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Abstract This paperis devoted to the reconciliation of the
tension between the theoretic expectation from naturalness
and the present LHC limits on the superpartner mass bounds.
We argue that in supersymmetry models of direct gauge
mediation the focusing phenomenon appears, which dramati-
cally reduces the fine tuning associated to the 126 GeV Higgs
boson. This type of model is highly predictive as regards the
mass spectrum, with a multi-TeV third generation, the At

term of order 1 TeV, gluino mass above LHC mass bound,
and the light neutralinos and charginos below 1 TeV.

1 Introduction

As the LHC keeps running, the searches of supersymme-
try (SUSY) signals such as stop/gluino, bottom, and Higgs
mass discovered at 126 GeV [1,2] continue to push their mass
bounds toward the multi-TeV range [3,4]. On the other hand,
the argument of naturalness requires the masses of third gen-
eration scalars, the Higgsinos, and gluinos should be ∼1 TeV.
This is the present status of SUSY.

To reconcile the experimental limits and the expectation
of naturalness, either of them needs subtle reconsiderations.
In this paper, we consider relaxing the upper bounds from the
argument of naturalness. The upper bounds on the above soft
breaking parameters arise from the significant contribution
to the renormalization group (RG) running for up-type Higgs
mass squared m2

Hμ
, which connects to the electroweak (EW)

scale through the electroweak symmetry-breaking (EWSB)
condition [for tan β > 10 in the context of the minimal super-
symmetric model (MSSM)],

m2
Z � −2μ2 − 2m2

Hμ
. (1)

Naively, low fine tuning implies that the value of μ and
|m Hμ | at EW scale should be both near EW scale. But there
exists an exception. In some cases, there is significantly

a e-mail: sibozheng.zju@gmail.com

cancelation among the RGE corrections arising from soft
breaking parameters to m2

Hμ
, although their input values are

far beyond 1 TeV. This is known as the focusing phenomenon
[5,6].

The early attempts in [5–8] were mainly restricted to
SUSY models near the grand unification scale (GUT). One
recent work related to focus point SUSY deals with gaug-
ino mediation [9]. In this text, we consider gauge medi-
ated (GM) SUSY models with intermediate or low mes-
senger scale M (for a review see, e.g., [10]). Since the
focusing phenomenon can be analytically estimated only
if the gaugino masses dominate over all other soft break-
ing masses, or if they are small compared with the third-
generation scalar masses (with [11] or without [5,6] A terms),
following this observation, in this paper we study a direct
GM model, in which the gaugino masses are naturally small
due to the fact that gaugino masses of order O(F) vanish
[12].

Another rationale for employing direct GM models is that
the focusing phenomenon can be understood as a result of
hidden symmetry. This is so because, without directly gaug-
ing the global symmetries of the model, there would be
larger symmetries maintained in the hidden theory. Other-
wise, without the protection of symmetry a tiny deviation
for the model parameters from their focus point values leads
to significant fine tuning again, and the model is actually
unnatural.

As we will see, there are three free input parameters in our
model. Two of them are fixed so as to induce the focusing
phenomenon, leaving an overall mass parameter m0. The fit
to the 126 GeV Higgs boson discovered at the LHC then
determines the magnitude of this parameter, with m0 ∼ 4–
7 TeV. Thus, our model is highly predictive as regards the
mass spectrum.

In Sect. 2.1, we introduce the model in detail. In Sect. 2.2,
we discuss the focusing phenomenon, the boundary condi-
tions for such structure and the mass spectrum at EW scale.
In Sect. 2.3, we discuss the possibility of uplifting thegluino
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mass above the LHC lower bound while keeping the focus-
ing. Finally we conclude in Sect. 3.

2 The model

2.1 Setup

In contrast to [13], in which a non-minimal GM model was
employed to discuss focusing phenomenon, we study SUSY
models that do not spoil the grand unification of SM gauge
couplings and are restricted to the context of direct GM. The
messenger fields include chiral quark superfields q + q ′ and
their bi-fundamental fields q̄ + q̄ ′, lepton superfields l +
l ′ and their bi-fundamental fields l̄ + l̄ ′, and singlet S and
its bi-fundamental field S̄. They transform under SU (3)C ×
SU (2)L × U (1)Y as, respectively,

q, q ′ ∼
(

3, 1,−1

3

)
,

q̄, q̄ ′ ∼
(

3̄, 1,
1

3

)
,

l, l ′ ∼
(

1, 2,
1

2

)
, (2)

l̄, l̄ ′ ∼
(

1, 2̄,−1

2

)
,

S, S̄ ∼ (1, 1, 0).

So, these messenger multiplets complete a 5 + 5̄ represen-
tation of the SM gauge group. The renormalizable superpo-
tential consistent with the SM gauge symmetry is given by1

W = f X + Xqq̄ + Xll̄ + m(q ′q̄ + qq̄ ′) + m(l ′l̄ + ll̄ ′),
(3)

where X = M + Fθ2, denotes the SUSY-breaking sector
with nonzero F term. We will consider N copies of such
messengers multiplets, with N < 6 so as to maintain the
grand unification of SM gauge couplings.

For the purpose of focusing we add a deformation to the
superpotential Eq. (3),

W = λHu Sl̄. (4)

This superpotential can be argued to be natural by either
imposing a hidden U (1)X symmetry [15] or matter parity
[16]. For example, we can impose the U (1)X charges of the
fields,

qX (X, φi , φ̄i , Hu, Hd) = (1,−1/2,−1/2, 1,−1) (5)

1 It belongs to the general Wess–Zumino model, which can be com-
pleted as an effective theory of strong dynamics at low energy [14]. The
direct gauge mediation arises after gauging the global symmetries in
the weak theory and identifying them as SM gauge groups.

where φi = {q, q ′, l, l ′, S}. In addition, this hidden symme-
try forbids some operators such as Hd Sl.

In Eq. (3) we have assumed a unified mass parameter
m and ignored the Yukawa coefficients for simