums all
systematic uncertainties in quadrature, including the uncertainty due to
the LAr noise of δLArNoise = 0.5 % and the total normalisation uncer-

tainty of δNorm = 2.9 %. The contributions to the correlated systematic
uncertainty from a positive variation of one standard deviation of the
model variation (δModel), of the jet energy scale (δJES), of the remaining
cluster energy scale (δRCES), of the scattered electron energy (δE′

e ), of
the polar electron angle (δθe ) and of the Electron ID (δID(e)) are also
given. In case of asymmetric uncertainties, the effect due to the positive
variation of the underlying error source is given by the upper value for
the corresponding table entry. The correction factors on the theoretical
cross sections chad and cew are listed in the rightmost columns together
with the uncertainties δhad

Inclusive jet cross sections in bins of Q2 and P jet
T using the kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad δhad [%] cew

1α 7.06 × 101 2.7 2.9 +1.0 +0.9
−1.1

+0.9
−1.0

−0.4
+0.3

−0.4
+0.3

+0.5
−0.5 0.93 2.2 1.00

1β 3.10 × 101 4.1 4.4 +2.8 +2.4
−2.5

+0.6
−0.5

−0.7
+0.5

−0.3
+0.2

+0.5
−0.5 0.97 1.7 1.00

1γ 8.07 × 100 6.4 5.3 +3.5 +3.4
−3.4

+0.3
−0.1

−0.4
+0.5

−0.1
+0.1

+0.5
−0.5 0.96 1.1 1.00

1δ 9.18 × 10−1 15.3 12.9 +11.7 +4.9
−5.3

+0.2
−0.1

−0.1
−0.5

−0.2
−0.1

+0.5
−0.5 0.95 0.7 1.00

2α 5.48 × 101 3.0 2.9 −0.6 +0.9
−1.0

+1.2
−1.0

−0.6
+0.9

−0.3
+0.4

+0.5
−0.5 0.93 2.1 1.00

2β 2.68 × 101 4.1 4.8 +3.4 +2.4
−2.4

+0.4
−0.4

−0.6
+0.6

−0.3
+0.3

+0.5
−0.5 0.97 1.7 1.00

2γ 7.01 × 100 6.6 6.4 +4.8 +3.7
−3.4

+0.2
−0.2

−0.6
+0.5

−0.4
+0.3

+0.5
−0.5 0.97 1.3 1.00

2δ 8.52 × 10−1 15.2 7.4 +4.6 +5.7
−4.8

−0.2
−0.1

+0.0
+0.1

−0.3
+0.3

+0.5
−0.5 0.96 1.2 1.00

3α 5.22 × 101 3.0 3.2 +1.5 +0.9
−1.0

+1.0
−1.0

−1.0
+0.7

−0.3
+0.3

+0.5
−0.5 0.93 1.5 1.00

3β 2.78 × 101 4.0 4.5 +3.1 +2.3
−2.2

+0.4
−0.4

−0.7
+0.9

−0.2
+0.3

+0.4
−0.4 0.97 1.1 1.00

3γ 6.99 × 100 6.8 4.7 +1.9 +3.5
−3.7

+0.2
−0.1

−1.0
+0.6

−0.0
−0.3

+0.4
−0.4 0.97 0.9 1.00

3δ 8.69 × 10−1 15.1 6.7 −3.0 +5.4
−5.7

−0.0
−0.2

+0.8
−0.3

−0.1
+0.4

+0.4
−0.4 0.95 0.5 1.00

4α 4.88 × 101 3.2 3.3 +1.5 +1.2
−1.4

+0.7
−0.7

−1.1
+1.2

−0.2
+0.2

+0.4
−0.4 0.93 1.2 1.00

4β 2.69 × 101 4.1 3.3 +1.2 +2.0
−2.0

+0.4
−0.4

−0.7
+0.7

−0.1
+0.1

+0.4
−0.4 0.97 1.0 1.00

4γ 7.95 × 100 6.1 5.6 +3.5 +3.8
−3.6

+0.2
−0.4

−0.8
+0.8

−0.1
+0.1

+0.3
−0.3 0.97 0.5 1.00

4δ 8.57 × 10−1 16.5 10.8 −8.9 +5.7
−5.5

−0.1
−0.1

−0.1
−0.1

+0.1
−0.1

+0.2
−0.2 0.96 0.4 1.00

5α 4.33 × 101 3.5 3.5 +2.2 +1.0
−1.2

+0.5
−0.4

−0.4
+0.5

−0.5
+0.5

+1.1
−1.1 0.92 0.9 1.02

5β 2.85 × 101 4.0 3.3 +1.4 +1.6
−1.5

+0.1
−0.1

−0.5
+0.6

−0.6
+0.6

+1.1
−1.1 0.97 0.5 1.02

5γ 1.07 × 101 4.9 4.6 +2.7 +2.7
−2.8

+0.1
−0.1

−0.5
+0.6

−0.4
+0.4

+1.1
−1.1 0.97 0.4 1.03

5δ 2.04 × 100 8.5 5.7 +2.1 +4.8
−4.5

+0.1
−0.0

−0.3
+0.3

−0.2
+0.2

+1.0
−1.0 0.96 0.3 1.02

6α 2.60 × 100 14.7 4.4 −3.0 +0.8
−0.9

+0.3
−0.5

−0.6
−1.6

−0.3
+0.6

+1.9
−1.9 0.91 0.6 1.11

6β 1.74 × 100 16.4 3.5 +1.1 +1.6
−1.2

+0.1
+0.0

+0.2
+1.2

−0.4
+0.9

+1.8
−1.8 0.96 0.6 1.11

6γ 6.71 × 10−1 21.6 13.4 −12.9 +2.2
−2.0

+0.2
−0.3

−0.2
−0.0

−0.5
+0.6

+1.8
−1.8 0.99 1.1 1.11

6δ 3.09 × 10−1 19.7 20.0 −19.5 +2.9
−2.8

+0.1
+0.0

+0.3
−0.9

+0.0
+0.1

+1.8
−1.8 0.98 0.8 1.11

Migrations in P jet
T are described using 16 bins on detec-

tor level and 8 bins on hadron level. Migrations in η
jet
lab

within −1.0 < η
jet
lab < 2.5 are described by a 3 times

2 structure. Additional bins (differential in P jet
T , Q2 and

y) are used to describe migrations of jets in η
jet
lab with

η
jet
lab < −1.0 or η

jet
lab > 2.5. The results of the 7 times

2 bins within the measurement phase space in P jet
T and

η
jet
lab are finally combined to obtain the 4 bins for the cross

section measurement for each Q2 bin.

• Dijet ( J2): Dijet events are unfolded using a three-
dimensional unfolding, where migrations in Q2, y and
〈PT〉2 are considered. Also taken into account are migra-
tions at the phase space boundaries in M12, P jet2

T and

η
jet
lab. The bin grid in Q2 and y is identical to the one

used for the NC DIS unfolding. Migrations in 〈PT〉2

are described using 18 bins on detector level and 11
bins on hadron level, out of which 8 bins are com-
bined to obtain the 4 data points of interest. Migra-
tions in M12, P jet2

T and η
jet
lab are described by addi-

123



65 Page 18 of 48 Eur. Phys. J. C (2015) 75 :65

Table 7 Double-differential dijet cross sections measured as a function
of Q2 and 〈PT〉2 using the kT jet algorithm. The total systematic uncer-
tainty, δsys, sums all systematic uncertainties in quadrature, including
the uncertainty due to the LAr noise of δLArNoise = 0.6 % and the total

normalisation uncertainty of δNorm = 2.9 %. The correlations between
the data points are listed in Table 27. The statistical correlations with the
trijet measurement as a function of 〈PT〉 are listed in Table 31. Further
details are given in the caption of Table 6

Dijet cross sections in bins of Q2 and 〈PT〉2 using the kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad δhad [%] cew

1α 2.34 × 101 3.6 3.4 +2.1 +0.1
−0.3

+1.3
−1.3

−0.5
+0.2

−0.4
+0.3

+0.5
−0.5 0.94 2.0 1.00

1β 1.36 × 101 5.8 4.5 +3.5 +1.8
−1.9

+0.2
−0.3

−0.2
+0.2

−0.2
+0.4

+0.5
−0.5 0.97 1.4 1.00

1γ 3.57 × 100 6.7 6.1 +4.0 +4.0
−3.9

+0.2
−0.0

−0.4
+0.2

−0.2
+0.1

+0.5
−0.5 0.96 1.0 1.00

1δ 4.20 × 10−1 16.4 9.6 +7.8 +5.4
−4.9

+0.1
+0.1

−0.6
−0.4

−0.2
−0.1

+0.5
−0.5 0.96 1.2 1.00

2α 1.81 × 101 4.1 3.3 +2.0 +0.1
−0.0

+1.4
−1.2

−0.4
+0.6

−0.4
+0.5

+0.5
−0.5 0.94 1.7 1.00

2β 1.24 × 101 5.6 3.9 +2.2 +2.0
−2.4

+0.4
−0.4

−0.6
+0.7

−0.3
+0.3

+0.5
−0.5 0.98 1.6 1.00

2γ 2.95 × 100 7.4 5.8 +4.0 +3.7
−3.4

+0.1
−0.2

−0.1
+0.1

−0.3
+0.2

+0.5
−0.5 0.97 1.0 1.00

2δ 3.82 × 10−1 18.1 13.7 +12.4 +6.2
−4.3

−0.2
−0.1

−0.0
+0.1

−0.4
+0.2

+0.5
−0.5 0.95 1.9 1.00

3α 1.83 × 101 3.9 2.8 +1.0 −0.0
−0.0

+1.1
−1.1

−0.5
+0.5

−0.3
+0.2

+0.4
−0.4 0.93 1.2 1.00

3β 1.13 × 101 6.1 4.9 +3.7 +2.2
−2.2

+0.3
−0.3

−0.6
+0.5

−0.3
+0.3

+0.4
−0.4 0.98 0.9 1.00

3γ 3.80 × 100 6.0 4.3 +1.2 +3.3
−3.6

+0.1
−0.1

−0.4
+0.1

−0.1
−0.1

+0.4
−0.4 0.97 0.8 1.00

3δ 3.44 × 10−1 20.5 9.3 −7.0 +4.9
−6.4

+0.0
−0.3

−0.2
−0.6

−0.2
−0.2

+0.4
−0.4 0.96 0.4 1.00

4α 1.67 × 101 4.1 2.5 +0.7 +0.1
+0.1

+0.9
−0.8

−0.3
+0.4

−0.2
+0.2

+0.4
−0.4 0.92 1.1 1.00

4β 1.08 × 101 6.3 4.7 +3.5 +1.9
−2.2

+0.3
−0.4

−0.5
+0.6

−0.1
+0.1

+0.4
−0.4 0.97 0.9 1.00

4γ 3.65 × 100 6.2 4.5 +2.2 +3.2
−3.3

+0.1
−0.1

−0.3
+0.4

−0.1
+0.2

+0.3
−0.3 0.98 0.5 1.00

4δ 3.79 × 10−1 20.4 7.1 −3.7 +5.5
−5.8

+0.0
−0.1

−0.3
+0.3

+0.0
−0.1

+0.2
−0.2 0.96 0.3 1.00

5α 1.49 × 101 4.4 2.9 +1.0 −0.4
+0.5

+0.6
−0.5

+0.8
−0.6

−0.4
+0.4

+1.2
−1.2 0.92 0.6 1.02

5β 1.32 × 101 5.1 3.6 +2.1 +1.5
−1.5

+0.2
−0.1

−0.3
+0.3

−0.5
+0.5

+1.1
−1.1 0.96 0.3 1.02

5γ 4.77 × 100 5.4 6.1 +5.0 +2.5
−2.6

+0.2
−0.1

−0.2
+0.3

−0.4
+0.3

+1.1
−1.1 0.98 0.4 1.03

5δ 9.57 × 10−1 10.3 5.6 +2.0 +4.7
−4.5

+0.0
+0.2

−0.4
+0.1

−0.1
+0.1

+1.0
−1.0 0.96 0.7 1.01

6α 7.29 × 10−1 23.0 4.0 −2.2 −0.3
+0.8

+0.1
−0.5

+1.1
−1.4

−0.1
+0.7

+2.1
−2.1 0.89 0.2 1.11

6β 8.45 × 10−1 20.1 10.2 +9.5 +2.8
−0.6

+0.2
−0.1

−0.1
+2.4

−0.4
+1.8

+1.8
−1.8 0.95 0.5 1.11

6γ 3.49 × 10−1 19.3 6.0 −4.8 +1.4
−2.6

+0.2
−0.4

+0.1
−1.1

−1.2
+0.3

+1.9
−1.9 0.97 0.8 1.11

6δ 1.47 × 10−1 26.9 8.5 −7.5 +3.1
−1.7

−0.0
+0.2

+1.7
−0.4

+1.0
−0.3

+1.8
−1.8 0.98 1.0 1.11

tional bins, which are each further binned in 〈PT〉2 and
y.

• Trijet ( J3): The unfolding of the trijet measurement is
performed similarly to the dijet unfolding, using a three-
dimensional submatrix in Q2, y and 〈PT〉3. Migrations
in M12, P jet3

T and η
jet
lab are also considered. Due to the

limited number of trijet events, the number of bins is
slightly reduced compared to the dijet measurement.

Unfolding in the extended analysis phase space increases
the stability of the measurement in the measurement phase
space to a large extent, in particular for the dijet and trijet
data points with 〈PT〉 < 11 GeV. The resulting detector
response matrix M has an overall size of 4562 × 1370 bins,
of which about 3 % have a non-zero content. A finer bin
grid than the actual measurement bin grid ensures a reduced

model dependence in the unfolding procedure. 148 bins on
hadron level, located in the measurement phase space, and
additional adjacent bins, mostly at low transverse momenta,
are combined to arrive at the final 64 cross section bins [53].

For the dijet and trijet measurements as a function of ξ2

and ξ3 dedicated new submatrices J2 and J3 are set up.

• The unfolding of the dijet measurement as a function of ξ2

is performed as a four-dimensional unfolding in the vari-
ables Q2, y, ξ2 and M12. Including M12 in the unfolding
reduces the model dependence considerably. Additional
bins are further used to account for migrations at the phase
space boundaries in M12, P jet2

T and η
jet
lab.

• A four-dimensional unfolding is employed in the variables
Q2, y, ξ3 and M123. Additional bins are considered to
describe migrations at the phase space boundaries in M12,
P jet3

T and η
jet
lab.
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Table 8 Double-differential dijet cross sections measured as a function
of Q2 and ξ2 using the kT jet algorithm. The total systematic uncer-
tainty, δsys, sums all systematic uncertainties in quadrature, including
the uncertainty due to the LAr noise of δLArNoise = 0.6 % and the total

normalisation uncertainty of δNorm = 2.9 %. The correlations between
the data points are listed in Table 32. The statistical correlations with
the trijet measurement as a function of ξ3 are listed in Table 38. Further
details are given in the caption of Table 6

Dijet cross sections in bins of Q2 and ξ2 using the kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad δhad [%] cew

1a 2.04 × 101 4.2 7.7 +7.2 +1.0
−1.1

+1.4
−1.4

+0.3
−0.5

−0.4
+0.3

+0.5
−0.5 0.94 2.1 1.00

1b 1.82 × 101 3.4 4.4 +3.4 +1.2
−1.5

+1.0
−1.0

+0.2
−0.2

−0.2
+0.2

+0.5
−0.5 0.94 1.7 1.00

1c 6.01 × 100 7.0 4.0 +2.3 +2.5
−2.2

+0.1
−0.1

+0.2
−0.2

−0.4
+0.3

+0.5
−0.5 0.94 1.3 1.00

1d 1.98 × 100 8.8 7.9 +6.7 +3.4
−3.1

−0.2
+0.1

−1.7
+1.3

−0.2
+0.2

+0.5
−0.5 0.92 0.7 1.00

2a 1.45 × 101 5.0 4.9 +4.1 +0.8
−0.9

+1.2
−1.2

+0.0
+0.2

−0.3
+0.4

+0.5
−0.5 0.94 1.8 1.00

2b 1.58 × 101 3.6 3.9 +2.7 +1.1
−1.3

+1.0
−1.0

+0.6
−0.7

−0.3
+0.4

+0.5
−0.5 0.94 1.7 1.00

2c 6.19 × 100 6.3 3.4 +0.7 +2.4
−2.5

+0.1
−0.1

+0.3
−0.1

−0.2
+0.3

+0.5
−0.5 0.94 1.1 1.00

2d 1.71 × 100 9.4 7.0 +5.8 +3.2
−2.8

−0.3
+0.3

−1.1
+1.2

−0.3
+0.5

+0.5
−0.5 0.93 0.6 1.00

3a 1.13 × 101 4.2 5.5 +4.9 +0.7
−0.8

+1.0
−1.1

−0.2
+0.1

−0.2
+0.2

+0.4
−0.4 0.93 1.4 1.00

3b 1.76 × 101 3.0 3.9 +2.8 +1.0
−1.1

+0.9
−0.9

+0.5
−0.6

−0.3
+0.2

+0.5
−0.5 0.94 1.2 1.00

3c 8.32 × 100 4.6 3.4 +1.4 +2.0
−2.1

+0.3
−0.2

+0.3
−0.3

−0.2
+0.3

+0.4
−0.4 0.94 0.9 1.00

3d 1.99 × 100 8.3 5.3 +3.4 +3.4
−3.3

−0.2
+0.1

−0.6
+0.3

−0.4
+0.1

+0.5
−0.5 0.94 0.4 1.00

4a 5.12 × 100 7.7 8.6 +8.2 +0.3
−0.8

+0.8
−0.9

+0.4
−0.5

−0.2
+0.2

+0.2
−0.2 0.92 1.4 1.00

4b 1.78 × 101 3.2 5.2 +4.6 +0.8
−1.0

+0.7
−0.8

+0.1
−0.3

−0.1
+0.1

+0.4
−0.4 0.93 1.2 1.00

4c 1.12 × 101 3.8 3.1 +1.3 +1.5
−1.4

+0.5
−0.5

+0.7
−0.8

−0.1
+0.1

+0.4
−0.4 0.94 0.8 1.00

4d 2.37 × 100 8.2 6.8 +5.6 +3.3
−3.2

+0.0
−0.0

−0.0
+0.3

+0.1
+0.1

+0.3
−0.3 0.95 0.5 1.00

5b 8.89 × 100 3.7 4.5 +3.6 +0.7
−0.9

+0.5
−0.6

−0.0
−0.1

−0.5
+0.4

+1.2
−1.2 0.92 0.5 1.01

5c 1.71 × 101 2.9 3.5 +2.1 +0.9
−0.9

+0.6
−0.6

+0.5
−0.5

−0.4
+0.3

+1.0
−1.0 0.93 0.5 1.02

5d 1.12 × 101 3.0 4.2 +3.1 +1.3
−1.3

+0.3
−0.3

−0.0
−0.2

−0.4
+0.3

+1.1
−1.1 0.94 0.4 1.03

6d 1.86 × 100 7.2 5.5 +4.6 +0.6
−0.6

+0.2
−0.3

+0.5
−0.8

−0.3
+0.4

+1.9
−1.9 0.93 0.8 1.11

3.4 Regularisation strength and condition

The regularisation parameter τ in Eq. 5 is set to τ = 10−6.
In this region no dependence of the results on the value of τ

is observed [53]. When alternatively applying the method
of the L-curve scan [52] for the choice of τ , a value of
τ = 7.8 × 10−5 is obtained with consistent results for the
cross sections. Studies of different regularisation conditions
L have been performed by approximating first or second
derivatives instead of setting L to the unity matrix. Only small
dependencies of the measured cross sections and their uncer-
tainties on the choice of L or τ are observed [53].

3.5 Bias tests

The definition of the migration matrix has been optimised
using bias tests on simulated events. For this purpose unfold-
ing matrices have been constructed using simulations based
on RAPGAP and DJANGOH . When testing the unfolding
procedure with independent pseudo-data of the respective
Monte Carlo generator, the unfolded distributions match the
generated ones within statistical uncertainties and the uncer-

tainties determined in the unfolding have the desired 68 %
coverage. When using pseudo-data of the Monte Carlo gen-
erator different from that used to construct the unfolding
matrix instead, only small differences of about 0.3–0.4 σ

are observed between the unfolded and the generated dis-
tributions. These small differences are treated as systematic
uncertainties, as described in Sect. 4.2.

In addition two different data correction methods have
been tested. A matrix inversion method (τ = 0 in Eq. 5) gives
results consistent with those obtained by the unfolding pro-
cedure. A bin-by-bin correction method yields results with a
significant bias towards the underlying MC distributions [53]
and with improper statistical uncertainties as the correlations
among the measurement bins are not accounted for.

4 Jet cross section measurement

4.1 Observables and phase space

The jet cross sections presented are hadron level cross sec-
tions. For bin i , the cross section σi is defined as
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Table 9 Double-differential trijet cross sections measured as a function
of Q2 and 〈PT〉3 using the kT jet algorithm. The total systematic uncer-
tainty, δsys, sums all systematic uncertainties in quadrature, including
the uncertainty due to the LAr noise of δLArNoise = 0.9 % and the total

normalisation uncertainty of δNorm = 2.9 %. The correlations between
the data points are listed in Table 28. Further details are given in the
caption of Table 6

Trijet cross sections in bins of Q2 and 〈PT〉3 using the kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad δhad [%] cew

1α 4.86 × 100 8.9 5.1 +2.9 −0.9
+1.2

+3.5
−3.3

−0.2
+0.3

−0.2
+0.3

+0.5
−0.5 0.79 5.3 1.00

1β 2.65 × 100 8.6 4.5 +1.8 +3.0
−3.3

+1.0
−1.2

+0.2
+0.0

−0.4
+0.3

+0.5
−0.5 0.85 4.3 1.00

1γ 4.37 × 10−1 18.0 8.4 +6.7 +4.4
−4.8

+0.4
−0.1

−1.0
−0.0

+0.3
−0.1

+0.5
−0.5 0.89 3.6 1.00

2α 3.28 × 100 11.1 4.9 −2.0 −1.5
+1.0

+3.3
−3.8

−0.2
+0.3

−0.4
+0.4

+0.5
−0.5 0.78 5.0 1.00

2β 2.06 × 100 9.2 5.7 +4.0 +2.9
−3.0

+1.4
−1.4

−0.3
+0.1

−0.2
+0.2

+0.5
−0.5 0.84 4.4 1.00

2γ 4.28 × 10−1 17.5 5.5 −1.2 +4.8
−4.5

+0.7
−0.6

+1.1
−0.3

−0.7
+0.5

+0.5
−0.5 0.89 2.7 1.00

3α 3.46 × 100 10.5 5.1 −2.5 −1.2
+1.2

+3.5
−3.6

−0.2
+0.5

−0.2
+0.2

+0.4
−0.4 0.78 4.6 1.00

3β 2.65 × 100 8.0 6.5 +5.3 +2.5
−2.8

+1.3
−1.4

−0.7
+0.5

−0.0
+0.1

+0.4
−0.4 0.85 3.7 1.00

3γ 5.07 × 10−1 16.8 7.2 −3.8 +5.9
−5.4

+0.7
−0.6

−1.0
+0.1

+0.1
−0.6

+0.4
−0.4 0.87 2.3 1.00

4α 3.06 × 100 11.2 7.6 −6.5 −0.9
+0.8

+3.3
−3.0

−0.4
+0.3

−0.1
+0.0

+0.3
−0.3 0.77 4.1 1.00

4β 2.83 × 100 7.4 7.3 +6.4 +2.4
−2.4

+1.2
−1.3

−0.8
+0.9

−0.1
+0.1

+0.3
−0.3 0.85 3.6 1.00

4γ 6.86 × 10−1 13.8 7.5 +3.8 +6.0
−6.0

+0.9
−0.4

−0.3
+0.5

+0.1
+0.1

+0.1
−0.1 0.87 2.3 1.00

5α 3.23 × 100 9.8 7.1 −5.9 −1.6
+1.6

+2.0
−2.0

+1.3
−1.1

−0.3
+0.4

+1.4
−1.4 0.77 3.5 1.03

5β 2.91 × 100 7.4 6.2 +5.3 +1.5
−1.6

+1.0
−0.9

−0.2
+0.5

−0.4
+0.3

+1.3
−1.3 0.83 2.9 1.03

5γ 6.61 × 10−1 14.5 14.5 +13.5 +4.8
−4.6

+0.5
−0.6

−1.0
+0.6

−0.0
+0.0

+1.1
−1.1 0.86 2.2 1.03

6β 1.21 × 10−1 37.9 5.5 +4.2 +0.0
+0.0

+1.1
−0.9

+1.4
−0.5

−0.2
+0.8

+2.2
−2.2 0.82 0.8 1.12

Table 10 Double-differential trijet cross sections measured as a func-
tion of Q2 and ξ3 using the kT jet algorithm. The total systematic uncer-
tainty, δsys, sums all systematic uncertainties in quadrature, including
the uncertainty due to the LAr noise of δLArNoise = 0.9 % and the total

normalisation uncertainty of δNorm = 2.9 %. The correlations between
the data points are listed in Table 35. Further details are given in the
captions of the Table 6

Trijet cross sections in bins of Q2 and ξ3 using the kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad δhad [%] cew

1A 3.15 × 100 11.4 18.7 +18.1 −0.2
+0.2

+4.1
−4.2

+0.5
−1.0

−0.4
+0.3

+0.5
−0.5 0.81 6.5 1.00

1B 3.12 × 100 10.6 3.8 +2.2 +1.2
−1.6

+1.5
−1.3

−0.2
+0.3

−0.2
+0.1

+0.4
−0.4 0.81 5.3 1.00

1C 1.24 × 100 13.2 7.7 −5.8 +4.6
−4.3

+0.4
−0.6

+0.5
−0.6

−0.4
+0.3

+0.4
−0.4 0.81 3.7 1.00

2A 1.87 × 100 16.5 12.2 +11.3 +0.5
−0.2

+3.7
−3.7

+0.8
−0.8

−0.4
+0.3

+0.5
−0.5 0.80 5.7 1.00

2B 2.80 × 100 10.7 21.7 −21.4 +1.2
−1.9

+1.6
−1.8

+0.5
−0.6

−0.4
+0.3

+0.5
−0.5 0.81 4.9 1.00

2C 9.74 × 10−1 15.0 15.6 +15.0 +3.9
−3.0

+0.6
−0.4

+0.7
−0.2

−0.3
+0.4

+0.4
−0.4 0.80 3.5 1.00

3A 1.88 × 100 14.7 16.0 +15.4 −0.1
−0.1

+3.4
−3.5

+1.0
−0.6

+0.1
+0.1

+0.4
−0.4 0.80 5.1 1.00

3B 3.19 × 100 9.3 9.4 +8.8 +0.6
−0.8

+2.1
−2.0

+0.0
−0.2

−0.3
+0.3

+0.4
−0.4 0.81 4.5 1.00

3C 1.48 × 100 12.0 13.0 −12.2 +3.9
−2.9

+0.9
−0.8

+0.8
−0.3

+0.1
+0.2

+0.4
−0.4 0.80 3.0 1.00

4A 1.55 × 100 16.0 10.7 +10.0 −1.0
+1.1

+2.3
−2.7

+0.8
−1.5

−0.4
+0.2

+0.1
−0.1 0.80 5.1 1.00

4B 2.99 × 100 10.1 10.9 +10.4 +0.4
−0.4

+2.1
−2.0

+0.4
−0.1

+0.1
−0.0

+0.4
−0.4 0.81 4.5 1.00

4C 1.98 × 100 9.2 5.3 −3.6 +3.1
−3.1

+0.6
−0.5

+0.1
−0.3

−0.2
+0.0

+0.3
−0.3 0.81 3.1 1.00

5B 2.86 × 100 9.4 6.3 +5.5 −0.0
+0.0

+1.4
−1.3

+0.1
+0.1

−0.6
+0.6

+1.4
−1.4 0.80 2.9 1.03

5C 3.26 × 100 7.6 13.1 +12.8 +1.3
−1.5

+1.2
−1.2

+0.2
−0.2

−0.1
+0.1

+1.2
−1.2 0.80 2.8 1.04

6C 3.63 × 10−1 17.4 35.5 +35.3 +1.0
−0.6

+1.2
−1.1

+1.6
−1.0

+0.3
+0.3

+2.2
−2.2 0.79 1.1 1.11
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Table 11 Double-differential inclusive jet cross sections measured as a function of Q2 and P jet
T using the anti-kT jet algorithm. The uncertainties

δhad are identical to those in Table 6 and are not repeated here. Further details are given in the caption of Table 6

Inclusive jet cross sections in bins of Q2 and P jet
T using the anti-kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad cew

1α 6.99 × 101 2.3 2.9 +0.8 +1.0
−1.1

+1.1
−1.1

−0.5
+0.3

−0.4
+0.3

+0.5
−0.5 0.93 1.00

1β 3.11 × 101 3.4 4.6 +3.0 +2.5
−2.6

+0.6
−0.5

−0.5
+0.6

−0.3
+0.2

+0.5
−0.5 0.94 1.00

1γ 7.28 × 100 6.3 6.2 +4.5 +3.8
−3.4

+0.3
−0.3

−0.3
+0.7

−0.1
+0.1

+0.5
−0.5 0.93 1.00

1δ 8.68 × 10−1 16.2 6.9 +4.4 +4.9
−4.9

−0.0
−0.2

−0.2
−0.4

−0.2
+0.0

+0.5
−0.5 0.93 1.00

2α 5.57 × 101 2.5 2.8 +0.5 +0.9
−0.9

+1.1
−1.1

−0.5
+0.7

−0.3
+0.4

+0.5
−0.5 0.93 1.00

2β 2.62 × 101 3.6 4.4 +2.7 +2.5
−2.6

+0.4
−0.4

−0.5
+0.5

−0.3
+0.3

+0.5
−0.5 0.95 1.00

2γ 6.67 × 100 6.4 6.9 +5.6 +3.4
−3.3

+0.0
−0.4

−0.8
+0.4

−0.5
+0.3

+0.5
−0.5 0.94 1.00

2δ 8.85 × 10−1 14.2 8.2 +6.0 +5.2
−5.1

+0.1
+0.1

−0.2
+0.3

−0.3
+0.2

+0.5
−0.5 0.93 1.00

3α 5.31 × 101 2.6 2.8 +0.9 +0.8
−0.8

+1.0
−1.1

−0.8
+0.7

−0.3
+0.2

+0.5
−0.5 0.94 1.00

3β 2.73 × 101 3.5 4.4 +2.8 +2.4
−2.4

+0.4
−0.4

−0.7
+0.8

−0.2
+0.2

+0.4
−0.4 0.95 1.00

3γ 7.53 × 100 5.7 5.1 +2.8 +3.5
−3.7

+0.2
−0.1

−0.7
+0.6

−0.1
+0.1

+0.4
−0.4 0.95 1.00

3δ 9.13 × 10−1 14.7 8.4 +5.7 +5.3
−6.1

+0.1
+0.0

+0.3
−0.3

−0.0
+0.1

+0.4
−0.4 0.93 1.00

4α 4.63 × 101 2.9 3.4 +1.8 +1.2
−1.3

+0.8
−0.9

−1.0
+1.1

−0.2
+0.2

+0.4
−0.4 0.94 1.00

4β 2.71 × 101 3.5 3.2 +1.2 +1.9
−1.9

+0.4
−0.2

−0.7
+0.6

−0.1
+0.1

+0.4
−0.4 0.95 1.00

4γ 7.85 × 100 5.5 5.8 +4.0 +3.6
−3.3

+0.3
−0.2

−0.7
+0.7

−0.0
+0.2

+0.3
−0.3 0.96 1.00

4δ 8.30 × 10−1 16.3 9.5 −7.3 +5.9
−5.5

−0.0
+0.2

−0.0
−0.0

+0.1
+0.0

+0.2
−0.2 0.93 1.00

5α 4.25 × 101 3.0 3.4 +2.1 +0.9
−1.0

+0.5
−0.4

−0.2
+0.4

−0.5
+0.5

+1.1
−1.1 0.92 1.02

5β 2.84 × 101 3.4 3.3 +1.3 +1.7
−1.6

+0.1
−0.2

−0.5
+0.5

−0.6
+0.6

+1.1
−1.1 0.97 1.02

5γ 1.07 × 101 4.3 4.4 +2.3 +2.7
−2.6

+0.1
−0.1

−0.6
+0.6

−0.4
+0.4

+1.1
−1.1 0.96 1.03

5δ 1.83 × 100 9.0 6.4 +3.7 +4.6
−4.7

+0.1
−0.1

−0.4
+0.3

−0.3
+0.2

+1.0
−1.0 0.95 1.01

6α 2.54 × 100 12.8 3.4 +1.4 +0.2
−0.8

+0.5
−0.3

−0.2
−1.1

−0.8
+0.1

+1.9
−1.9 0.90 1.11

6β 1.83 × 100 13.6 3.8 −1.4 +1.7
−1.6

+0.3
−0.4

+2.4
+0.3

+0.6
+0.3

+1.8
−1.8 0.95 1.11

6γ 6.12 × 10−1 20.9 7.5 −6.6 +2.2
−1.9

+0.3
−0.2

+1.0
−0.1

−0.1
+0.5

+1.8
−1.8 0.98 1.11

6δ 2.72 × 10−1 20.5 18.1 −17.6 +2.6
−3.0

+0.1
−0.2

+0.4
−0.3

−0.2
+0.2

+1.8
−1.8 0.98 1.11

σi = xunfolded
i

L+ + L− , (6)

where xunfolded
i is the unfolded number of jets or events in

bin i , including QED radiative corrections. The integrated
luminosities are L+ = 191 pb−1 and L− = 160 pb−1for
e+ p and e− p scattering,respectively. The observed cross sec-
tions correspond to luminosity weighted averages of e+ p
and e− p processes (see Sect. 5.3). Double-differential jet
cross sections are presented for the measurement phase space
given in Table 1. Inclusive jet, dijet and trijet cross sec-
tions are measured as a function of Q2 and P jet

T or 〈PT〉2

or 〈PT〉3. Dijets and trijets are also measured as a func-
tion of Q2 and ξ2 or ξ3. The phase space in P jet

T allows
measuring the range 0.006 < ξ2 < 0.316 for dijets and
0.01 < ξ3 < 0.50 for trijets. The trijet phase space is a
subset of the dijet phase space, but the observables 〈PT〉3

and ξ3 are calculated using the three leading jets. The phase

space boundaries of the measurements are summarised in
Table 2.

The simultaneous unfolding of the NC DIS and the jet
measurements allows also the determination of jet cross sec-
tions normalised to the NC DIS cross sections. Normalised
jet cross sections are defined as the ratio of the double-
differential absolute jet cross sections to the NC DIS cross
sections σNC in the respective Q2-bin, where σNC is cal-
culated using Eq. 6. The phase space for the normalised
inclusive jet σjet/σNC, normalised dijet σdijet/σNC and nor-
malised trijet σtrijet/σNC cross sections is identical to the one
of the corresponding absolute jet cross sections. The covari-
ance matrix of the statistical uncertainties is determined tak-
ing the statistical correlations between the NC DIS and the
jet measurements into account. The systematic experimental
uncertainties are correlated between the NC DIS and the jet
measurements. Consequently, all normalisation uncertainties
cancel, and many other systematic uncertainties are reduced
significantly.
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Table 12 Double-differential dijet cross sections measured as a function of Q2 and 〈PT〉2 using the anti-kT jet algorithm. The uncertainties δhad

are identical to those in Table 7 and are not repeated here. Further details are given in the caption of Table 7

Dijet cross sections in bins of Q2 and 〈PT〉2 using the anti-kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad cew

1α 2.36 × 101 3.2 3.5 +2.4 +0.2
−0.4

+1.2
−1.1

−0.5
+0.3

−0.4
+0.3

+0.5
−0.5 0.95 1.00

1β 1.43 × 101 4.5 5.2 +4.1 +2.0
−2.2

+0.3
−0.4

−0.3
+0.2

−0.3
+0.3

+0.5
−0.5 0.95 1.00

1γ 3.19 × 100 6.7 6.3 +4.5 +3.8
−3.7

+0.2
−0.2

−0.4
+0.1

−0.2
+0.1

+0.5
−0.5 0.94 1.00

1δ 3.96 × 10−1 17.1 7.4 −5.1 +5.5
−4.2

−0.1
−0.0

−0.4
−0.3

−0.3
+0.0

+0.5
−0.5 0.94 1.00

2α 1.98 × 101 3.3 3.3 +2.1 +0.2
−0.2

+1.2
−1.0

−0.4
+0.6

−0.4
+0.5

+0.5
−0.5 0.95 1.00

2β 1.15 × 101 5.1 3.9 +2.4 +1.9
−2.1

+0.4
−0.4

−0.7
+0.6

−0.3
+0.2

+0.5
−0.5 0.96 1.00

2γ 2.82 × 100 7.1 7.4 +6.1 +3.6
−3.5

−0.0
−0.3

−0.1
+0.3

−0.3
+0.3

+0.5
−0.5 0.95 1.00

2δ 4.03 × 10−1 16.3 9.4 +6.8 +6.6
−5.5

+0.1
+0.2

+0.5
+0.3

−0.2
+0.4

+0.5
−0.5 0.94 1.00

3α 1.91 × 101 3.3 2.9 +1.4 +0.3
−0.3

+1.1
−1.0

−0.6
+0.5

−0.3
+0.3

+0.4
−0.4 0.94 1.00

3β 1.18 × 101 4.9 4.6 +3.3 +2.0
−2.3

+0.4
−0.4

−0.6
+0.6

−0.2
+0.2

+0.4
−0.4 0.96 1.00

3γ 3.68 × 100 5.6 4.4 +1.4 +3.5
−3.4

+0.1
−0.1

−0.4
+0.2

−0.2
+0.1

+0.4
−0.4 0.95 1.00

3δ 2.87 × 10−1 23.3 6.7 −3.2 +5.5
−5.5

+0.1
−0.0

−0.2
−0.1

−0.2
+0.1

+0.4
−0.4 0.95 1.00

4α 1.68 × 101 3.6 2.6 +1.1 +0.2
−0.3

+0.8
−0.8

−0.3
+0.3

−0.2
+0.2

+0.4
−0.4 0.93 1.00

4β 1.12 × 101 5.0 4.5 +3.4 +1.8
−2.1

+0.4
−0.4

−0.5
+0.7

−0.1
+0.1

+0.4
−0.4 0.96 1.00

4γ 3.71 × 100 5.6 5.5 +3.9 +3.3
−2.9

+0.2
−0.1

−0.2
+0.4

−0.1
+0.1

+0.3
−0.3 0.96 1.00

4δ 3.99 × 10−1 18.2 8.7 −5.9 +6.0
−6.0

+0.1
+0.1

−0.2
+0.2

+0.1
−0.1

+0.2
−0.2 0.94 1.00

5α 1.54 × 101 3.8 2.8 +1.0 −0.3
+0.3

+0.4
−0.3

+0.5
−0.4

−0.4
+0.4

+1.2
−1.2 0.92 1.02

5β 1.33 × 101 4.3 4.3 +3.2 +1.5
−1.6

+0.2
−0.2

−0.3
+0.2

−0.5
+0.4

+1.1
−1.1 0.95 1.02

5γ 4.71 × 100 5.1 5.6 +4.4 +2.5
−2.3

+0.2
−0.2

−0.3
+0.3

−0.3
+0.4

+1.1
−1.1 0.97 1.03

5δ 8.80 × 10−1 10.5 7.0 +4.7 +4.7
−4.4

+0.1
−0.1

−0.0
+0.2

−0.1
+0.2

+1.0
−1.0 0.96 1.01

6α 8.32 × 10−1 17.6 4.2 +2.8 +0.5
+0.1

+0.6
−0.4

+0.1
+0.4

−0.5
+0.8

+2.1
−2.1 0.91 1.11

6β 7.02 × 10−1 19.9 4.4 +3.2 +1.1
−0.9

+0.4
−0.2

+0.8
+0.1

−0.2
+0.6

+1.9
−1.9 0.94 1.11

6γ 4.25 × 10−1 15.0 4.9 −3.2 +2.1
−2.4

+0.2
−0.1

+0.3
−0.4

−0.6
+0.7

+1.9
−1.9 0.96 1.11

6δ 1.24 × 10−1 27.0 8.3 −7.3 +2.9
−2.7

+0.1
−0.3

+0.4
+0.3

−0.1
+0.3

+1.8
−1.8 0.97 1.11

4.2 Experimental uncertainties

Statistical and other experimental uncertainties are prop-
agated by analytical linear error propagation through the
unfolding process [52].

Systematic uncertainties are estimated by varying the
measurement of a given quantity within the experimental
uncertainties in simulated events. For each ‘up’ and ‘down’
variation, for each source of uncertainty, a new migra-
tion matrix is obtained. The difference of these matrices
with respect to the nominal unfolding matrix is propagated
through the unfolding process [52] to obtain the size of the
uncertainty on the cross sections. To avoid fluctuations of the
systematic uncertainties caused by limited number of data
events, in most cases uncertainties are obtained by unfolding
simulated data.

The following sources of systematic uncertainties are
taken into account:

• The uncertainty of the energy scale of the HFS is subdi-
vided into two components related to the two-stage cali-
bration procedure described in Sect. 2.2.
The uncertainties on the cross sections due to the jet
energy scale, δJES, are determined by varying the energy

of all HFS objects clustered into jets with P jet
T,lab > 7 GeV

by ±1 %. This results in δJES ranging from 2 to 6 %, with

the larger values for high values of P jet
T .

The energy of HFS objects which are not part of a jet
in the laboratory system with P jet

T,lab > 7 GeV is varied
separately by ±1 %. This uncertainty is determined using
a dijet calibration sample, requiring jets with P jet

T,lab >

3 GeV. The resulting uncertainty on the jet cross section is
referred to as remaining cluster energy scale uncertainty,
δRCES. The effect of this uncertainty plays a larger rôle
at low transverse momenta, where jets in the Breit frame
include a larger fraction of HFS objects which are not
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Table 13 Double-differential dijet cross sections measured as a function of Q2 and ξ2 using the anti-kT jet algorithm. The uncertainties δhad are
identical to those in Table 8 and are not repeated here. Further details are given in the caption of Table 8

Dijet cross sections in bins of Q2 and ξ2 using the anti-kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad cew

1a 2.16 × 101 3.0 9.5 +9.0 +1.0
−1.1

+1.4
−1.4

+0.1
−0.2

−0.3
+0.3

+0.5
−0.5 0.96 1.00

1b 1.86 × 101 3.1 4.3 +3.2 +1.3
−1.5

+1.0
−1.1

+0.3
−0.5

−0.3
+0.2

+0.5
−0.5 0.95 1.00

1c 6.08 × 100 6.5 9.1 −8.5 +2.3
−2.1

+0.2
−0.2

+0.2
+0.2

−0.2
+0.2

+0.5
−0.5 0.92 1.00

1d 1.75 × 100 8.9 7.7 +6.5 +3.1
−3.5

−0.0
−0.0

−1.4
+0.9

−0.4
+0.2

+0.5
−0.5 0.90 1.00

2a 1.46 × 101 5.3 10.3 +10.0 +0.8
−0.7

+1.2
−1.2

−0.1
+0.2

−0.4
+0.5

+0.5
−0.5 0.96 1.00

2b 1.64 × 101 3.3 3.9 +2.6 +1.2
−1.3

+1.0
−1.0

+0.7
−0.6

−0.3
+0.3

+0.5
−0.5 0.95 1.00

2c 5.84 × 100 6.0 4.2 +2.6 +2.3
−2.2

+0.3
−0.3

+0.1
−0.0

−0.3
+0.4

+0.5
−0.5 0.93 1.00

2d 1.63 × 100 8.8 6.3 +4.9 +3.4
−2.8

−0.0
+0.2

−0.7
+1.3

−0.2
+0.4

+0.5
−0.5 0.91 1.00

3a 1.14 × 101 4.0 9.2 +8.9 +0.7
−0.8

+1.1
−1.0

−0.2
+0.2

−0.2
+0.2

+0.4
−0.4 0.95 1.00

3b 1.84 × 101 2.8 4.3 +3.3 +1.2
−1.2

+0.9
−0.9

+0.4
−0.5

−0.3
+0.3

+0.5
−0.5 0.95 1.00

3c 7.83 × 100 4.6 3.4 −1.6 +1.8
−2.0

+0.3
−0.4

+0.3
−0.3

−0.2
+0.2

+0.4
−0.4 0.93 1.00

3d 1.96 × 100 7.8 5.9 −4.3 +3.2
−3.3

−0.1
+0.0

−0.8
+0.4

−0.4
+0.1

+0.4
−0.4 0.92 1.00

4a 5.21 × 100 7.5 4.4 +3.7 +0.7
−0.6

+0.8
−0.9

+0.5
−0.4

−0.1
+0.2

+0.2
−0.2 0.94 1.00

4b 1.81 × 101 3.0 4.1 +3.1 +1.1
−1.0

+0.8
−0.8

+0.3
−0.3

−0.1
+0.1

+0.4
−0.4 0.95 1.00

4c 1.16 × 101 3.5 7.0 +6.4 +1.3
−1.4

+0.5
−0.6

+0.6
−0.9

−0.1
+0.1

+0.4
−0.4 0.94 1.00

4d 2.41 × 100 7.4 14.9 +14.4 +3.2
−3.2

+0.1
−0.1

−0.3
+0.4

+0.0
+0.1

+0.4
−0.4 0.93 1.00

5b 9.13 × 100 3.4 4.1 +3.1 +0.7
−0.8

+0.5
−0.5

+0.0
−0.0

−0.5
+0.4

+1.1
−1.1 0.94 1.01

5c 1.73 × 101 2.7 8.7 +8.2 +0.8
−0.9

+0.5
−0.6

+0.5
−0.4

−0.3
+0.3

+1.1
−1.1 0.94 1.02

5d 1.12 × 101 2.9 10.5 +10.1 +1.3
−1.3

+0.3
−0.3

−0.0
−0.2

−0.4
+0.3

+1.1
−1.1 0.93 1.03

6d 1.87 × 100 7.1 8.4 +7.8 +0.5
−0.8

+0.3
−0.3

+0.8
−1.0

−0.4
+0.2

+1.9
−1.9 0.93 1.11

Table 14 Double-differential trijet cross sections measured as a function of Q2 and 〈PT〉3 using the anti-kT jet algorithm. The uncertainties δhad

are identical to those in Table 9 and are not repeated here. Further details are given in the caption of Table 9

Trijet cross sections in bins of Q2 and 〈PT〉3 using the anti-kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad cew

1α 4.21 × 100 8.9 7.1 +5.6 −0.8
+0.6

+3.4
−3.8

−0.2
+0.2

−0.4
+0.3

+0.4
−0.4 0.75 1.00

1β 2.57 × 100 8.2 6.0 +4.4 +3.2
−3.2

+1.2
−1.0

+0.4
−0.1

−0.4
+0.3

+0.5
−0.5 0.78 1.00

1γ 3.10 × 10−1 24.0 19.2 +18.4 +4.8
−4.7

+0.2
−0.9

−1.2
+0.3

+0.1
−0.3

+0.5
−0.5 0.81 1.00

2α 3.12 × 100 10.0 6.1 +4.3 −0.5
+1.3

+3.6
−3.5

−0.2
+0.6

−0.3
+0.4

+0.5
−0.5 0.74 1.00

2β 1.77 × 100 9.7 6.2 +4.8 +2.5
−3.3

+1.2
−1.5

−0.4
−0.4

−0.3
+0.1

+0.5
−0.5 0.78 1.00

2γ 4.11 × 10−1 17.6 9.4 +7.8 +5.3
−3.4

+0.8
−0.4

+1.6
+0.0

−0.7
+0.8

+0.5
−0.5 0.81 1.00

3α 3.39 × 100 9.2 5.1 +3.0 −0.7
+1.0

+3.3
−3.3

−0.4
+1.1

−0.0
+0.2

+0.4
−0.4 0.73 1.00

3β 2.11 × 100 8.7 9.0 +8.2 +2.4
−2.9

+1.4
−1.4

−0.4
+0.2

−0.1
+0.3

+0.4
−0.4 0.78 1.00

3γ 5.36 × 10−1 14.8 6.7 +2.3 +5.9
−5.6

+0.4
−0.7

−1.4
+0.3

+0.1
−0.6

+0.4
−0.4 0.80 1.00

4α 2.56 × 100 11.0 3.8 −0.8 −1.0
+0.7

+2.6
−2.8

−0.3
−0.1

−0.3
+0.2

+0.3
−0.3 0.73 1.00

4β 2.49 × 100 7.4 10.0 +9.3 +2.7
−2.4

+1.7
−1.5

−0.6
+0.9

+0.0
−0.0

+0.3
−0.3 0.78 1.00

4γ 6.53 × 10−1 14.0 12.0 +10.1 +5.8
−5.9

+0.6
−0.9

−0.2
+0.6

−0.1
+0.4

+0.1
−0.1 0.80 1.00

5α 2.62 × 100 10.2 3.9 −1.2 −1.3
+1.2

+1.8
−2.1

+1.1
−0.7

−0.3
+0.3

+1.4
−1.4 0.71 1.03

5β 2.58 × 100 7.4 8.8 +8.2 +1.6
−1.6

+1.2
−1.0

−0.1
+0.2

−0.3
+0.4

+1.3
−1.3 0.77 1.03

5γ 5.64 × 10−1 18.6 23.2 +22.6 +4.5
−4.5

+0.7
−0.9

−1.1
+0.9

−0.1
+0.1

+1.1
−1.1 0.79 1.03

6β 1.30 × 10−1 33.1 11.4 +10.8 +1.2
−1.6

+1.4
−0.5

+0.9
−0.5

−0.5
+0.5

+2.2
−2.2 0.74 1.12

123



65 Page 24 of 48 Eur. Phys. J. C (2015) 75 :65

Table 15 Double-differential normalised trijet cross sections measured as a function of Q2 and ξ3 using the anti-kT jet algorithm. The uncertainties
δhad are identical to those in Table 10 and are not repeated here. Further details are given in the caption of Table 10

Trijet cross sections in bins of Q2 and ξ3 using the anti-kT jet algorithm

Bin label σ [pb] δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] δID(e) [%] chad cew

1A 2.71 × 100 11.5 18.3 +17.7 −0.2
+0.2

+4.0
−3.9

+0.5
−0.9

−0.4
+0.3

+0.5
−0.5 0.76 1.00

1B 3.04 × 100 9.0 14.0 +13.7 +1.2
−1.4

+1.6
−1.6

−0.2
+0.3

−0.3
+0.2

+0.4
−0.4 0.76 1.00

1C 1.00 × 100 13.5 16.2 −15.4 +4.2
−4.5

+0.5
−0.8

+0.5
−0.6

−0.1
+0.4

+0.4
−0.4 0.74 1.00

2A 1.68 × 100 16.6 17.8 +17.2 +0.6
−0.2

+4.0
−3.5

+1.1
−1.0

−0.4
+0.4

+0.5
−0.5 0.75 1.00

2B 2.56 × 100 9.7 12.5 +12.1 +0.9
−1.0

+1.6
−1.6

+0.1
−0.1

−0.3
+0.3

+0.5
−0.5 0.76 1.00

2C 8.13 × 10−1 14.7 46.8 −46.6 +4.4
−4.2

+0.7
−0.7

+1.0
−1.3

−0.5
+0.3

+0.4
−0.4 0.74 1.00

3A 1.47 × 100 16.1 19.5 +19.0 −0.2
+0.1

+3.7
−3.2

+1.4
−0.7

+0.0
+0.0

+0.4
−0.4 0.75 1.00

3B 3.07 × 100 8.4 18.2 +17.9 +1.2
−0.6

+2.0
−2.2

+0.2
−0.1

−0.2
+0.3

+0.4
−0.4 0.76 1.00

3C 1.14 × 100 11.7 11.0 −10.1 +3.3
−4.1

+0.6
−0.5

+0.2
−0.4

−0.1
+0.0

+0.4
−0.4 0.74 1.00

4A 1.28 × 100 15.9 17.1 +16.7 −0.5
−0.3

+2.3
−2.4

+1.0
−1.8

−0.3
+0.1

+0.2
−0.2 0.73 1.00

4B 2.68 × 100 9.4 20.0 −19.7 +0.5
−0.1

+2.0
−2.0

+0.6
−0.5

+0.1
+0.1

+0.4
−0.4 0.76 1.00

4C 1.66 × 100 9.1 17.1 −16.6 +3.1
−3.4

+0.7
−0.8

+0.5
−0.5

−0.1
−0.0

+0.3
−0.3 0.75 1.00

5B 2.52 × 100 9.1 9.2 +8.7 −0.0
+0.2

+1.3
−1.4

+0.4
−0.2

−0.5
+0.6

+1.4
−1.4 0.75 1.02

5C 2.88 × 100 7.1 51.6 −51.6 +1.3
−1.4

+1.2
−1.2

+0.4
−0.2

−0.1
+0.1

+1.2
−1.2 0.75 1.03

6C 3.04 × 10−1 17.8 92.8 −92.7 +0.6
−0.4

+1.2
−0.9

+1.1
−1.0

+0.0
+0.1

+2.3
−2.3 0.73 1.11

part of a calibrated jet in the laboratory rest frame. The
resulting uncertainty on the jet cross sections is about
1 % for the inclusive jet and the dijet cross sections, and
up to 4 % for the trijet cross sections at low transverse
momenta.

• The uncertainty δLArNoise, due to subtraction of the elec-
tronic noise from the LAr electronics, is determined by
adding randomly 20 % of all rejected noise clusters to
the signal. This increases the jet cross sections by 0.5 %
for the inclusive jet data, 0.6 % for the dijet and 0.9 %
for the trijet data.

• The energy of the scattered lepton is measured with a
precision of 0.5 % in the central and backward region
(zimpact < 100 cm) and with 1 % precision in the forward
region of the detector, where zimpact is the z-coordinate
of the electron’s impact position at the LAr calorimeter.
The corresponding uncertainty on the jet cross sections,
δE′

e , lies between 0.5 and 2 %, with the larger value at

high P jet
T or high Q2.

• The position of the LAr calorimeter with respect to the
CTD is aligned with a precision of 1mrad [32], resulting
in a corresponding uncertainty of the electron polar angle
measurement θe. The uncertainty on the jet cross sections,
denoted as δθe , is around 0.5 %. Only in the highest Q2

bin it is up to 1.5 %.
• The uncertainty on the electron identification is 0.5 %

in the central region (zimpact < 100 cm) and 2 % in the
forward direction [14] (zimpact > 100 cm). This leads

to a Q2 dependent uncertainty on the jet cross sections,
δID(e), of around 0.5 % for smaller values of Q2 and up
to 2 % in the highest Q2 bin.

• The model uncertainty is estimated from the difference
between the nominal result of the unfolding matrix and
results obtained based on the migration matrices of either
RAPGAP or DJANGOH . These differences are calcu-
lated using data, denoted as δModel

d,R and δModel
d,D , as well

as using pseudodata, denoted as δModel
p,R and δModel

p,D . The
model uncertainty on the cross sections is then calculated
for each bin using

δModel = ±
√

1

2

(

max
(

δModel
d,R , δModel

p,R

)2+max
(

δModel
d,D , δModel

p,D

)2
)

.

(7)

The sign is given by the difference with the largest mod-
ulus. The uncertainty due to the reweighting of the MC
models is found to be negligible compared to the model
uncertainty obtained in this way.

• The uncertainty due to the requirement on the z-
coordinate of the primary event vertex is found to be
negligible. This is achieved by a detailed simulation of
the time dependent longitudinal and lateral profiles of the
HERA beams.

• The uncertainty of the efficiency of the NC DIS trigger
results in an overall uncertainty of the jet cross sections
of δTrig = 1.0 %.
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Table 16 Double-differential normalised inclusive jet cross sections
measured as a function of Q2 and P jet

T using the kT jet algorithm.
The total systematic uncertainty, δsys, sums all systematic uncertain-

ties in quadrature, including the uncertainty due to the LAr noise
of δLArNoise = 0.5 %. Further details are given in the caption of
Table 6

Normalised inclusive jet cross sections in bins of Q2 and P jet
T using the kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad δhad [%]

1α 1.63 × 10−1 2.7 1.1 −0.6 +0.6
−0.8

+0.3
−0.3

−0.4
+0.3

+0.1
−0.1 0.93 2.2

1β 7.16 × 10−2 4.1 3.0 +2.0 +2.0
−2.2

−0.1
+0.2

−0.7
+0.5

+0.2
−0.3 0.97 1.7

1γ 1.87 × 10−2 6.4 4.2 +2.9 +3.0
−3.0

−0.3
+0.6

−0.4
+0.5

+0.3
−0.4 0.96 1.1

1δ 2.10 × 10−3 15.3 11.9 +10.9 +4.5
−4.9

−0.5
+0.6

−0.1
−0.5

+0.2
−0.5 0.95 0.7

2α 1.73 × 10−1 2.9 1.7 −1.2 +0.5
−0.6

+0.6
−0.4

−0.6
+0.9

+0.1
−0.1 0.93 2.1

2β 8.44 × 10−2 4.1 3.3 +2.4 +2.0
−2.0

−0.2
+0.2

−0.7
+0.6

+0.2
−0.2 0.97 1.7

2γ 2.21 × 10−2 6.6 5.2 +4.1 +3.3
−3.0

−0.3
+0.4

−0.6
+0.5

+0.1
−0.2 0.97 1.3

2δ 2.70 × 10−3 15.2 6.3 +3.9 +5.3
−4.4

−0.7
+0.5

−0.0
+0.1

+0.2
−0.2 0.96 1.2

3α 1.90 × 10−1 3.0 1.4 +0.6 +0.4
−0.5

+0.6
−0.6

−1.0
+0.7

+0.1
−0.1 0.93 1.5

3β 1.01 × 10−1 4.0 3.0 +2.2 +1.9
−1.8

+0.1
−0.1

−0.7
+0.9

+0.2
−0.1 0.97 1.1

3γ 2.54 × 10−2 6.8 3.6 +1.4 +3.0
−3.2

−0.2
+0.2

−1.0
+0.6

+0.3
−0.7 0.97 0.9

3δ 3.20 × 10−3 15.1 6.3 −3.7 +4.9
−5.2

−0.4
+0.1

+0.8
−0.3

+0.3
+0.0 0.95 0.5

4α 2.23 × 10−1 3.2 1.6 +0.5 +0.7
−0.8

+0.5
−0.5

−1.1
+1.2

+0.0
−0.0 0.93 1.2

4β 1.23 × 10−1 4.1 1.7 +0.3 +1.4
−1.4

+0.2
−0.2

−0.6
+0.7

+0.1
−0.1 0.97 1.0

4γ 3.63 × 10−2 6.1 4.1 +2.5 +3.3
−3.0

−0.0
−0.2

−0.8
+0.8

+0.1
−0.1 0.97 0.5

4δ 3.90 × 10−3 16.5 11.2 −9.9 +5.1
−4.9

−0.3
+0.1

−0.0
−0.2

+0.3
−0.4 0.96 0.4

5α 2.41 × 10−1 3.4 1.2 +0.5 +0.5
−0.6

+0.4
−0.4

−0.6
+0.6

−0.0
+0.0 0.92 0.9

5β 1.59 × 10−1 3.9 1.7 −0.9 +1.1
−1.0

+0.1
−0.1

−0.6
+0.8

−0.2
+0.1 0.97 0.5

5γ 5.96 × 10−2 4.8 2.6 +1.0 +2.2
−2.3

+0.1
−0.1

−0.7
+0.7

+0.1
−0.1 0.97 0.4

5δ 1.14 × 10−2 8.5 4.3 +0.9 +4.3
−4.0

+0.0
+0.0

−0.5
+0.5

+0.3
−0.3 0.96 0.3

6α 3.04 × 10−1 14.5 5.9 −5.8 +0.2
−0.3

+0.3
−0.5

−1.1
−1.0

−0.0
+0.3 0.91 0.6

6β 2.04 × 10−1 16.3 2.9 −2.5 +1.0
−0.6

+0.1
+0.0

−0.3
+1.8

−0.1
+0.5 0.96 0.6

6γ 7.84 × 10−2 21.5 15.7 −15.6 +1.7
−1.4

+0.2
−0.3

−0.7
+0.6

−0.2
+0.3 0.99 1.1

6δ 3.61 × 10−2 19.5 22.4 −22.3 +2.4
−2.3

+0.0
+0.0

−0.2
−0.4

+0.3
−0.2 0.98 0.8

• The efficiency of the requirement of a link between the
primary vertex, the electron track and the electron clus-
ter in the LAr calorimeter is described by the simula-
tion within 1 %, which is assigned as an overall track-
cluster-link uncertainty, δTrkCl, on the jet cross sections
[14].

• The overall normalisation uncertainty due to the lumi-
nosity measurement is δLumi = 2.5 % [23].

In case of the normalised jet cross sections all systematic
uncertainties are varied simultaneously in the numerator and
denominator. Consequently, all normalisation uncertainties,
δLumi, δTrkCl and δTrig, cancel fully. Uncertainties due to the
electron reconstruction, such as δE′

e , δID(e) and δθe cancel to
a large extent, and uncertainties due to the reconstruction of
the HFS cancel partially.

The relative size of the dominant experimental uncertain-
ties δstat, δJES and δModel are displayed in Fig. 8 for the abso-
lute jet cross sections. The jet energy scale δJES becomes

relevant for the high-P jet
T region, since these jets tend to go

more in the direction of the incoming proton and are thus
mostly made up from calorimetric information. The model
uncertainty is sizeable mostly in the high-P jet

T region.

5 Theoretical predictions

Theoretical pQCD predictions in NLO accuracy are com-
pared to the measured cross sections. Hadronisation effects
and effects of Z -exchange are not part of the pQCD pre-
dictions, and are therefore taken into account by correction
factors.
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Table 17 Double-differential normalised dijet cross sections mea-
sured as a function of Q2 and 〈PT〉2 using the kT jet algorithm.
The total systematic uncertainty, δsys, sums all systematic uncertain-

ties in quadrature, including the uncertainty due to the LAr noise of
δLArNoise = 0.6 %. Further details are given in the caption of Table 7

Normalised dijet cross sections in bins of Q2 and 〈PT〉2 using the kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad δhad [%]

1α 5.42 × 10−2 3.6 1.8 +1.5 −0.2
+0.1

+0.6
−0.5

−0.5
+0.3

+0.1
−0.2 0.94 2.0

1β 3.13 × 10−2 5.8 3.1 +2.6 +1.4
−1.5

−0.4
+0.4

−0.1
+0.3

+0.2
−0.1 0.97 1.4

1γ 8.30 × 10−3 6.6 5.0 +3.3 +3.7
−3.5

−0.4
+0.7

−0.4
+0.2

+0.3
−0.4 0.96 1.0

1δ 1.00 × 10−3 16.4 8.7 +7.2 +5.0
−4.5

−0.6
+0.8

−0.6
−0.4

+0.3
−0.6 0.96 1.2

2α 5.71 × 10−2 4.0 1.8 +1.4 −0.3
+0.4

+0.8
−0.6

−0.4
+0.6

+0.1
−0.0 0.94 1.7

2β 3.92 × 10−2 5.5 2.6 +1.6 +1.6
−2.0

−0.2
+0.2

−0.7
+0.7

+0.2
−0.1 0.98 1.6

2γ 9.30 × 10−3 7.4 4.4 +3.0 +3.3
−3.0

−0.5
+0.4

−0.2
+0.1

+0.2
−0.3 0.97 1.0

2δ 1.20 × 10−3 18.1 12.5 +11.5 +5.8
−3.9

−0.8
+0.5

−0.1
+0.1

+0.1
−0.3 0.95 1.9

3α 6.66 × 10−2 3.9 1.4 +0.6 −0.5
+0.5

+0.8
−0.7

−0.5
+0.6

+0.1
−0.1 0.93 1.2

3β 4.11 × 10−2 6.1 3.4 +2.8 +1.7
−1.7

−0.0
+0.1

−0.6
+0.5

+0.1
−0.1 0.98 0.9

3γ 1.38 × 10−2 5.9 3.1 +0.5 +2.9
−3.1

−0.3
+0.3

−0.4
+0.1

+0.2
−0.4 0.97 0.8

3δ 1.30 × 10−3 20.5 9.5 −8.0 +4.4
−5.9

−0.4
+0.1

−0.2
−0.6

+0.1
−0.5 0.96 0.4

4α 7.61 × 10−2 4.1 1.3 −0.7 −0.4
+0.6

+0.7
−0.6

−0.2
+0.3

+0.1
−0.0 0.92 1.1

4β 4.95 × 10−2 6.3 3.0 +2.5 +1.3
−1.6

+0.1
−0.2

−0.5
+0.5

+0.1
−0.1 0.97 0.9

4γ 1.67 × 10−2 6.2 3.1 +1.3 +2.7
−2.7

−0.1
+0.2

−0.3
+0.3

+0.1
−0.1 0.98 0.5

4δ 1.70 × 10−3 20.4 6.6 −4.2 +4.9
−5.2

−0.2
+0.2

−0.3
+0.3

+0.2
−0.3 0.96 0.3

5α 8.27 × 10−2 4.4 1.8 −1.2 −0.9
+1.0

+0.5
−0.5

+0.6
−0.5

+0.1
−0.1 0.92 0.6

5β 7.37 × 10−2 5.1 1.6 +1.0 +1.0
−1.0

+0.1
−0.1

−0.5
+0.4

+0.0
+0.0 0.96 0.3

5γ 2.66 × 10−2 5.4 3.9 +3.3 +2.0
−2.0

+0.1
−0.0

−0.4
+0.5

+0.1
−0.1 0.98 0.4

5δ 5.30 × 10−3 10.3 4.3 +0.9 +4.2
−4.0

−0.0
+0.2

−0.5
+0.2

+0.3
−0.4 0.96 0.7

6α 8.53 × 10−2 22.9 5.1 −4.9 −0.9
+1.3

+0.1
−0.5

+0.5
−0.9

+0.2
+0.4 0.89 0.2

6β 9.88 × 10−2 20.0 7.2 +6.8 +2.2
−0.1

+0.2
−0.1

−0.7
+3.0

−0.1
+1.5 0.95 0.5

6γ 4.08 × 10−2 19.2 7.0 −6.8 +0.8
−2.1

+0.2
−0.4

−0.5
−0.6

−0.9
−0.0 0.97 0.8

6δ 1.72 × 10−2 26.7 9.8 −9.6 +2.5
−1.2

−0.0
+0.2

+1.2
+0.2

+1.3
−0.6 0.98 1.0

5.1 NLO calculations

The parton level cross section σ
parton
i in each bin i is pre-

dicted in pQCD as a power-series in αs(μr ), where μr is the
renormalisation scale. The perturbative coefficients ci,a,n for
a parton of flavour a in order n are convoluted in x with the
parton density functions fa of the proton,

σ
parton
i =

∑

a,n

αn
s (μr , αs(MZ )) ci,a,n

(

x, μr , μ f
)

⊗ fa(x, μ f ). (8)

The variable μ f denotes the factorisation scale, and αs(MZ )

is the value of the strong coupling constant at the mass of the
Z -boson. The first non-vanishing contribution to σ

parton
i is of

order αs for inclusive jet and dijet cross sections and of order
α2

s for trijet cross sections. The perturbative coefficients are
currently known only to NLO.

The predictions σ
parton
i are obtained using the fastNLO

framework [54–56] with perturbative coefficients calculated
by the NLOJet++ program [57,58]. The calculations are per-
formed in NLO in the strong coupling and use the MS-
scheme with five massless quark flavours. The PDFs are
accessed via the LHAPDF routines [59]. The MSTW2008
PDF set [60,61] is used, determined with a value of the
strong coupling constant of αs(MZ ) = 0.118 [62]. The
αs-evolution is performed using the evolution routines as
provided together with the PDF sets in LHAPDF. The run-
ning of the electromagnetic coupling αem(Q) is calculated
using a recent determination of the hadronic contribution

αhad(M2

Z ) = 275.7(0.8)×10−4 [63]. The renormalisation
and factorisation scales are chosen to be

μ2
r = (Q2 + P2

T )/2 and μ2
f = Q2. (9)
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Table 18 Double-differential normalised inclusive dijet cross sections
measured as a function of Q2 and ξ2 using the kT jet algorithm.
The total systematic uncertainty, δsys, sums all systematic uncertain-

ties in quadrature, including the uncertainty due to the LAr noise of
δLArNoise = 0.6 %. Further details are given in the caption of Table 8

Normalised dijet cross sections in bins of Q2 and ξ2 using the kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad δhad [%]

1a 4.72 × 10−2 4.2 6.7 +6.5 +0.6
−0.7

+1.0
−1.0

+0.2
−0.4

+0.1
−0.2 0.94 2.1

1b 4.23 × 10−2 3.4 3.1 +2.7 +0.9
−1.0

+0.6
−0.6

+0.2
−0.2

+0.3
−0.3 0.94 1.7

1c 1.39 × 10−2 7.0 2.7 +1.7 +2.1
−1.8

−0.2
+0.3

+0.2
−0.1

+0.1
−0.2 0.94 1.3

1d 4.60 × 10−3 8.8 6.9 +6.0 +3.1
−2.7

−0.6
+0.5

−1.7
+1.4

+0.3
−0.3 0.92 0.7

2a 4.59 × 10−2 4.9 3.7 +3.5 +0.3
−0.4

+0.9
−0.9

+0.0
+0.1

+0.2
−0.1 0.94 1.8

2b 4.99 × 10−2 3.5 2.5 +2.0 +0.6
−0.8

+0.7
−0.7

+0.6
−0.7

+0.1
−0.1 0.94 1.7

2c 1.95 × 10−2 6.3 2.4 −1.0 +2.0
−2.1

−0.2
+0.2

+0.3
−0.2

+0.2
−0.2 0.94 1.1

2d 5.40 × 10−3 9.4 5.9 +5.2 +2.7
−2.3

−0.6
+0.6

−1.1
+1.1

+0.1
+0.0 0.93 0.6

3a 4.10 × 10−2 4.1 4.3 +4.2 +0.3
−0.3

+0.9
−0.9

−0.2
+0.1

+0.1
−0.1 0.93 1.4

3b 6.40 × 10−2 3.0 2.5 +2.1 +0.5
−0.6

+0.7
−0.7

+0.5
−0.6

+0.1
−0.1 0.94 1.2

3c 3.02 × 10−2 4.6 2.1 −1.2 +1.5
−1.6

+0.1
−0.1

+0.3
−0.3

+0.2
−0.1 0.94 0.9

3d 7.20 × 10−3 8.3 4.0 +2.7 +3.0
−2.9

−0.4
+0.3

−0.6
+0.3

−0.1
−0.2 0.94 0.4

4a 2.34 × 10−2 7.7 7.3 +7.2 −0.1
−0.3

+0.7
−0.8

+0.4
−0.4

−0.0
−0.0 0.92 1.4

4b 8.14 × 10−2 3.2 3.8 +3.6 +0.3
−0.5

+0.6
−0.7

+0.1
−0.2

+0.1
−0.1 0.93 1.2

4c 5.11 × 10−2 3.7 2.0 −1.4 +1.0
−1.0

+0.4
−0.4

+0.7
−0.8

+0.1
−0.1 0.94 0.8

4d 1.08 × 10−2 8.2 5.4 +4.7 +2.8
−2.7

−0.1
+0.1

−0.0
+0.4

+0.2
−0.1 0.95 0.5

5b 4.94 × 10−2 3.6 2.1 +1.9 +0.3
−0.5

+0.5
−0.6

−0.1
+0.1

+0.0
−0.1 0.92 0.5

5c 9.52 × 10−2 2.9 1.1 +0.4 +0.5
−0.5

+0.6
−0.6

+0.4
−0.3

+0.1
−0.1 0.93 0.5

5d 6.25 × 10−2 2.9 1.9 +1.4 +1.0
−0.9

+0.3
−0.3

−0.2
−0.0

+0.1
−0.1 0.94 0.4

6d 2.17 × 10−1 6.7 2.3 +2.2 +0.2
−0.3

+0.3
−0.4

−0.1
−0.2

−0.0
+0.1 0.93 0.8

The choice of μr is motivated by the presence of two hard
scales in the process, whereas μ f is chosen such that the
same factorisation scale can be used in the calculation of jet
and NC DIS cross sections. When choosing μ2

r = Q2 or μ2
r

= P2
T for the jet observables, the resulting changes in the

cross section predictions are well covered by the theoretical
uncertainty obtained from scale variations.

The calculation of the NC DIS cross sections, σNC
i , for the

prediction of the normalised jet cross sections is performed
using the QCDNUM program [64] in NLO in the zero mass
variable flavour number scheme (ZM-VFNS). No contribu-
tion from Z -exchange is included, and both μ f and μr are
set to Q.

5.2 Hadronisation corrections

The NLO calculations at parton level have to be corrected
for non-perturbative hadronisation effects. The hadronisation
corrections chad account for long-range effects in the cross
section calculation such as the fragmentation of partons into
hadrons. It is given by the ratio of the jet cross section on

hadron level to the jet cross section on parton level, i.e. for
each bin i chad

i = σ hadron
i /σ

parton
i .

The jet cross sections on parton and hadron level are cal-
culated using DJANGOH and RAPGAP. The parton level
is obtained for MC event generators by selecting all par-
tons before they are subjected to the fragmentation process.
Reweighting the MC distributions of jet observables on par-
ton level to those obtained from the NLO calculation has
negligible impact on the hadronisation corrections. Hadro-
nisation corrections are computed for both the kT and the
anti-kT jet algorithm. They are very similar for inclusive jets
and dijets, for trijets the corrections for anti-kT tend to be
somewhat smaller than for kT.

The arithmetic average of chad is used, obtained from
the weighted DJANGOH and RAPGAP predictions (see
Sect. 3.1). Small differences of the correction factors between
RAPGAP and DJANGOH , which both use the Lund string
fragmentation model, are observed, due to the different mod-
elling of the partonic final state. The values of chad range from
0.8 to 1 and are given in the jet cross sections Tables 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
and 25.
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Table 19 Double-differential normalised trijet cross sections mea-
sured as a function of Q2 and 〈PT〉3 using the kT jet algorithm.
The total systematic uncertainty, δsys, sums all systematic uncertain-

ties in quadrature, including the uncertainty due to the LAr noise of
δLArNoise = 0.9 %. Further details are given in the caption of Table 9

Normalised trijet cross sections in bins of Q2 and 〈PT〉3 using the kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad δhad [%]

1α 1.12 × 10−2 8.9 3.8 +2.1 −1.3
+1.6

+2.8
−2.6

−0.2
+0.3

+0.3
−0.1 0.79 5.3

1β 6.10 × 10−3 8.6 3.1 +1.1 +2.6
−2.9

+0.3
−0.4

+0.2
+0.1

+0.0
−0.2 0.85 4.3

1γ 1.00 × 10−3 18.0 7.3 +5.8 +4.1
−4.4

−0.3
+0.6

−0.9
+0.0

+0.8
−0.6 0.89 3.6

2α 1.03 × 10−2 11.1 4.6 −2.9 −1.9
+1.5

+2.7
−3.3

−0.2
+0.3

+0.0
−0.1 0.78 5.0

2β 6.50 × 10−3 9.2 4.5 +3.5 +2.5
−2.6

+0.8
−0.8

−0.3
+0.1

+0.3
−0.3 0.84 4.4

2γ 1.40 × 10−3 17.5 4.9 −2.2 +4.4
−4.1

+0.2
−0.0

+1.1
−0.3

−0.2
+0.0 0.89 2.7

3α 1.26 × 10−2 10.5 4.7 −2.9 −1.6
+1.6

+3.2
−3.2

−0.2
+0.5

+0.1
−0.2 0.78 4.6

3β 9.60 × 10−3 8.0 5.5 +4.8 +2.0
−2.3

+0.9
−1.1

−0.7
+0.5

+0.4
−0.2 0.85 3.7

3γ 1.80 × 10−3 16.8 7.0 −4.5 +5.4
−5.0

+0.3
−0.2

−1.0
+0.1

+0.4
−1.0 0.87 2.3

4α 1.40 × 10−2 11.1 8.2 −7.5 −1.5
+1.4

+3.1
−2.8

−0.4
+0.2

+0.1
−0.2 0.77 4.1

4β 1.29 × 10−2 7.4 5.8 +5.3 +1.8
−1.8

+1.0
−1.1

−0.8
+0.8

+0.2
−0.1 0.85 3.6

4γ 3.10 × 10−3 13.8 6.2 +2.8 +5.4
−5.4

+0.6
−0.2

−0.2
+0.4

+0.3
−0.1 0.87 2.3

5α 1.80 × 10−2 9.8 7.5 −6.8 −2.1
+2.1

+1.9
−2.0

+1.2
−1.0

+0.2
−0.1 0.77 3.5

5β 1.62 × 10−2 7.4 4.0 +3.6 +1.0
−1.1

+0.9
−0.8

−0.4
+0.6

+0.0
−0.1 0.83 2.9

5γ 3.70 × 10−3 14.5 12.6 +11.7 +4.3
−4.1

+0.4
−0.6

−1.1
+0.7

+0.5
−0.4 0.86 2.2

6β 1.41 × 10−2 37.8 2.4 +1.9 −0.5
+0.5

+1.1
−0.9

+0.9
+0.1

+0.1
+0.5 0.82 0.8

Table 20 Double-differential normalised trijet cross sections measured
as a function of Q2 and ξ3 using the kT jet algorithm. The total system-
atic uncertainty, δsys, sums all systematic uncertainties in quadrature,

including the uncertainty due to the LAr noise of δLArNoise = 0.9 %.
Further details are given in the caption of Table 10

Normalised trijet cross sections in bins of Q2 and ξ3 using the kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad δhad [%]

1A 7.30 × 10−3 11.4 17.9 +17.4 −0.6
+0.6

+3.7
−3.8

+0.5
−0.9

+0.1
−0.2 0.81 6.5

1B 7.20 × 10−3 10.6 2.3 +1.5 +0.8
−1.2

+1.1
−0.9

−0.2
+0.4

+0.3
−0.4 0.81 5.3

1C 2.90 × 10−3 13.2 7.7 −6.4 +4.2
−3.9

+0.1
−0.2

+0.5
−0.6

+0.1
−0.2 0.81 3.7

2A 5.90 × 10−3 16.5 11.3 +10.7 +0.0
+0.3

+3.4
−3.4

+0.7
−0.8

+0.1
−0.2 0.80 5.7

2B 8.80 × 10−3 10.6 22.0 −21.9 +0.7
−1.5

+1.3
−1.4

+0.5
−0.6

+0.1
−0.1 0.81 4.9

2C 3.10 × 10−3 15.0 14.9 +14.5 +3.5
−2.6

+0.3
−0.1

+0.7
−0.3

+0.1
−0.1 0.80 3.5

3A 6.80 × 10−3 14.6 15.2 +14.7 −0.5
+0.3

+3.2
−3.3

+1.0
−0.6

+0.4
−0.3 0.80 5.1

3B 1.16 × 10−2 9.3 8.4 +8.1 +0.1
−0.3

+1.9
−1.8

+0.0
−0.2

+0.0
−0.1 0.81 4.5

3C 5.40 × 10−3 12.0 13.4 −13.0 +3.4
−2.5

+0.7
−0.6

+0.8
−0.3

+0.4
−0.1 0.80 3.0

4A 7.10 × 10−3 16.0 9.7 +9.2 −1.4
+1.6

+2.2
−2.6

+0.8
−1.5

−0.2
−0.1 0.80 5.1

4B 1.36 × 10−2 10.1 9.7 +9.4 −0.0
+0.1

+2.0
−1.9

+0.3
−0.0

+0.3
−0.2 0.81 4.5

4C 9.10 × 10−3 9.2 5.0 −4.1 +2.7
−2.6

+0.5
−0.4

+0.1
−0.3

+0.0
−0.2 0.81 3.1

5B 1.59 × 10−2 9.4 4.4 +4.1 −0.4
+0.4

+1.4
−1.3

−0.0
+0.2

−0.1
+0.2 0.80 2.9

5C 1.81 × 10−2 7.6 11.5 +11.3 +0.9
−1.1

+1.2
−1.2

+0.1
−0.1

+0.4
−0.3 0.80 2.8

6C 4.23 × 10−2 17.1 32.6 +32.5 +0.6
−0.3

+1.3
−1.2

+1.0
−0.4

+0.5
+0.0 0.79 1.1
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Table 21 Double-differential normalised inclusive jet cross sections measured as a function of Q2 and P jet
T using the anti-kT jet algorithm. The

uncertainties δhad are identical to those in Table 16 and are not repeated here. Further details are given in the caption of Table 16

Normalised inclusive jet cross sections in bins of Q2 and P jet
T using the anti-kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad

1α 1.61 × 10−1 2.3 1.2 −0.6 +0.7
−0.7

+0.4
−0.4

−0.5
+0.4

+0.1
−0.2 0.93

1β 7.17 × 10−2 3.4 3.3 +2.3 +2.1
−2.3

−0.1
+0.2

−0.5
+0.7

+0.2
−0.3 0.94

1γ 1.68 × 10−2 6.3 4.9 +3.6 +3.4
−3.0

−0.3
+0.4

−0.3
+0.8

+0.4
−0.4 0.93

1δ 2.00 × 10−3 16.2 6.4 −4.4 +4.5
−4.5

−0.7
+0.5

−0.3
−0.3

+0.3
−0.5 0.93

2α 1.75 × 10−1 2.5 1.3 −0.8 +0.5
−0.5

+0.6
−0.5

−0.6
+0.7

+0.2
−0.1 0.93

2β 8.24 × 10−2 3.6 3.1 +2.1 +2.1
−2.2

−0.1
+0.2

−0.6
+0.5

+0.1
−0.2 0.95

2γ 2.10 × 10−2 6.4 5.6 +4.6 +3.0
−2.9

−0.5
+0.2

−0.8
+0.4

−0.0
−0.2 0.94

2δ 2.80 × 10−3 14.1 7.0 +5.0 +4.8
−4.7

−0.4
+0.7

−0.2
+0.3

+0.2
−0.3 0.93

3α 1.93 × 10−1 2.5 1.2 −0.1 +0.4
−0.3

+0.7
−0.7

−0.8
+0.7

+0.0
−0.1 0.94

3β 9.90 × 10−2 3.4 2.8 +1.8 +1.9
−1.9

+0.0
−0.0

−0.8
+0.8

+0.2
−0.2 0.95

3γ 2.73 × 10−2 5.7 3.8 +1.9 +3.1
−3.2

−0.2
+0.2

−0.7
+0.7

+0.3
−0.3 0.95

3δ 3.30 × 10−3 14.7 7.5 +5.3 +4.9
−5.6

−0.3
+0.4

+0.3
−0.3

+0.4
−0.2 0.93

4α 2.11 × 10−1 2.8 1.6 +0.7 +0.6
−0.7

+0.6
−0.6

−1.0
+1.1

+0.0
−0.0 0.94

4β 1.23 × 10−1 3.5 1.6 +0.3 +1.3
−1.3

+0.2
−0.0

−0.7
+0.6

+0.1
−0.1 0.95

4γ 3.58 × 10−2 5.5 4.2 +2.9 +3.0
−2.8

+0.1
−0.0

−0.6
+0.7

+0.2
−0.1 0.96

4δ 3.80 × 10−3 16.3 9.6 −8.2 +5.3
−4.9

−0.3
+0.4

−0.0
−0.0

+0.3
−0.2 0.93

5α 2.36 × 10−1 3.0 1.0 +0.4 +0.5
−0.5

+0.4
−0.3

−0.3
+0.5

−0.0
+0.0 0.92

5β 1.58 × 10−1 3.4 1.6 −0.6 +1.2
−1.1

+0.1
−0.1

−0.7
+0.6

−0.1
+0.1 0.97

5γ 5.96 × 10−2 4.3 2.5 +0.8 +2.3
−2.2

+0.1
−0.1

−0.8
+0.8

+0.1
−0.1 0.96

5δ 1.02 × 10−2 9.0 4.6 +1.9 +4.1
−4.1

−0.0
−0.1

−0.6
+0.4

+0.2
−0.3 0.95

6α 2.96 × 10−1 12.6 2.2 −2.0 −0.3
−0.2

+0.5
−0.3

−0.8
−0.5

−0.5
−0.2 0.90

6β 2.13 × 10−1 13.3 4.4 −3.9 +1.1
−1.1

+0.2
−0.4

+1.8
+0.8

+0.9
−0.0 0.95

6γ 7.13 × 10−2 20.7 8.5 −8.4 +1.6
−1.3

+0.3
−0.2

+0.4
+0.5

+0.2
+0.2 0.98

6δ 3.18 × 10−2 20.3 20.0 −19.9 +2.1
−2.5

+0.1
−0.2

−0.2
+0.3

+0.1
−0.1 0.98

5.3 Electroweak corrections

Only virtual corrections for γ -exchange via the running of
αem(μr ) are included in the pQCD calculations. The elec-
troweak corrections cew account for the contributions from
γ Z -interference and Z -exchange. They are estimated using
the LEPTO event generator, where cross sections can be cal-
culated including these effects (σγ,Z ) and excluding them
(σγ ). The electroweak correction factor cew is defined for
each bin i by cew

i = σ
γ,Z
i /σ

γ

i . It is close to unity at low Q2

and becomes relevant for Q2 → M2
Z , i.e. mainly in the high-

est Q2 bin from 5000 < Q2 < 15 000 GeV2. In this bin the
value of cew is around 1.1 for the luminosity-weighted sum of
e+ p and e− p data corresponding to the full HERA-II dataset.
The electroweak correction has some PT-dependence, which,
however, turns out to be negligible for the recorded mixture
of e+ p and e− p data. In case of normalised jet cross sec-
tions, the electroweak corrections cancel almost completely

such that they can be neglected. The electroweak corrections
are well-known compared to the statistical precision of those
data points where the corrections deviate from unity, and
therefore no uncertainty on cew is assigned. The values of
cew are given in the jet cross sections Tables 6, 7, 8, 9, 10,
11, 12, 13, 14 and 15.

5.4 QCD predictions on hadron level

Given the parton level cross sections, σ parton
i , and the correc-

tion factors chad
i and cew

i in bin i , the hadron level jet cross
sections are calculated as

σ hadron
i = σ

parton
i chad

i cew
i , (10)

while the predictions for the normalised jet cross sections are
given by
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Table 22 Double-differential normalised dijet cross sections measured as a function of Q2 and 〈PT〉2 using the anti-kT jet algorithm. The uncer-
tainties δhad are identical to those in Table 17 and are not repeated here. Further details are given in the caption of Table 17

Normalised dijet cross sections in bins of Q2 and 〈PT〉2 using the anti-kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad

1α 5.45 × 10−2 3.1 2.0 +1.8 −0.1
−0.1

+0.6
−0.4

−0.5
+0.4

+0.1
−0.2 0.95

1β 3.31 × 10−2 4.5 3.7 +3.2 +1.7
−1.8

−0.3
+0.3

−0.3
+0.3

+0.2
−0.1 0.95

1γ 7.40 × 10−3 6.7 5.2 +3.8 +3.5
−3.3

−0.4
+0.5

−0.4
+0.2

+0.3
−0.4 0.94

1δ 9.00 × 10−4 17.1 7.5 −5.9 +5.2
−3.9

−0.8
+0.7

−0.4
−0.2

+0.2
−0.5 0.94

2α 6.23 × 10−2 3.3 1.8 +1.5 −0.2
+0.2

+0.6
−0.5

−0.5
+0.6

+0.1
+0.0 0.95

2β 3.60 × 10−2 5.1 2.6 +1.9 +1.5
−1.7

−0.1
+0.2

−0.8
+0.6

+0.2
−0.3 0.96

2γ 8.90 × 10−3 7.1 6.1 +5.2 +3.2
−3.1

−0.6
+0.3

−0.2
+0.3

+0.2
−0.2 0.95

2δ 1.30 × 10−3 16.3 8.2 +5.8 +6.2
−5.1

−0.4
+0.8

+0.5
+0.3

+0.3
−0.1 0.94

3α 6.94 × 10−2 3.3 1.4 +0.9 −0.2
+0.1

+0.7
−0.7

−0.6
+0.6

+0.1
−0.1 0.94

3β 4.29 × 10−2 4.9 3.0 +2.4 +1.6
−1.8

+0.1
−0.1

−0.6
+0.6

+0.1
−0.1 0.96

3γ 1.33 × 10−2 5.6 3.2 +0.9 +3.0
−3.0

−0.2
+0.2

−0.4
+0.3

+0.2
−0.3 0.95

3δ 1.00 × 10−3 23.3 6.2 −3.6 +5.1
−5.0

−0.3
+0.4

−0.2
−0.1

+0.1
−0.3 0.95

4α 7.69 × 10−2 3.5 1.0 +0.4 −0.4
+0.3

+0.6
−0.5

−0.3
+0.3

+0.0
+0.0 0.93

4β 5.11 × 10−2 5.0 2.8 +2.3 +1.2
−1.5

+0.2
−0.2

−0.5
+0.7

+0.1
−0.1 0.96

4γ 1.69 × 10−2 5.5 3.8 +2.8 +2.7
−2.3

−0.1
+0.1

−0.2
+0.4

+0.1
−0.1 0.96

4δ 1.80 × 10−3 18.2 8.7 −6.8 +5.4
−5.4

−0.1
+0.3

−0.1
+0.2

+0.3
−0.3 0.94

5α 8.54 × 10−2 3.8 1.4 −0.8 −0.8
+0.8

+0.3
−0.3

+0.4
−0.2

+0.1
−0.0 0.92

5β 7.38 × 10−2 4.3 1.9 +1.4 +1.0
−1.1

+0.2
−0.2

−0.4
+0.3

−0.0
−0.1 0.95

5γ 2.62 × 10−2 5.0 3.4 +2.7 +2.0
−1.8

+0.2
−0.1

−0.5
+0.5

+0.2
−0.1 0.97

5δ 4.90 × 10−3 10.5 5.1 +2.9 +4.3
−3.9

+0.0
+0.0

−0.2
+0.4

+0.4
−0.3 0.96

6α 9.70 × 10−2 17.4 1.2 +0.4 −0.1
+0.6

+0.6
−0.4

−0.5
+1.0

−0.2
+0.5 0.91

6β 8.19 × 10−2 19.7 1.7 +1.5 +0.5
−0.4

+0.4
−0.2

+0.2
+0.6

+0.1
+0.3 0.94

6γ 4.96 × 10−2 14.8 5.3 −5.0 +1.5
−1.9

+0.2
−0.1

−0.3
+0.2

−0.3
+0.4 0.96

6δ 1.45 × 10−2 26.9 10.1 −9.8 +2.3
−2.2

+0.1
−0.3

−0.2
+0.9

+0.2
−0.0 0.97

(
σ

σNC

)hadron

i
= σ

parton
i chad

i

σNC
i

. (11)

5.5 Theoretical uncertainties

The following uncertainties on the NLO predictions are con-
sidered:

• The dominant theoretical uncertainty is attributed to the
contribution from missing higher orders in the truncated
perturbative expansion beyond NLO. These contribu-
tions are estimated by a simultaneous variation of the
chosen scales for μr and μ f by the conventional factors
of 0.5 and 2. Typically, the resulting cross section varies
monotonically in this interval. In a few cases when this
does not hold, the minimum and maximum of the cross
section in the interval is chosen to define the scale uncer-
tainty.

In case of normalised jet cross sections, the scales are
varied simultaneously in the calculation of the numerator
and denominator.

• The uncertainty on the hadronisation correction δhad is
estimated using the SHERPA event generator [65,66].
Processes including parton scattering of 2 → 5 config-
urations are generated on tree level, providing a good
description of jet production up to trijets, while NC DIS
cross sections are not well described. Also the parton
level distributions are in reasonable agreement with the
NLO calculation. The partons are hadronised once with
the Lund string fragmentation model and once with the
cluster fragmentation model [67]. Half the difference
between the two correction factors, derived from the two
different fragmentation models, is taken as uncertainty on
the hadronisation correction δhad. It is between 1 to 2 %
for the inclusive jet and dijet measurements and between
0.5 and 5 % for the trijet measurements. These uncertain-
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Table 23 Double-differential normalised inclusive dijet cross sections measured as a function of Q2 and ξ2 using the anti-kT jet algorithm. The
uncertainties δhad are identical to those in Table 18 and are not repeated here. Further details are given in the caption of Table 18

Normalised dijet cross sections in bins of Q2 and ξ2 using the anti-kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad

1a 5.00 × 10−2 3.0 8.5 +8.4 +0.7
−0.7

+1.1
−1.0

+0.1
−0.1

+0.2
−0.2 0.96

1b 4.30 × 10−2 3.1 3.0 +2.6 +0.9
−1.1

+0.7
−0.7

+0.3
−0.4

+0.2
−0.2 0.95

1c 1.41 × 10−2 6.5 9.2 −9.0 +1.9
−1.7

−0.2
+0.2

+0.1
+0.3

+0.3
−0.3 0.92

1d 4.10 × 10−3 8.9 6.7 +5.9 +2.7
−3.1

−0.4
+0.4

−1.4
+0.9

+0.1
−0.3 0.90

2a 4.61 × 10−2 5.2 9.1 +9.0 +0.3
−0.2

+0.9
−0.9

−0.1
+0.2

+0.1
−0.0 0.96

2b 5.17 × 10−2 3.3 2.5 +2.0 +0.7
−0.9

+0.7
−0.7

+0.6
−0.6

+0.1
−0.1 0.95

2c 1.84 × 10−2 6.0 2.6 +1.7 +1.8
−1.8

−0.0
+0.0

+0.1
−0.0

+0.2
−0.1 0.93

2d 5.20 × 10−3 8.8 5.2 +4.3 +2.9
−2.3

−0.3
+0.6

−0.8
+1.3

+0.3
−0.1 0.91

3a 4.14 × 10−2 4.0 8.0 +8.0 +0.3
−0.3

+0.9
−0.8

−0.2
+0.2

+0.2
−0.2 0.95

3b 6.69 × 10−2 2.8 2.9 +2.6 +0.7
−0.7

+0.7
−0.7

+0.4
−0.5

+0.0
−0.1 0.95

3c 2.84 × 10−2 4.6 2.9 −2.5 +1.4
−1.5

+0.1
−0.2

+0.3
−0.3

+0.2
−0.2 0.93

3d 7.10 × 10−3 7.8 5.7 −4.9 +2.8
−2.8

−0.3
+0.2

−0.8
+0.4

−0.1
−0.3 0.92

4a 2.38 × 10−2 7.5 3.3 +3.1 +0.2
−0.2

+0.7
−0.8

+0.5
−0.3

+0.1
−0.0 0.94

4b 8.26 × 10−2 3.0 2.4 +2.2 +0.6
−0.6

+0.7
−0.7

+0.3
−0.3

+0.1
−0.1 0.95

4c 5.28 × 10−2 3.4 6.0 +5.8 +0.9
−0.9

+0.4
−0.5

+0.6
−0.9

+0.1
−0.1 0.94

4d 1.10 × 10−2 7.4 13.9 +13.6 +2.8
−2.8

−0.0
+0.0

−0.4
+0.4

+0.2
−0.1 0.93

5b 5.07 × 10−2 3.3 1.7 +1.4 +0.4
−0.4

+0.5
−0.5

−0.1
+0.1

−0.0
−0.1 0.94

5c 9.60 × 10−2 2.7 6.8 +6.7 +0.5
−0.6

+0.5
−0.6

+0.3
−0.3

+0.2
−0.2 0.94

5d 6.24 × 10−2 2.8 8.5 +8.4 +0.9
−1.0

+0.3
−0.3

−0.1
−0.1

+0.1
−0.1 0.93

6d 2.17 × 10−1 6.7 4.9 +4.8 +0.2
−0.5

+0.4
−0.3

+0.2
−0.4

−0.1
−0.1 0.93

ties are included in the cross section tables. The absolute
predictions from SHERPA , however, are considered to be
unreliable due to mismatches between the parton shower
algorithm and the PDFs [68]. Therefore, only ratios of
SHERPA predictions are used for determining the uncer-
tainty on the hadronisation corrections. The uncertainties
obtained in this way are typically between 30 to 100 %
larger than half the difference between the correction fac-
tors obtained using RAPGAP and DJANGOH.

• The uncertainty on the predictions due to the limited
knowledge of the PDFs is determined at a confidence
level of 68 % from the MSTW2008 eigenvectors, follow-
ing the formula for asymmetric PDF uncertainties [69].
The PDF uncertainty is found to be almost symmetric
with a size of about 1 % for all data points. Predictions
using other PDF sets do not deviate by more than two
standard deviations of the PDF uncertainty.

6 Experimental results

In the following the absolute and normalised double-
differential jet cross sections are presented for inclusive jet,
dijet, and trijet production using the kT and the anti-kT jet

algorithms. The labelling of the bins in the tables of cross
sections is explained in Table 5.

An overview of the tables of jet cross sections is sum-
marised in Table 3 and of the tables of correlation coeffi-
cients, i.e. point-to-point statistical correlations, is provided
in Table 4. Figure 9 shows the correlation matrix of the
inclusive, dijet and trijet cross sections, corresponding to
Tables 26, 27, 28, 29, 30 and 31. When looking at the inclu-
sive jet, dijet or trijet cross sections alone, negative corre-
lations down to −0.5 are observed between adjacent bins
in PT, which reflects the moderate jet resolution in PT. In
adjacent Q2 bins, the negative correlations of about −0.1
are close to zero, due to the better resolution in Q2. Size-
able positive correlations are observed between inclusive jet
and dijet cross sections with the same Q2 and similar PT.
Positive correlations between the trijet and the inclusive jet
and dijet measurements are smaller than those between the
dijet and inclusive jet, because of the smaller statistical over-
lap. Within the accuracy of this measurement, the correla-
tion coefficients are very similar no matter whether the kT or
anti-kT jet algorithm are used. Similarly, the statistical corre-
lations of the normalised and the absolute cross sections are
almost identical.
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Table 24 Double-differential normalised trijet cross sections measured
as a function of Q2 and 〈PT〉3 using the anti-kT jet algorithm. Further
details are given in the caption of Table 19. The uncertainties δhad are

identical to those in Table 19 and are not repeated here. Further details
are given in the caption of Table 19

Normalised trijet cross sections in bins of Q2 and 〈PT〉3 using the anti-kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad

1α 9.70 × 10−3 8.9 5.8 +4.8 −1.1
+1.0

+2.7
−3.1

−0.2
+0.3

+0.1
−0.2 0.75

1β 5.90 × 10−3 8.1 4.8 +3.8 +2.8
−2.8

+0.6
−0.3

+0.4
−0.1

+0.1
−0.1 0.78

1γ 7.00 × 10−4 24.0 18.0 +17.5 +4.4
−4.3

−0.4
−0.2

−1.2
+0.3

+0.6
−0.8 0.81

2α 9.80 × 10−3 10.0 4.8 +3.3 −1.0
+1.7

+3.1
−2.9

−0.2
+0.6

+0.1
−0.1 0.74

2β 5.60 × 10−3 9.7 5.1 +4.2 +2.0
−2.9

+0.7
−0.9

−0.5
−0.4

+0.2
−0.4 0.78

2γ 1.30 × 10−3 17.6 8.0 +6.9 +4.9
−3.0

+0.2
+0.2

+1.5
+0.0

−0.2
+0.3 0.81

3α 1.23 × 10−2 9.2 4.0 +2.0 −1.2
+1.5

+2.9
−2.9

−0.4
+1.1

+0.3
−0.2 0.73

3β 7.60 × 10−3 8.6 7.8 +7.4 +2.0
−2.4

+1.0
−1.0

−0.5
+0.2

+0.3
−0.1 0.78

3γ 1.90 × 10−3 14.8 5.7 +1.6 +5.4
−5.1

+0.1
−0.4

−1.4
+0.4

+0.4
−0.9 0.80

4α 1.17 × 10−2 11.0 3.6 −1.9 −1.5
+1.3

+2.4
−2.6

−0.3
−0.1

−0.1
−0.0 0.73

4β 1.13 × 10−2 7.4 8.6 +8.2 +2.2
−1.8

+1.5
−1.3

−0.6
+0.9

+0.2
−0.2 0.78

4γ 3.00 × 10−3 14.0 10.5 +9.0 +5.2
−5.3

+0.4
−0.6

−0.2
+0.6

+0.1
+0.2 0.80

5α 1.46 × 10−2 10.2 3.4 −2.0 −1.8
+1.8

+1.7
−2.0

+0.9
−0.6

+0.2
−0.2 0.71

5β 1.44 × 10−2 7.4 6.7 +6.4 +1.1
−1.1

+1.1
−0.9

−0.2
+0.4

+0.2
−0.1 0.77

5γ 3.10 × 10−3 18.6 21.3 +20.8 +4.1
−3.9

+0.6
−0.8

−1.3
+1.0

+0.3
−0.3 0.79

6β 1.52 × 10−2 33.0 9.1 +9.0 +0.6
−1.1

+1.4
−0.5

+0.3
+0.1

−0.2
+0.2 0.74

Table 25 Double-differential normalised trijet cross sections measured as a function of Q2 and ξ3 using the anti-kT jet algorithm. The uncertainties
δhad are identical to those in Table 20 and are not repeated here. Further details are given in the caption of Table 20

Normalised trijet cross sections in bins of Q2 and ξ3 using the anti-kT jet algorithm

Bin label σ/σNC δstat [%] δsys [%] δModel [%] δJES [%] δRCES [%] δE′
e [%] δθe [%] chad

1A 6.30 × 10−3 11.5 17.5 +17.1 −0.5
+0.6

+3.7
−3.5

+0.5
−0.8

+0.1
−0.2 0.76

1B 7.00 × 10−3 9.0 13.2 +13.1 +0.8
−0.9

+1.2
−1.2

−0.2
+0.4

+0.2
−0.2 0.76

1C 2.30 × 10−3 13.5 16.4 −15.9 +3.8
−4.1

+0.1
−0.4

+0.5
−0.5

+0.4
−0.1 0.74

2A 5.30 × 10−3 16.6 16.7 +16.3 +0.1
+0.2

+3.7
−3.2

+1.1
−1.0

+0.1
−0.0 0.75

2B 8.10 × 10−3 9.7 11.3 +11.2 +0.4
−0.6

+1.3
−1.3

+0.1
−0.2

+0.1
−0.2 0.76

2C 2.60 × 10−3 14.7 47.6 −47.4 +4.0
−3.7

+0.4
−0.4

+1.0
−1.3

−0.0
−0.2 0.74

3A 5.30 × 10−3 16.1 18.4 +18.1 −0.7
+0.6

+3.5
−3.0

+1.4
−0.7

+0.4
−0.3 0.75

3B 1.12 × 10−2 8.4 17.2 +17.0 +0.7
−0.2

+1.9
−2.0

+0.2
−0.1

+0.2
−0.0 0.76

3C 4.20 × 10−3 11.7 11.3 −10.8 +2.9
−3.6

+0.4
−0.3

+0.2
−0.4

+0.3
−0.4 0.74

4A 5.80 × 10−3 15.9 16.3 +16.1 −0.9
+0.2

+2.2
−2.3

+1.0
−1.8

−0.1
−0.1 0.73

4B 1.22 × 10−2 9.4 20.0 −19.9 +0.0
+0.4

+2.0
−1.9

+0.5
−0.5

+0.3
−0.1 0.76

4C 7.60 × 10−3 9.1 17.3 −17.0 +2.7
−3.0

+0.6
−0.7

+0.4
−0.4

+0.1
−0.2 0.75

5B 1.40 × 10−2 9.1 7.7 +7.5 −0.3
+0.6

+1.3
−1.4

+0.3
−0.1

+0.0
+0.1 0.75

5C 1.60 × 10−2 7.0 52.8 −52.8 +1.0
−1.0

+1.2
−1.2

+0.2
−0.1

+0.3
−0.3 0.75

6C 3.52 × 10−2 17.5 94.7 −94.6 +0.3
−0.1

+1.3
−1.0

+0.6
−0.4

+0.3
−0.2 0.73

The measured cross sections for the kT jet algorithm as a
function of PT (Tables 6, 7, 8) are displayed in different Q2

bins in Fig. 10, together with the NLO predictions described

in Sect. 5.4. A detailed comparison of the predictions to the
measured cross sections is provided by the ratio of data to
NLO in Fig. 11. The theory uncertainties from scale varia-
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Table 26 Correlation coefficients between data points of the inclusive jet measurement as a function of Q2 and P jet
T . Since the matrix is symmetric

only the upper triangle is given. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Inclusive jet
as function of
Q2 and P jet

T

Inclusive jet as function of Q2 and P jet
T

1α 1β 1γ 1δ 2α 2β 2γ 2δ 3α 3β 3γ 3δ 4α 4β 4γ 4δ 5α 5β 5γ 5δ 6α 6β 6γ 6δ

1α 100 −20 −11 −2 −14 2 1 1

1β 100 2 −1 4 −13 2

1γ 100 6 1 −13 −1 2 1

1δ 100 −14 2 1 1

2α 100 −21 −10 −2 −11 2 1 −1 −1

2β 100 2 −1 3 −10 −1

2γ 100 7 1 1 −12 −1

2δ 100 −11 −1

3α 100 −23 −12 −2 −8 1 1 −1

3β 100 −2 2 −8

3γ 100 5 1 1 −8 −1

3δ 100 −8

4α 100 −22 −11 −2 −4 1

4β 100 −1 −2 1 −4

4γ 100 5 1 −4

4δ 100 −5

5α 100 −24 −12 −2 −1

5β 100 1 −2 −1

5γ 100 3 −1

5δ 100 −2

6α 100 −21 −15 −3

6β 100 −1

6γ 100 −2

6δ 100

tions dominate over the sum of the experimental uncertainties
in most bins.

The data are in general well described by the theoreti-
cal predictions. The predictions are slightly above the mea-
sured cross sections for inclusive jet and dijet production,
at medium Q2 and at high PT. A detailed comparison of
NLO predictions using different PDF sets with the measured
jet cross sections is shown in Fig. 12. Only small differ-
ences are observed between predictions for different choices
of PDF sets compared to the theory uncertainty from scale
variations shown in Fig. 11. Predictions using the CT10 PDF
set [70] are approximately 1 to 2 % below those using the
MSTW2008 PDF set, and predictions using the NNPDF2.3
set [71] are about 2 % above the latter. The calculation using
the HERAPDF1.5 set [72–74] is 2 % above the calculation
using MSTW2008 at low PT, while at the highest PT values
it is around 5 % below. The reason for this behaviour is the
softer valence quark density at high x of the HERAPDF1.5
set compared to the other PDF sets. Predictions using the
ABM11 PDF set [75] show larger differences compared to
the other PDF sets.

The normalised cross sections using the kT jet algorithm
are displayed in Fig. 13 as a function of PT in different Q2

bins together with the NLO calculations. The ratio of data
to the predictions is shown in Fig. 14. The comparison is
qualitatively similar to the results from the absolute jet cross
sections. Similar to the case of absolute cross sections, the
theory uncertainty from scale variations is significantly larger
than the total experimental uncertainty in almost all bins. For
the normalised jet cross sections PDF dependencies do not
cancel. This is due to the different x-dependencies and par-
ton contributions to NC DIS compared to jet production. The
systematic uncertainties are reduced for normalised cross
sections compared to absolute jet cross section, since all nor-
malisation uncertainties cancel fully, and uncertainties on the
electron reconstruction and the HFS cancel partly. The exper-
imental uncertainty is dominated by the statistical, the model
and the jet energy scale uncertainties. Given the high experi-
mental precision, in comparison to the absolute jet cross sec-
tions, one observes that the normalised dijet cross sections
are below the theory predictions for many data points.

The measurements of absolute dijet and trijet cross sec-
tions are displayed in Fig. 15 as a function of ξ2 and ξ3 in
different Q2 bins, together with NLO predictions. The nor-
malised jet cross sections are shown in Fig. 16. The ratio of
absolute jet cross sections to NLO predictions as a function

123



65 Page 34 of 48 Eur. Phys. J. C (2015) 75 :65

Table 27 Correlation coefficients between data points of the dijet measurement as a function of Q2 and 〈PT〉2. Since the matrix is symmetric only
the upper triangle is given. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Dijet as
function of
Q2 and 〈PT〉2

Dijet as function of Q2 and 〈PT〉2

1α 1β 1γ 1δ 2α 2β 2γ 2δ 3α 3β 3γ 3δ 4α 4β 4γ 4δ 5α 5β 5γ 5δ 6α 6β 6γ 6δ

1α 100 −44 11 3 −3 6 −2 11 −1 9 8 2

1β 100 −36 −9 7 −13 5 1 −1 2 −1 1 1

1γ 100 6 −1 4 −14 −1 2 1 1 1

1δ 100 1 −14 2 1 1

2α 100 −44 10 2 −4 6 −1 4 1 4 1 1

2β 100 −34 −8 7 −11 4 1 1 −1 2 −1

2γ 100 2 −1 4 −12 −1 −1

2δ 100 1 1 −11 1 −2 1 1

3α 100 −47 11 3 −3 5 −1 4 1 1

3β 100 −34 −10 5 −8 3 1 1

3γ 100 2 −1 3 −8 −1 1 −1

3δ 100 1 −9 −1

4α 100 −45 11 3 −1 3 1

4β 100 −36 −11 3 −4 2 1

4γ 100 4 2 −5

4δ 100 1 −6 1 1

5α 100 −46 10 2 1 1

5β 100 −35 −8 1 −1

5γ 100 −3 1 −1 −1

5δ 100 1 2

6α 100 −41 7 2

6β 100 −36 −9

6γ 100 −13

6δ 100

Table 28 Correlation coefficients between data points of the trijet measurement as a function of Q2 and 〈PT〉3. Since the matrix is symmetric only
the upper triangle is given. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Trijet as
function of
Q2 and 〈PT〉3

Trijet as function of Q2 and 〈PT〉3

1α 1β 1γ 2α 2β 2γ 3α 3β 3γ 4α 4β 4γ 5α 5β 5γ 6β

1α 100 −37 9 1 2 14 −4 1 12 −3 1 12 −3 1 −1

1β 100 −26 1 −8 2 −3 7 −2 −3 5 −1 −3 6 −1 2

1γ 100 2 −11 1 −2 5 1 −1 3 −1 3

2α 100 −35 8 2 1 11 −3 1 10 −2 −1

2β 100 −24 1 −5 2 −3 6 −1 −2 6 −1 2

2γ 100 2 −8 −1 3 −1 3

3α 100 −37 10 3 1 10 −3 1 −1

3β 100 −29 −2 1 −2 7 −1 2

3γ 100 1 −5 −1 3

4α 100 −35 9 5 −1 −1

4β 100 −27 −1 3 2

4γ 100 1

5α 100 −35 9

5β 100 −28 2

5γ 100

6β 100
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Table 29 Correlation coefficients between data points of the inclusive jet measurement as a function of Q2 and P jet
T and of the dijet measurement

as a function of Q2 and 〈PT〉2. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Inclusive jet
as function of
Q2 and P jet

T

Dijet as function of Q2 and 〈PT〉2

1α 1β 1γ 1δ 2α 2β 2γ 2δ 3α 3β 3γ 3δ 4α 4β 4γ 4δ 5α 5β 5γ 5δ 6α 6β 6γ 6δ

1α 35 1 −2 −5 1

1β −6 25 −1 −1 1 −3 1

1γ −1 −3 48 1 −6 1

1δ 1 −6 71 −10 1

2α −5 34 −1 −4 −1 −1

2β 1 −4 −7 27 −1 1 −3 −1

2γ −7 −1 −3 49 −2 1 −6 −1

2δ 1 −11 −1 −1 69 1 −7 −1

3α 1 −5 1 35 1 −1 −3

3β 1 1 −3 −6 25 −2 −2 −1

3γ 1 1 −7 −1 −5 51 −1 −5 −1 −1

3δ 2 −8 −1 −3 66 −6 −1

4α −1 1 −3 1 35 −1 −2

4β 1 −2 −6 25 −1 −1 −2

4γ −4 −1 −2 48 −3 −3

4δ −1 −6 1 −1 −1 70 1 −4 1

5α 1 −1 −2 32 1 −1

5β −1 1 −2 1 −7 24 −1

5γ 1 −1 −1 −3 1 −1 −4 50 −2 −1

5δ 1 −1 1 −1 −4 −8 73 −2

6α 30 2 −2 −1

6β −8 21 −2

6γ −1 −3 −3 44 −7

6δ −1 −2 −2 66

of ξ in bins of Q2 is shown in Fig. 17. Good overall agree-
ment between predictions and the data is observed. A similar
level of agreement is obtained by using other PDF sets than
the employed MSTW2008 set.

Also the anti-kT cross sections agree well with the theory
predictions. For inclusive jets and dijets the NLO predictions
using the anti-kT or the kT jet algorithm are identical, for
trijets they are not. The hadronisation corrections between
anti-kT and kT jets differ slightly. The anti-kT trijet cross
sections have a tendency of being slightly lower than the kT

measurement.
Of the results presented here, those which can be com-

pared to previous H1 measurements are found to be well
compatible.

7 Determination of the strong coupling constant αs(MZ)

The jet cross sections presented are used to determine the
value of the strong coupling constant3 αs at the scale of the

3 In this section, the strong coupling constant αs(MZ ) is always quoted
at the mass of the Z -boson, MZ = 91.1876 GeV [62]. For better

mass of the Z -boson, MZ , in the framework of perturbative
QCD. The value of the strong coupling constant αs is deter-
mined in an iterative χ2-minimisation procedure using NLO
calculations, corrected for hadronisation effects and, if appli-
cable, for electroweak effects. The sensitivity of the theory
prediction to αs arises from the perturbative expansion of the
matrix elements in powers of αs(μr ) = αs(μr , αs(MZ )).
For the αs-fit, the evolution of αs(μr ) is performed solving
this equation numerically, using the renormalisation group
equation in two-loop precision with five massless flavours.

7.1 Fit strategy

The value of αs is determined using a χ2-minimisation,
where αs is a free parameter of the theory calculation. The
agreement between theory and data is estimated using the
χ2definition [62,76]

Footnote 3 continued
readability the scale dependence is dropped in the notation and hence-
forth αs is written for αs(MZ ); ‘αs(MZ )’ is only used for explicit high-
lighting.
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Table 30 Correlation coefficients between data points of the inclusive jet measurement as a function of Q2 and P jet
T and of the trijet measurement

as a function of Q2 and 〈PT〉3. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Inclusive jet
as function of
Q2 and P jet

T

Trijet as function of Q2 and 〈PT〉3

1α 1β 1γ 2α 2β 2γ 3α 3β 3γ 4α 4β 4γ 5α 5β 5γ 6β

1α 11 2 1 −2 −1 −1

1β 10 12 1 −3 −2 −1 −1 −2

1γ −6 18 12 1 −4 −2 −1 −1 −2

1δ 2 −4 18 2 −6 1 −2 1 −2 −2

2α −2 10 1 1 −2 −1

2β −3 −2 10 13 −1 −1 −1 −1

2γ 1 −3 −2 −6 16 16 1 −3 −2 −1 −1

2δ 1 −5 2 −7 22 1 −2 −1 −3

3α −2 12 1 2 −1

3β −2 −2 −2 7 12 −1 −1 −1

3γ −1 1 −3 −2 −7 15 12 1 −3 −1 −1

3δ −1 1 −3 2 −7 23 1 −3 −2

4α −1 −1 8 3 2 −1

4β −1 −1 −1 −1 8 11 1 −1 −1

4γ −1 −1 1 −2 −1 −6 16 15 −2 −1

4δ −1 1 −3 2 −7 23 −4

5α −1 −1 9 3

5β −1 −1 −1 −1 −1 8 10 2

5γ −1 −1 −1 −1 1 −2 −1 −5 14 13 −1

5δ −1 −1 −1 1 −3 2 −6 13

6α 3

6β −1 7

6γ 14

6δ −1 −8

χ2 = �pTV−1 �p +
Nsys
∑

k

ε2
k , (12)

where V−1 is the inverse of the covariance matrix with rel-
ative uncertainties. The element i of the vector �p stands for
the difference between the logarithm of the measurement mi

and the logarithm of the theory prediction ti = ti (αs(MZ )):

pi = log mi − log ti −
Nsys
∑

k

Ei,k . (13)

This ansatz is equivalent to assuming that the mi are log-
normal distributed, with Ei,k being defined as

Ei,k =
√

f C
k

(

δ
k,+
m,i − δ

k,−
m,i

2
εk + δ

k,+
m,i + δ

k,−
m,i

2
ε2

k

)

. (14)

The nuisance parameters εk for each source of systematic
uncertainty k are free parameters in the χ2-minimisation.
Sources indicated as uncorrelatedbetween Q2 bins in Table 33

have several nuisance parameters, one for each Q2

bin.
The parameters δ

k,+
m,i and δ

k,−
m,i denote the relative uncer-

tainty on the measurement mi , due to the ‘up’ and ‘down’
variation of the systematic uncertainty k. Systematic experi-
mental uncertainties are treated in the fit as either relative cor-
related or uncorrelated uncertainties or as a mixture of both.
The parameter f C expresses the fraction of the uncertainty
k which is considered as relative correlated uncertainty, and
f U expresses the fraction which is treated as uncorrelated
uncertainty with f C + f U = 1. The symmetrised uncorre-
lated uncertainties squared f U

k (δ
k,+
m,i −δ

k,−
m,i )2 are added to the

diagonal elements of the covariance matrix V . The covari-
ance matrix V thus consists of relative statistical uncertain-
ties, including correlations between the data points of the
measurements, correlated background uncertainties and the
uncorrelated part of the systematic uncertainties.

7.2 Experimental uncertainties on αs

The experimental uncertainties are treated in the fit as
described in the following.
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Table 31 Correlation coefficients between data points of the dijet measurement as a function of Q2 and 〈PT〉2 and of the trijet measurement as a
function of Q2 and 〈PT〉3. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Dijet as
function of
Q2 and 〈PT〉2

Trijet as function of Q2 and 〈PT〉3

1α 1β 1γ 2α 2β 2γ 3α 3β 3γ 4α 4β 4γ 5α 5β 5γ 6β

1α 13 −7 2 −2 1

1β 5 16 −5 −2 −3 1 −1 −1 −1

1γ −4 12 21 1 −3 −3 1 −1 1 −1 1 −2

1δ 2 −5 15 1 −4 −2 −2 −2

2α −2 1 13 −7 2 −1 1

2β −2 −2 1 5 17 −5 −1 −2 1

2γ 1 −3 −3 −3 8 22 1 −2 −3 −1 −1

2δ 1 −3 1 −4 13 1 −2 −1 −3

3α −1 14 −7 3 −1 1

3β −1 −1 −2 1 3 17 −7 −1 −1 1

3γ 1 −1 1 −2 −3 −4 12 23 1 −2 −2 −1

3δ 1 −2 3 −8 20 1 −2 −1

4α −1 12 −6 3

4β −1 −1 −1 1 4 17 −7 −1

4γ −1 −1 −1 1 −2 −2 −4 9 29 1 −1 −1

4δ −1 1 −2 2 −7 18 −4

5α 13 −6 2

5β −1 −1 4 16 −5

5γ 1 −1 −1 1 −1 1 −1 1 −2 −1 −4 11 18

5δ −1 1 −2 2 −5 11

6α −10

6β 22

6γ −1 −1 −1 −1 4

6δ −1 −5

• The statistical uncertainties are accounted for by using the
covariance matrix obtained from the unfolding process.
It includes all point-to-point correlations due to statistical
correlations and detector resolutions.

• The uncertainties due to the reconstruction of the
hadronic final state, i.e. δJES and δRCES, are treated as
50 % correlated and uncorrelated, respectively.

• The uncertainty δLArNoise, due to the LAr noise suppres-
sion algorithm, is considered to be fully correlated.

• All uncertainties due to the reconstruction of the scat-
tered electron (δE′

e , δθe and δID(e)) are treated as fully
correlated for data points belonging to the same Q2-bin
and uncorrelated between different Q2-bins.

• The uncertainties on the normalisation (δLumi, δTrig and
δTrkCl) are summed in quadrature to form the normalisa-
tion uncertainty δNorm = 2.9 % which is treated as fully
correlated.

• The model uncertainties are treated as 75 % uncorrelated,
whereby the correlated fraction is treated as uncorrelated
between different Q2-bins.

The uncorrelated parts of the systematic uncertainties are
expected to account for local variations, while the correlated

parts are introduced to account for procedural uncertainties.
A summary is given in Table 33, showing the treatment of
each experimental uncertainty in the fit.

Table 34 lists the size of the most relevant contributions to
the experimental uncertainty on the αs-value obtained. They
are determined using linear error propagation applying an
analogous formula as for the theoretical uncertainties (see
Eq. 15). For αs-values determined from the absolute jet
cross sections, the dominant uncertainty is the normalisation
uncertainty, since it is highly correlated with the value of
αs(MZ ) in the fit. The errors on the fit parameters, αs and εk ,
are determined as the square root of the diagonal elements
of the inverse of the Hessian matrix.

7.3 Theoretical uncertainties on αs

Uncertainties on αs from uncertainties on the theory predic-
tions are often determined using the offset method.4 In this
analysis a different approach is taken. The theory uncertain-
ties are determined for each source separately using linear

4 In this procedure, parameters are changed one at a time, the fit is
repeated and the difference with respect to the central fit result is cal-
culated.
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Table 32 Correlation coefficients between data points of the dijet measurement as a function of Q2 and ξ2. Since the matrix is symmetric only the
upper triangle is given. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Dijet as
function of
Q2 and ξ2

Dijet as function of Q2 and ξ2

1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d 4a 4b 4c 4d 5b 5c 5d 6d

1a 100 −35 2 −23 −14 1 3 3 3 −1

1b 100 −39 14 5 −10 4 −1 4 −1 1 3 1 3 −1 2

1c 100 −25 5 −10 3 −1 3 −1 1 2 −1 2 −1

1d 100 3 −1 3 −14 −1 2 1 1

2a 100 −22 13 −22 2 −1 1 1 −1 −1 −1

2b 100 −38 8 5 −7 3 −1 1 3 −1 4 −1 1

2c 100 −26 −2 4 −7 3 1 −1 2 −1

2d 100 −3 −1 3 −10 1 1 1

3a 100 −33 15 −7 −6 2 −2 −2

3b 100 −34 9 2 −3 1 6 −1 1 1

3c 100 −27 −1 3 −3 1 4 −1 −1

3d 100 −1 2 −5 1

4a 100 −13 12 −17 3 −2 1

4b 100 −29 −9 4 −1

4c 100 −20 3 6 −2 −1

4d 100 −2 1

5b 100 −16 21

5c 100 −24 −3

5d 100 14

6d 100

Table 33 Split-up of systematic uncertainties in the fit of the strong
coupling constant αs

Source of
uncertainties k

Correlated
fraction f C

Uncorrelated
fraction f U

Uncorrelated
between Q2 bins

Jet energy scale δJES 0.5 0.5

Rem. cluster energy
scale δRCES

0.5 0.5

LAr Noise δLArNoise 1 0

Electron energy δE′
e 1 0 �

Electron polar angle
δθe

1 0 �

Electron ID δID(e) 1 0 �
Normalisation δNorm 1 0

Model δModel 0.25 0.75 �

error propagation [53]. Uncertainties on αs originating from
a specific source of theory uncertainty are calculated as:

(


t
αs

)2 = f C
( Nbins∑

i

∂αs

∂ti

∣
∣
∣
∣
∣

α0


ti

)2

+ f U
Nbins∑

i

(
∂αs

∂ti

∣
∣
∣
∣
α0


ti

)2

, (15)

where ti is the prediction in bin i , 
ti is the uncertainty of the
theory in bin i and f C ( f U) are the correlated (uncorrelated)

Table 34 The total experimental uncertainty on αs from fits to different
jet cross sections, and the contributions from the most relevant sources of
uncertainties. These are the normalisation uncertainty, the uncertainties
on the reconstruction of the HFS (
RCES

αs
and 
JES

αs
) and the model

uncertainty

Experimental uncertainties on αs × 104

Measurement 

exp
αs 
Norm

αs

RCES

αs

JES

αs

Model

αs

σjet 22.2 18.5 4.8 5.5 4.5

σdijet 23.4 19.4 4.4 4.3 6.4

σtrijet 16.7 11.2 5.4 4.3 4.6
σjet

σNC
8.9 – 1.7 4.4 2.2

σdijet

σNC
9.9 – 1.6 3.3 3.6

σtrijet

σNC
11.3 – 4.0 3.5 4.2

[σjet, σdijet, σtrijet] 16.0 9.6 5.9 3.2 5.0
[

σjet

σNC
,
σdijet

σNC
,
σtrijet

σNC

]

7.6 – 2.4 2.8 1.8

fractions of the uncertainty source under investigation. The
partial derivatives are calculated numerically at the αs-value,
α0, obtained from the fit. The uncertainties on αs obtained
this way are found to be of comparable size as the uncer-
tainties obtained with other methods, like the offset method
[11,77]. Because Eq. 15 is linear, the theory uncertainties are
symmetric and can be interpreted as one standard deviation
confidence intervals.
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Table 35 Correlation coefficients between data points of the trijet measurement as a function of Q2 and ξ2. Since the matrix is symmetric only the
upper triangle is given. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Trijet as
function of
Q2 and ξ3

Trijet as function of Q2 and ξ3

1A 1B 1C 2A 2B 2C 3A 3B 3C 4A 4B 4C 5B 5C 6C

1A 100 −35 12 −5 2 −1 11 −3 6 −2 1 −3 2 1

1B 100 −43 3 −8 1 −2 6 −1 −1 6 −1 8 −5 −2

1C 100 4 −8 1 −1 2 −1 3 −2 6 3

2A 100 −33 9 −4 1 1 5 −2 1 −2 1

2B 100 −43 3 −7 3 −1 6 −1 6 −3 −2

2C 100 −2 5 −6 −1 3 −2 6 3

3A 100 −37 8 −4 1 −1 −2

3B 100 −36 2 8 −2 −2

3C 100 −1 2 −2 5 3

4A 100 −39 11 1

4B 100 −36 6 −3 −2

4C 100 −1 5 4

5B 100 −33 −4

5C 100 10

6C 100

Theoretical uncertainties in the determination of αs arise
from unknown higher order corrections beyond NLO, from
uncertainties on

the hadronisation corrections and from uncertainties on
the PDFs. Three distinct sources of uncertainties from the
PDFs are considered. These are uncertainties due to the lim-
ited precision of the input data in the determination of the
PDFs, the uncertainty of the value of αs(MZ ), which was
used for obtaining the PDFs, and procedural uncertainties in
the PDF fit. Details for all theoretical uncertainties consid-
ered are given below.

• Uncertainties resulting from truncation of the per-
turbative series: The uncertainty due to missing higher
orders is conventionally determined by a variation of μr

and μ f . In order to obtain conservative estimates from
Eq. 15, the uncertainty from scale variations on the theory
predictions is defined by [78]



μ
ti := max

(∣
∣ti (μ = cμμ0) − ti (μ = μ0)

∣
∣
)

0.5≤cμ≤2 ,

(16)

using a continuous variation of the scale in the interval
0.5 ≤ cμ ≤ 2. The uncertainty from scale variations on
αs , 
μ

αs , is then given by Eq. 15 using 

μ
ti . Possible higher

order contributions may change both the normalisation
and the shape of the cross section predictions. While the
former effect has to be taken as correlated uncertainty,
the latter will result in uncorrelated uncertainties. Since

the size of the effect of these two kinds of uncertain-
ties cannot be estimated the correlated and uncorrelated
fractions of 


μ
ti are assumed to be 0.5 each. In case of

normalised jet cross sections, the uncertainty 

μ
ti is deter-

mined by a simultaneous variation of the scales in the
numerator and denominator. The scale dependence of
the inclusive NC DIS calculation is small compared to
the scale dependence of the jet cross sections, since it is
in LO of O(α0

s (μr )). Changing the renormalisation scale
for the jet cross sections to μr = Q or μr = PT results in
changes in αs(MZ ) which are typically of similar size as
the experimental uncertainty and always smaller than the
renormalisation scale uncertainty. The uncertainty from
the variation of the renormalisation scale is by far the
largest uncertainty of all theoretical and experimental
uncertainties considered. Calculations beyond NLO are
therefore mandatory for a more precise determination of
αs from jet cross sections in DIS.

• Hadronisation uncertainties: The uncertainties of the
hadronisation correction 
had

t on the theory predictions
are obtained using half the difference of the hadronisation
corrections calculated with the Lund string model and the
cluster fragmentation model (see Sect. 5.5). The resulting
uncertainties on αs are determined using the linear error
propagation described above. The uncertainty is taken to
be half correlated and half uncorrelated.

• PDF uncertainty: PDF uncertainties on αs , 
PDF
αs

are
estimated by propagating the uncertainty eigenvectors of
the MSTW2008 PDF set. Details are described in [53].
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Table 36 Correlation coefficients between data points of the inclusive jet measurement as a function of Q2 and P jet
T and of the dijet measurement

as a function of Q2 and ξ2. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Inclusive jet
as function of
Q2 and P jet

T

Dijet as function of Q2 and ξ2

1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d 4a 4b 4c 4d 5b 5c 5d 6d

1α 28 7 6 −3 −2 −1 1 1

1β 4 21 9 3 −2 −1 −1 1 1

1γ 4 13 24 −1 −2 −3 1 1

1δ 6 −3 28 −1 −4 1

2α −3 −1 −1 26 10 7 −3 −1 −1

2β −3 −1 2 19 12 2 −2 −2 −2

2γ −1 −2 −3 2 4 12 26 1 −1 −2 −4

2δ −2 −4 5 1 −2 31 1 −3

3α 1 1 −2 −1 −1 31 14 9 −1 −1 −1

3β 1 −1 −2 −2 6 22 12 1 −2 −1

3γ 1 1 −2 −3 −1 3 15 30 −1 −3

3δ −1 1 −1 −3 2 −4 31 −1

4α 1 −2 −1 −1 21 20 11 −1 −1 −1 −1

4β −1 −1 −2 16 14 6 −1 −1 −1

4γ −1 −2 1 2 16 27 −1

4δ −2 2 2 −2 24

5α 1 −1 −1 27 19 15

5β 1 −1 −1 11 20 21

5γ −1 −1 10 24 −1

5δ 1 −1 2 −2 18

6α −1 4 34

6β 27

6γ 16

6δ −1 8

• Uncertainty due to the limited precision of αs(MZ) in
the PDF fit: The PDFs depend on the αs(MZ ) value
used for their determination. This leads to an addi-
tional uncertainty on the PDFs and thus to an additional
uncertainty on the αs-value extracted from the jet cross
sections. This uncertainty, 


PDF(αs)
αs , is conventionally

defined as a variation of ±0.002 around the nominal value
of αs(MZ ) = 0.118 (see e.g. [79]). For the full range of
available MSTW2008 PDF sets with different fixed val-
ues of αs(MZ ), the resulting values of αs from fits to jet
data are displayed in Fig. 18. While some dependence on
the value of αs(MZ ) used in the PDF fit is observed for
the αs values obtained from inclusive jet and dijet cross
sections, the αs-value obtained from the trijet cross sec-
tions shows only a very weak dependence on αs(MZ ).
This is due to the high sensitivity of the trijet cross sec-
tions to αs , where the calculation is of O(α2

s ) already at
LO. Consequently, due to the inclusion of the trijet cross
sections, the dependence on αs(MZ ) as used in the PDF
fit is reduced for the fit to the multijet dataset.

• Procedural and theory uncertainties on the PDFs: In
order to estimate the uncertainty due to the procedure

used to extract PDFs, all αs fits are repeated using PDF
sets from different groups. The αs-values obtained are
displayed in Fig. 19 and are listed in Table 39. Half
the difference between the αs-values obtained using the
NNPDF2.3 and CT10 PDF sets is assigned as PDF set
uncertainty, 
PDFset

αs
. The values for 
PDFset

αs
are in the

range from 0.0007 to 0.0012.

7.4 Results of the αs-fit

The strong coupling constant is determined from each of
the jet measurements, i.e. from the absolute and normalised
inclusive jet, dijet and trijet cross sections as a function of
Q2 and PT, as well as from the three absolute and three
normalised jet cross sections simultaneously. The statistical
correlations (Tables 26, 27, 28, 29, 30, 31) are taken into
account. The αs-values obtained from measurements using
the kT jet algorithm are compared to those using the anti-kT

jet algorithm with the corresponding NLO calculations.
The NLO correction to the LO cross section is below 50 %

for all of the data points and below 30 % for 64 % of the data
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Table 37 Correlation coefficients between data points of the inclusive jet measurement as a function of Q2 and P jet
T and the data points of the trijet

measurement as a function of Q2 and ξ3. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Inclusive jet
as function of
Q2 and P jet

T

Trijet as function of Q2 and ξ3

1A 1B 1C 2A 2B 2C 3A 3B 3C 4A 4B 4C 5B 5C 6C

1α 17 6 1 −3 −1 −1 1

1β 8 15 8 −2 −3 −1 −1 −1 −1

1γ 7 21 −2 −3 −1 −1 −1 −1

1δ 1 −1 11 −2 −1 −1

2α −3 −1 14 6 2 −2 −1

2β −2 −3 −1 8 14 5 −1 −2 −1 −1

2γ −1 −4 −1 8 20 −1 −2 −1 −1

2δ −2 1 1 13 −1

3α −1 −1 17 8 3 −1 −1

3β −1 −1 −2 −1 5 16 5 −1 −2 −1 −1

3γ −1 −3 −1 6 16 −2 −1 −1

3δ −1 11 −1

4α −1 −1 14 9 4 −1

4β −1 −2 4 15 7 −1 −1

4γ −2 −2 6 25 −2

4δ −1 2 1 8 −1

5α −1 11 9 −1

5β −1 −1 −1 −1 −1 13 12 −1

5γ −1 −1 −1 3 19 −1

5δ −1 −1 7

6α −1 24

6β −1 −1 −1 −1 −2 18

6γ 21

6δ −1 11

points. It is assumed that the perturbative series is converging
sufficiently fast, such that NLO calculations are applicable,
and that the uncertainty from the variation of the renormal-
isation and factorisation scales accounts for the not yet cal-
culated contributions beyond NLO.

The αs results, determined from fits to the individual
absolute and normalised jet cross sections as well as to
the absolute and normalised multijet cross sections using
either the kT or the anti-kT jet algorithms, are summarised
in Table 40, together with the split-up of the contribu-
tions to the theoretical uncertainty. The largest contribution
is due to the variation of the renormalisation scale. The
fits yield, for the kT-jets taken as an example, the follow-
ing values of χ2/ndof for the absolute (normalised) inclu-
sive jet, dijet and trijet measurements, 24.8/23 (26.8/23),
25.1/23 (31.0/23) and 13.6/15 (11.8/15), respectively. For
the absolute (normalised) multijet measurements the value
of 75.2/63 (89.8/63) is obtained. Note that the theoretical
uncertainties on αs are not considered in the calculation of
χ2/ndof . The fact that χ2/ndof degrades as more data are

included (multijets as compared to individual data sets) or as
the experimental precision is improved (normalised as com-
pared to absolute cross sections) indicates a problem with
the theory, possibly related to higher order corrections. Sim-
ilarly, the fact that αs extracted from the dijet data is below
the values obtained from inclusive jet or trijet data may be
due to unknown higher order effects.

All αs-values extracted are compatible within the theoret-
ical uncertainty obtained by the scale variations. The values
of αs extracted using kT or anti-kT jet cross sections are quite
consistent. Among the absolute cross sections, not consider-
ing the multijet fit, the trijet data yield values of αs with the
highest experimental precision, because the LO trijet cross
section is proportional to α2

s , whereas the inclusive or dijet
cross section at LO are proportional to αs only.

The best experimental precision on αs is achieved for
normalised jet cross sections, due to the full cancellation
of all normalisation uncertainties, which are highly corre-
lated with the value of αs(MZ ) in the fit. A breakdown of
the individual uncertainties contributing to the total experi-
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Table 38 Correlation coefficients between data points of the dijet measurement as a function of Q2 and ξ2 and of the trijet measurement as a
function of Q2 and ξ3. The bin labels are defined in Table 5. All values are multiplied by a factor of 100

Dijet as
function of
Q2 and ξ2

Trijet as function of Q2 and ξ3

1A 1B 1C 2A 2B 2C 3A 3B 3C 4A 4B 4C 5B 5C 6C

1a 16 −2 −3 −1 −2 −1

1b 16 −2 −3 1

1c −1 5 9 1 −2 −2 1 −1 1 −2 −2

1d 4 −5 17 −1 1 −3 −1 −1 1 −2 −1

2a −4 12 −2 1 −2

2b −3 1 1 15 −4 −2 −1 1

2c 1 −2 −2 4 11 1 −2 −1 −1 −1

2d −1 1 −3 3 −2 15 −1 1 −2 −1 −1

3a −2 −2 1 23 −7 3 −3

3b −2 1 2 19 −4 −2

3c −1 −1 −2 −1 5 11 −1 −1 −1

3d −2 3 −2 13 1 −2 −1 −1

4a −2 −2 1 17 −7 2 −1

4b −1 −1 −2 5 15 −3 −1

4c 1 −1 −1 −2 −1 −3 9 12 −2

4d 1 −1 −1 1 −1 4 −3 16 1 −2 −1

5b −1 −1 −1 −1 9 1 −1

5c 1 −1 1 −1 −1 −1 −2 −1 15 6 −1

5d −1 1 −1 −1 1 −1 −2 3 16 −2

6d −1 −1 −1 −1 1 −3 29
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H1

Fig. 18 Values of αs(MZ ) extracted from fits of the NLO QCD pre-
dictions to the jet cross section measurements. Shown are the values of
αs(MZ ) obtained with the inclusive jet, dijet and trijet data separately,
and for fits either to the multijet or to the normalized multijet measure-
ments. Each point stands for a value of αs(MZ ) obtained using a PDF
set which has been determined assuming a fixed values of αs(MZ ) as
indicated

mental uncertainty is given in Table 34. For the αs extraction
using absolute cross sections, the normalisation uncertainty
is the dominant uncertainty. The jet energy scale, the remain-
ing cluster energy scale and the model uncertainty con-
tribute with similar size to the experimental uncertainty. All
other experimental uncertainties are negligible with respect
to these uncertainties. The uncertainties from scale variations
are somewhat reduced for normalised jet cross sections, due
to the simultaneous variation of the scales in the numera-
tor and the denominator. The uncertainties from PDFs are
of similar size when comparing absolute and normalised jet
cross sections. The residual differences are well understood
[53].

The absolute and normalised dijet cross sections yield a
significantly smaller value of αs than the corresponding val-
ues from inclusive jet cross sections, considering the experi-
mental uncertainty only. This is attributed to missing higher
order contributions in the calculations, which may be dif-
ferent in the inclusive jet phase space region which is not
part of the dijet phase space. These are, for instance, the
dijet topologies with M12 < 16 GeV, or events where one
jet is outside the acceptance in η

jet
lab. In order to test the

influence of the phase space, an inclusive jet measurement
is performed in the phase space of the dijet measurement,
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Fig. 19 Values of αs(MZ )

extracted from fits of NLO QCD
predictions to the absolute and
normalised jet cross sections
using different PDF sets:
MSTW2008, CT10, NNPDF2.3,
HERAPDF1.5 and ABM11. For
the MSTW2008 PDF set the
PDF uncertainty on αs(MZ ) as
determined from the
MSTW2008 eigenvectors is
shown as horizontal error bar

)
Z

 (Msα
0.11 0.115 0.12

H1 Collaboration

Normalised multijet

Multijet

Normalised trijet

Normalised dijet

Normalised inclusive jet

Trijet

Dijet

Inclusive jet

ABM11

HERAPDF1.5

NNPDF2.3

CT10

MSTW2008

0.118=sαAll PDFs with 

Table 39 Values for αs(MZ ) obtained from fits to absolute and normalized cross sections using different PDF sets

αs(MZ) using different PDF sets

Measurement αMSTW2008
s αCT10

s αNNPDF2.3
s αHERAPDF1.5

s αABM11
s

All PDF sets used were determined with αs(MZ ) = 0.1180

σjet 0.1174 0.1180 0.1167 0.1158 0.1136

σdijet 0.1137 0.1142 0.1127 0.1120 0.1101

σtrijet 0.1178 0.1178 0.1169 0.1174 0.1176
σjet

σNC
0.1176 0.1185 0.1170 0.1183 0.1186

σdijet

σNC
0.1135 0.1143 0.1127 0.1143 0.1150

σtrijet

σNC
0.1182 0.1185 0.1175 0.1191 0.1204

[σjet, σdijet, σtrijet] 0.1185 0.1187 0.1178 0.1180 0.1176
[

σjet

σNC
,
σdijet

σNC
,
σtrijet

σNC

]

0.1165 0.1172 0.1158 0.1172 0.1177

i.e. with the requirement of two jets, M12 > 16 GeV and
7 < 〈PT〉2 < 50 GeV. When using the identical scale
μ2

r = Q2 for the αs-fit to this inclusive jet and the dijet
measurement, the difference in αs is only 0.0003. With the
nominal scales, μ2

r = (Q2 + (P jet
T )2)/2 for this inclusive jet

measurement and μ2
r = (Q2+(〈PT〉2)

2)/2 for the dijet mea-
surement, the difference in αs increases to 0.0007. Since the
αs values obtained are rather similar, this lends some support
to the argument given above.

The best experimental precision on αs is obtained from a
fit to normalised multijet cross sections, yielding:

αs(MZ )|kT = 0.1165 (8)exp (5)PDF (7)PDFset

× (3)PDF(αs) (8)had (36)μr (5)μ f

= 0.1165 (8)exp (38)pdf,theo. (17)

Here, we quote the value obtained for jets reconstructed with
the kT algorithm. As can be seen in Table 40, it is fully con-
sistent with the αs-value found for jets using the anti-kT algo-
rithm.

The uncertainties on αs(MZ ) are dominated by the-
ory uncertainties from missing higher orders and allow a
determination of αs(MZ ) with a precision of 3.4 % only,
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Table 40 Values of αs(MZ ) obtained from fits to absolute and normalised single jet and multijet cross sections employing the kT or the anti-kT jet
algorithm. Theoretical uncertainties are quoted for the fits to the kT jet cross sections

Summary of values of αs(MZ) and uncertainties

Measurement αs(MZ )|kT αs(MZ )|anti-kT PDF and theoretical uncertainties

Individual contributions Total

σjet 0.1174 (22)exp 0.1175 (22)exp (7)PDF (7)PDFset (5)PDF(αs) (10)had (48)μr (6)μ f (50)pdf,theo

σdijet 0.1137 (23)exp 0.1152 (23)exp (7)PDF (7)PDFset (5)PDF(αs) (7)had (37)μr (6)μ f (40)pdf,theo

σtrijet 0.1178 (17)exp 0.1174 (18)exp (3)PDF (5)PDFset (0)PDF(αs) (11)had (34)μr (3)μ f (36)pdf,theo
σjet

σNC
0.1176 (9)exp 0.1172 (8)exp (6)PDF (7)PDFset (4)PDF(αs) (8)had (41)μr (6)μ f (44)pdf,theo

σdijet

σNC
0.1135 (10)exp 0.1147 (9)exp (5)PDF (8)PDFset (3)PDF(αs) (6)had (32)μr (6)μ f (35)pdf,theo

σtrijet

σNC
0.1182 (11)exp 0.1177 (12)exp (3)PDF (5)PDFset (0)PDF(αs) (11)had (34)μr (3)μ f (36)pdf,theo

[σjet, σdijet, σtrijet] 0.1185 (16)exp 0.1181 (17)exp (3)PDF (4)PDFset (2)PDF(αs) (13)had (38)μr (3)μ f (40)pdf,theo
[

σjet

σNC
,
σdijet

σNC
,
σtrijet

σNC

]

0.1165 (8)exp 0.1165 (7)exp (5)PDF (7)PDFset (3)PDF(αs) (8)had (36)μr (5)μ f (38)pdf,theo

while an experimental precision of 0.7 % is reached. When
assuming the theory uncertainties on the cross section pre-
dictions to be fully correlated or when using the offset
method to estimate these uncertainties, the resulting uncer-
tainty on αs(MZ ) is about 30 % larger. Complete next-to-
next-to-leading order calculations of jet production in DIS
are required to reduce this mismatch in precision between
experiment and theory.

The αs-values determined are compatible with the world
average [62,80] value of αs(MZ ) = 0.1185 (6) within the
experimental and particularly the theoretical uncertainties.
The αs-values extracted from the kT-jet cross sections are
compared to the world average value in Fig. 20.

The value of αs(MZ ) with the highest overall precision
is obtained from fits to a reduced phase space region, in
which the dominant theoretical uncertainty, estimated from
variations of the renormalisation and factorisation scales, are
reduced at the expense of an increased experimental uncer-
tainty. For photon virtualities of Q2 > 400 GeV2 a total
uncertainty of 2.9 % on the αs-value is obtained, with a value
of

αs(MZ )|kT = 0.1160 (11)exp (32)pdf,theo.

The value of αs(MZ ) is the most precise value ever derived
at NLO from jet data recorded in a single experiment.

The running of αs(μr ) is determined from five fits using
the normalised multijet cross sections, each based on a set
of measurements with comparable values of the renormali-
sation scale μr . The values of αs(MZ ) and αs(μr ) extracted
are listed in Table 41 together with the cross section weighted
average values of μr . The values of αs(μr ) are obtained from
the values of αs(MZ ) by applying the 2-loop solution for the
evolution equation of αs(μr ). The values of αs(MZ ) and

)
Z

(Msα
0.11 0.115 0.12

H1 Collaboration

World average
PDG, Phys. Rev. D 86 (2012) 010001 (2014 update)

Normalised multijet

Multijet

Normalised trijet

Normalised dijet

Normalised inclusive jet

Trijet

Dijet

Inclusive jet

Fig. 20 Comparison of αs -values extracted from different jet cross sec-
tion measurements, separately and simultaneously, to the world average
value of αs(MZ ). The full line indicates the experimental uncertainty
and the dashed line the theoretical uncertainty. The band indicates the
uncertainty of the world average value of αs(MZ )

αs(μr ) obtained from the kT-jets are displayed in Fig. 21
together with results from other recent and precise jet data5

[10,82–86]. Within the small experimental uncertainties the
values of αs(MZ ) of the present analysis are consistent and

5 The values αs(μr ) given in [82–84,86] are evolved to αs(MZ ) for this
comparison, whereas the values of both αs(μr ) and αs(MZ ) are given
in [85].
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Table 41 Values of αs(MZ ) and αs(μr ) from five fits to groups of
data points with comparable value of the renormalisation scale from
normalised multijet cross sections. The cross section weighted average

value of the renormalisation scale is also given. Theoretical uncertain-
ties are quoted for the fits to the normalised kT jet cross sections

αs(MZ) from data points with comparable μr -values

〈μr 〉 [GeV] No. of data points αs(MZ )|kT αs(MZ )|anti-kT PDF and theoretical uncertainties

Individual contributions Total

11.9 9 0.1168 (10)exp 0.1174 (10)exp (6)PDF (10)PDFset (5)PDF(αs) (10)had (43)μr (6)μ f (47)pdf,theo

14.1 6 0.1155 (16)exp 0.1159 (14)exp (6)PDF (11)PDFset (3)PDF(αs) (9)had (37)μr (5)μ f (40)pdf,theo

17.4 18 0.1174 (13)exp 0.1163 (13)exp (5)PDF (12)PDFset (1)PDF(αs) (7)had (34)μr (5)μ f (37)pdf,theo

25.6 22 0.1153 (14)exp 0.1150 (14)exp (4)PDF (11)PDFset (2)PDF(αs) (5)had (28)μr (5)μ f (31)pdf,theo

59.6 9 0.1169 (66)exp 0.1185 (60)exp (10)PDF (1)PDFset (1)PDF(αs) (4)had (29)μr (8)μ f (32)pdf,theo

αs(μr ) from data points with comparable μr -values

〈μr 〉 [GeV] No. of data points αs(μr )|kT αs(μr )|anti-kT PDF and theoretical uncertainties at μr

Individual contributions Total

11.9 9 0.1684 (22)exp 0.1697 (21)exp (13)PDF (21)PDFset (11)PDF(αs) (21)had (91)μr (13)μ f (100)pdf,theo

14.1 6 0.1600 (31)exp 0.1605 (28)exp (12)PDF (21)PDFset (6)PDF(αs) (18)had (72)μr (10)μ f (79)pdf,theo

17.4 18 0.1567 (24)exp 0.1546 (23)exp (9)PDF (22)PDFset (2)PDF(αs) (13)had (61)μr (9)μ f (67)pdf,theo

25.6 22 0.1420 (22)exp 0.1415 (21)exp (6)PDF (17)PDFset (3)PDF(αs) (8)had (43)μr (8)μ f (47)pdf,theo

59.6 9 0.1248 (76)exp 0.1267 (68)exp (10)PDF (1)PDFset (1)PDF(αs) (5)had (33)μr (9)μ f (37)pdf,theo

independent of μr . Good agreement is found with H1 data
[10] at low scales and other jet data [81–86] at medium and
high scales. The prediction for the running of αs(μr ) using
αs(MZ ) = 0.1165 (8)exp (38)pdf,theo, as extracted from the
normalised multijet cross sections, is also shown in Fig. 21,
together with its experimental and total uncertainty. The pre-
diction is in good agreement with the measured values of
αs(μr ).

8 Summary

Measurements of inclusive jet, dijet and trijet cross sections
in the Breit frame in deep-inelastic electron-proton scatter-
ing in the kinematical range 150 < Q2 < 15 000 GeV2 and
0.2 < y < 0.7 are presented, using H1 data correspond-
ing to an integrated luminosity of 351pb−1. The measure-
ments consist of absolute jet cross sections as well as jet
cross sections normalised to the neutral current DIS cross
sections. Jets are determined using the kT and the anti-kT

jet algorithm. Compared to previous jet measurements by
H1, this analysis makes use of an improved electron calibra-
tion and further development of the energy flow algorithm,
which combines information from tracking and calorimetric
measurements, by including a better separation of electro-
magnetic and hadronic components of showers. The sum of
these improvements, together with a new method to cali-

brate the hadronic final state, reduces the hadronic energy
scale uncertainty by a factor of two to 1 % for P jet

T,lab down
to 5 GeV.

The jet cross section measurements are performed using a
regularised unfolding procedure to correct the neutral current
DIS, the inclusive jet, the dijet and the trijet measurements
simultaneously for detector effects. It considers up to seven
different observables per measurement for the description
of kinematical migrations due to the limited detector resolu-
tion. This approach provides a reliable treatment of migration
effects and enables the determination of the statistical corre-
lations between the three jet measurements and the neutral
current DIS measurement.

Theoretical QCD calculations at NLO, corrected for
hadronisation and electroweak effects, provide a good
description of the measured double-differential jet cross sec-
tions as a function of the exchanged boson virtuality Q2, the
jet transverse momentum P jet

T , the mean transverse momen-
tum 〈PT〉2 and 〈PT〉3 in case of dijets and trijets, as well as
of the longitudinal proton momentum fractions ξ2 and ξ3. In
general, the precision of the data is considerably better than
that of the NLO calculations.

The measurements of the inclusive, the dijet and the tri-
jet cross section are used separately and also simultaneously
to extract values for the strong coupling constant αs(MZ ).
The best experimental precision of 0.7 % is obtained when
using the normalised multijet cross sections. The simultane-
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Fig. 21 The upper panel shows the values of the strong coupling
αs(μr ) as determined from the normalized multijet measurement (open
dots) at different scales μr . The inner error bars indicate the experimen-
tal uncertainty, while the full error bars indicate the total uncertainty,
including the experimental and theoretical contributions. The solid line
shows the NLO QCD prediction calculated using the renormalisation
group equation with αs(MZ ) = 0.1165 as determined from the simul-
taneous fit to all normalized multijet measurements. The dark shaded
band around this line indicates the experimental uncertainty on αs(μr ),
while the light shaded band shows the total uncertainty. Also shown
are the values of αs from multijet measurement at low values of Q2

by H1 (circles), from inclusive jet measurements in photoproduction
by the ZEUS experiment (upper triangles), from the 3-jet rate y3 in
a fit of NNLO calculations to ALEPH data taken at LEP (diamonds),
from the 4-jet rate measured by the JADE experiment at PETRA (stars),
from the jet transition value y23 measured by OPAL at LEP (squares),
from the ratio of trijet to dijet cross sections R3/2 as measured by the
CMS experiment at the LHC (crosses), and from jet angular correla-
tions R
R by the D0 experiment at the Tevatron (lower triangles). In the
lower panel the equivalent values of αs(MZ ) for all measurements are
shown

ous extraction of the strong coupling constant αs(MZ ) from
the normalised inclusive jet, the dijet and the trijet samples
using the kT jet algorithm yields:

αs(MZ )|kT = 0.1165 (8)exp (5)PDF (7)PDFset (3)PDF(αs)

×(8)had (36)μr (5)μ f

= 0.1165 (8)exp (38)pdf,theo. (18)

A very similar result is obtained when using the anti-kT jet
algorithm. The values and uncertainties of αs(MZ ) obtained
using absolute jet cross sections are consistent with the results
from the corresponding normalised jet cross sections, albeit
with larger experimental uncertainties. A tension is observed
between the value of αs(MZ ) extracted from the dijet sample
and the similar values obtained from the inclusive jet and the
trijet samples. This may be caused by missing higher orders

in the calculations, which can be different in the inclusive jet
phase space region which is not part of the dijet phase space.

When restricting the measurement to regions of higher
Q2, where the scale uncertainties are reduced, the smallest
total uncertainty on the extracted αs(MZ ) is found for Q2 >

400 GeV2. For this region the loss in experimental precision
is compensated by the reduced theory uncertainty, yielding

αs(MZ )|kT = 0.1160 (11)exp (32)pdf,theo.

The extracted αs(MZ )-values are compatible within uncer-
tainties with the world average value of αs(MZ )=0.1185 (6)

and with αs-values from other jet data. Calculations in NNLO
are needed to benefit from the superior experimental preci-
sion of the DIS jet data.

The running of αs(μr ), determined from the normalised
multijet cross sections, is shown to be consistent with the
expectation from the renormalisation group equation and
with values of αs(μr ) from other jet measurements.

Acknowledgments We are grateful to the HERA machine group
whose outstanding efforts have made this experiment possible. We thank
the engineers and technicians for their work in constructing and main-
taining the H1 detector, our funding agencies for financial support, the
DESY technical staff for continual assistance and the DESY directorate
for support and for the hospitality which they extend to the non DESY
members of the collaboration. We would like to give credit to all part-
ners contributing to the EGI computing infrastructure for their support
for the H1 Collaboration. Furthermore, we thank Zoltán Nagy and Ste-
fan Höche for fruitful discussions and for help with their computer
programs.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. H. Fritzsch, M. Gell-Mann, in Proceedings of 16th International
Conference on High-Energy Physics, Batavia IL, 1972, p. 135.
arXiv:hep-ph/0208010

2. D. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)
3. H. Politzer, Phys. Rev. Lett. 30, 1346 (1973)
4. A. Ali, G. Kramer, Eur. Phys. J. H 36, 245 (2011). arXiv:1012.2288,

and references therein
5. T. Schörner-Sadenius, Eur. Phys. J. C 72, 2060 (2012) [Erratum

ibid, 72, 2133 (2012)]
6. R. Feynman, Photon–Hadron Interactions (Benjamin, New York,

1972)
7. K. Streng, T. Walsh, P. Zerwas, Z. Phys. C 2, 237 (1979)
8. ZEUS Collaboration, H. Abramowicz et al., Eur. Phys. J. C 70, 965

(2010). arXiv:1010.6167
9. ZEUS Collaboration, H. Abramowicz et al., Phys. Lett. B 691, 127

(2010). arXiv:1003.2923
10. H1 Collaboration, F.D. Aaron et al., Eur. Phys. J. C 67, 1 (2010).

arXiv:0911.5678
11. H1 Collaboration, F.D. Aaron et al., Eur. Phys. J. C 65, 363 (2010).

arXiv:0904.3870

123

http://arxiv.org/abs/hep-ph/0208010
http://arxiv.org/abs/1012.2288
http://arxiv.org/abs/1010.6167
http://arxiv.org/abs/1003.2923
http://arxiv.org/abs/0911.5678
http://arxiv.org/abs/0904.3870


Eur. Phys. J. C (2015) 75 :65 Page 47 of 48 65

12. S. Ellis, D. Soper, Phys. Rev. D 48, 3160 (1993). hep-ph/9305266
13. M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804, 063 (2008).

arXiv:0802.1189
14. R. Kogler, Measurement of jet production in deep-inelastic ep

scattering at HERA. Dissertation, Universität Hamburg, DESY-
THESIS-2011-003, MPP-2010-175, 2010. Available at http://
www-h1.desy.de/publications/theses_list.html

15. H1 Collaboration, I. Abt et al., Nucl. Instrum. Methods A 386, 310
(1997)

16. H1 Collaboration, I. Abt et al., Nucl. Instrum. Methods A 386, 348
(1997)

17. Calorimeter Group of H1, B. Andrieu et al., Nucl. Instrum. Methods
A 336, 460 (1993)

18. Calorimeter Group of H1, B. Andrieu et al., Nucl. Instrum. Methods
A 350, 57 (1994)

19. Calorimeter Group of H1, B. Andrieu et al., Nucl. Instrum. Methods
A 336, 499 (1993)

20. SPACAL Group of H1, R. Appuhn et al., Nucl. Instrum. Methods
A 386, 397 (1997)

21. SPACAL Group of H1, R. Appuhn et al., Nucl. Instrum. Methods
A 382, 395 (1996)

22. D. Pitzl et al., Nucl. Instrum. Methods A 454, 334 (2000). hep-
-ex/0002044

23. H1 Collaboration, F.D. Aaron et al., Eur. Phys. J. C 72, 2163 (2012).
arXiv:1205.2448 [Erratum ibid, 74, 2733 (2014)]

24. M. Peez, Search for deviations from the standard model in high
transverse energy processes at the electron proton collider HERA
(in French). Dissertation, Univ. Claude Bernard, Lyon, DESY-
THESIS-2003-023, CPPM-T-2003-04, 2003. Available at http://
www-h1.desy.de/publications/theses_list.html

25. S. Hellwig, Investigation of the D∗ − πslow double tagging
method for the analysis of charm (in German). Diploma thesis,
Hamburg University, 2004. Available at http://www-h1.desy.de/
publications/theses_list.html

26. B. Portheault, First measurement of charged and neutral current
cross sections with the polarized positron beam at HERA II and
QCD-electroweak analyses (in French). Dissertation, Univ. Paris
XI Orsay, LAL-05-05, 2005. Available at http://www-h1.desy.de/
publications/theses_list.html

27. M. Feindt, IEKP-KA/04-05, physics/0402093
28. M. Feindt, U. Kerzel, Nucl. Instrum. Methods A 559, 190 (2006)
29. S. Bentvelsen, J. Engelen, P. Kooijman, in Proceedings of “Physics

at HERA”, DESY, Hamburg, vol. 1, 1992, 23 NIKHEF-H-92-02,
eds. by Buchmüller, G. Ingelman

30. K.C. Hoeger, in Proceedings of “Physics at HERA”, DESY, Ham-
burg, vol. 1, 1992, eds. by Buchmüller, G. Ingelman, p. 43

31. H1 Collaboration, C. Adloff et al., Eur. Phys. J. C 30, 1 (2003).
hep-ex/0304003

32. H1 Collaboration, F.D. Aaron et al., JHEP 1209, 061 (2012).
arXiv:1206.7007

33. U. Bassler, G. Bernardi, Nucl. Instrum. Methods A 361, 197 (1995).
hep-ex/9412004

34. U. Bassler, G. Bernardi, Nucl. Instrum. Methods A 426, 583 (1999).
hep-ex/9801017

35. M. Wobisch, Measurement and QCD analysis of jet cross sections
in deep-inelastic positron–proton collisions at

√
s = 300 GeV. Dis-

sertation, RWTH Aachen, DESY-THESIS-2000-049, 2000. Avail-
able at http://www-h1.desy.de/publications/theses_list.html

36. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). hep-
-ph/0512210

37. ZEUS Collaboration, S. Chekanov et al., Phys. Lett. B 649, 12
(2007). hep-ex/0701039

38. S. Frixione, G. Ridolfi, Nucl. Phys. B 507, 315 (1997)
39. M. Gouzevitch, Measurement of the strong coupling constant αs

with jets in deep-inelastic scattering (in French). Dissertation,

Ecole Polytechnique Palaiseau, DESY-THESIS-2008-047, 2008.
Available at http://www-h1.desy.de/publications/theses_list.html

40. R. Brun et al., GEANT 3, CERN-DD/EE 84-1 (1987)
41. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., JHEP

0207, 012 (2002). hep-ph/0201195
42. K. Charchula, G.A. Schuler, H. Spiesberger, DJANGOH 1.4. Com-

put. Phys. Commun. 81, 381 (1994)
43. L. Lönnblad, ARIADNE 4.10. Comput. Phys. Commun. 71, 15

(1992)
44. L. Lönnblad, Manual, Oct. 2001, Available at http://home.thep.lu.

se/~leif/ariadne/ariadne. Accessed June 2014
45. H. Jung, RAPGAP 3.1. Comput. Phys. Commun. 86, 147 (1995)
46. H. Jung, Manual, Aug. 2006, Available at http://www.desy.de/

~jung/rapgap/rapgap-desy.html. Accessed June 2014
47. B. Andersson et al., Phys. Rep. 97, 31 (1983)
48. T. Sjöstrand, PYTHIA 5.7 and JETSET 7.4, arXiv:hep-ph/9508391
49. ALEPH Collaboration, S. Schael et al., Phys. Lett. B 606, 265

(2005)
50. A. Kwiatkowski, H.J. Spiesberger, H.J. Möhring, Comput. Phys.

Commun. 69, 155 (1992)
51. G. Ingelman, A. Edin, J. Rathsman, Comput. Phys. Commun. 101,

108 (1997). arXiv:hep-ph/9605286
52. S. Schmitt, JINST 7, T10003 (2012). arXiv:1205.6201
53. D. Britzger, Regularized unfolding of jet cross sections in deep-

inelastic ep scattering at HERA and determination of the strong
coupling constant. Dissertation, Universität Hamburg, DESY-
THESIS-2013-045, 2013. Available at http://www-h1.desy.de/
publications/theses_list.html

54. H1 Collaboration, C. Adloff et al., Eur. Phys. J. C 19, 289 (2001).
hep-ex/0010054

55. T. Kluge, K. Rabbertz, M. Wobisch, in Proceedings of “14th Inter-
national Workshop on Deep Inelastic Scattering (DIS 2006)”,
Tsukuba, Japan, 2007, eds. by M. Kuze, K. Nagano, K. Tokushuku,
p. 483. hep-ph/0609285

56. D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, in Proceedings
of “20th International Workshop on Deep-Inelastic Scattering and
Related Subjects (DIS 2012)”, Bonn, Germany, 2013, ed. by I.
Brock, p. 217. arXiv:1208.3641

57. Z. Nagy, Z. Trocsanyi, Phys. Rev. D 59, 014020 (1999). hep-
-ph/9806317 [Erratum ibid, 62, 099902 (2000)]

58. Z. Nagy, Z. Trocsanyi, Phys. Rev. Lett. 87, 082001 (2001). hep-
-ph/0104315

59. M. Whalley, D. Bourilkov, R. Group, in Proceedings for “HERA
and the LHC”, Hamburg, Germany, 2005, eds. by A. De Roeck,
H. Jung, p. 575. hep-ph/0508110

60. A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 63, 189
(2009). arXiv:0901.0002

61. A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 64, 653
(2009). arXiv:0905.3531

62. K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001
(2014)

63. S. Bodenstein, C.A. Dominguez, K. Schilcher, H. Spiesberger,
Phys. Rev. D 86, 093013 (2012). arXiv:1209.4802

64. M. Botje, Comput. Phys. Commun. 182, 490 (2011).
arXiv:1005.1481

65. T. Gleisberg et al., SHERPA 1.3.1. JHEP 0902, 007 (2009).
arXiv:0811.4622

66. T. Carli, T. Gehrmann, S. Hoeche, Eur. Phys. J. C 67, 73 (2010).
arXiv:0912.3715

67. B. Webber, Nucl. Phys. B 238, 492 (1984)
68. J.C. Collins, X.-M. Zu, JHEP 0206, 018 (2002). hep-ph/0204127
69. J.M. Campbell, J.W. Huston, W.J. Stirling, Rep. Prog. Phys. 70, 89

(2007). arXiv:hep-ph/0611148
70. H.-L. Lai et al., Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241
71. R.D. Ball et al., Nucl. Phys. B 867, 244 (2013). arXiv:1207.1303

123

http://arxiv.org/abs/hep-ph/9305266
http://arxiv.org/abs/0802.1189
http://www-h1.desy.de/publications/theses_list.html
http://www-h1.desy.de/publications/theses_list.html
http://arxiv.org/abs/hep-ex/0002044
http://arxiv.org/abs/1205.2448
http://www-h1.desy.de/publications/theses_list.html
http://www-h1.desy.de/publications/theses_list.html
http://www-h1.desy.de/publications/theses_list.html
http://www-h1.desy.de/publications/theses_list.html
http://www-h1.desy.de/publications/theses_list.html
http://www-h1.desy.de/publications/theses_list.html
http://arxiv.org/abs/physics/0402093
http://arxiv.org/abs/hep-ex/0304003
http://arxiv.org/abs/1206.7007
http://arxiv.org/abs/hep-ex/9412004
http://arxiv.org/abs/hep-ex/9801017
http://www-h1.desy.de/publications/theses_list.html
http://arxiv.org/abs/hep-ph/0512210
http://arxiv.org/abs/hep-ex/0701039
http://www-h1.desy.de/publications/theses_list.html
http://arxiv.org/abs/hep-ph/0201195
http://home.thep.lu.se/~leif/ariadne/ariadne
http://home.thep.lu.se/~leif/ariadne/ariadne
http://www.desy.de/~jung/rapgap/rapgap-desy.html
http://www.desy.de/~jung/rapgap/rapgap-desy.html
http://arxiv.org/abs/hep-ph/9508391
http://arxiv.org/abs/hep-ph/9605286
http://arxiv.org/abs/1205.6201
http://www-h1.desy.de/publications/theses_list.html
http://www-h1.desy.de/publications/theses_list.html
http://arxiv.org/abs/hep-ex/0010054
http://arxiv.org/abs/hep-ph/0609285
http://arxiv.org/abs/1208.3641
http://arxiv.org/abs/hep-ph/9806317
http://arxiv.org/abs/hep-ph/0104315
http://arxiv.org/abs/hep-ph/0508110
http://arxiv.org/abs/0901.0002
http://arxiv.org/abs/0905.3531
http://arxiv.org/abs/1209.4802
http://arxiv.org/abs/1005.1481
http://arxiv.org/abs/0811.4622
http://arxiv.org/abs/0912.3715
http://arxiv.org/abs/hep-ph/0204127
http://arxiv.org/abs/hep-ph/0611148
http://arxiv.org/abs/1007.2241
http://arxiv.org/abs/1207.1303


65 Page 48 of 48 Eur. Phys. J. C (2015) 75 :65

72. H1 and ZEUS Collaborations, F.D. Aaron et al., JHEP 1001, 109
(2010). arXiv:0911.0884

73. H1 and ZEUS Collaborations, PDF fits including HERA-II
high Q2 data (HERAPDF1.5), Preliminary result, H1prelim-
10-142, ZEUS-prel-10-018, 2010. See http://www-h1.desy.de/
publications/H1preliminary.short_list.html

74. H1 and ZEUS Collaborations, V. Radescu, in Proceedings of 35th
International Conference on High Energy Physics (ICHEP 2010),
Paris, France, 2010, eds. by B. Pire et al., p. 168. arXiv:1308.0374

75. S. Alekhin, J. Blümlein, S. Moch, Phys. Rev. D 86, 054009 (2012).
arXiv:1202.2281

76. V. Barone, C. Pascaud, F. Zomer, Eur. Phys. J. C 12, 243 (2000).
hep-ph/9907512

77. H1 Collaboration, A. Aktas et al., Phys. Lett. B 653, 134 (2007).
arXiv:0706.3722

78. D.E. Soper, in Proceedings of the XXV Summer Institute on Particle
Physics, Stanford, USA, 1996, eds. by J. Chan, L. DePorcel, L.
Dixon, p. 15. hep-ph/9702203

79. H1 and ZEUS Collaborations, H. Abramowicz et al., Eur. Phys. J.
C 73, 2311 (2013). arXiv:1211.1182

80. S. Bethke, Nucl. Phys. Proc. Suppl. 234, 229 (2013).
arXiv:1210.0325

81. ZEUS Collaboration, H. Abramowicz et al., Nucl. Phys. B 864, 1
(2012). arXiv:1205.6153

82. G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N.
Glover, G. Heinrich, JHEP 0802, 040 (2008). arXiv:0712.0327

83. JADE Collaboration, J. Schieck et al., Eur. Phys. J. C 48, 3 (2006).
arXiv:0707.0392 [Erratum-ibid. C 50, 769 (2007)]

84. OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 71, 1733
(2011). arXiv:1101.1470

85. CMS Collaboration, S. Chatrchyan et al., Eur. Phys. J. C 73, 2604
(2013). arXiv:1304.7498

86. D0 Collaboration, V. Abazov et al., Phys. Lett. B 718, 56 (2012).
arXiv:1207.4957

123

http://arxiv.org/abs/0911.0884
http://www-h1.desy.de/publications/H1preliminary.short_list.html
http://www-h1.desy.de/publications/H1preliminary.short_list.html
http://arxiv.org/abs/1308.0374
http://arxiv.org/abs/1202.2281
http://arxiv.org/abs/hep-ph/9907512
http://arxiv.org/abs/0706.3722
http://arxiv.org/abs/hep-ph/9702203
http://arxiv.org/abs/1211.1182
http://arxiv.org/abs/1210.0325
http://arxiv.org/abs/1205.6153
http://arxiv.org/abs/0712.0327
http://arxiv.org/abs/0707.0392
http://arxiv.org/abs/1101.1470
http://arxiv.org/abs/1304.7498
http://arxiv.org/abs/1207.4957

	Measurement of multijet production in ep collisions at high Q2 and determination of the strong coupling αs
	H1 Collaboration
	Abstract 
	1 Introduction
	2 Experimental method
	2.1 The H1 detector
	2.2 Reconstruction and calibration of the hadronic final state
	2.3 Event selection
	2.4 Reconstruction of jet observables
	2.5 Measurement phase space and extended analysis phase space
	2.6 Monte Carlo simulations

	3 Unfolding
	3.1 Weighting of MC models to describe data
	3.2 Regularised unfolding
	3.3 Definition of the migration matrix
	3.4 Regularisation strength and condition
	3.5 Bias tests

	4 Jet cross section measurement
	4.1 Observables and phase space
	4.2 Experimental uncertainties

	5 Theoretical predictions
	5.1 NLO calculations
	5.2 Hadronisation corrections
	5.3 Electroweak corrections
	5.4 QCD predictions on hadron level
	5.5 Theoretical uncertainties

	6 Experimental results
	7 Determination of the strong coupling constant αs(MZ)
	7.1 Fit strategy
	7.2 Experimental uncertainties on as
	7.3 Theoretical uncertainties on as
	7.4 Results of the alphas-fit

	8 Summary
	Acknowledgments
	References



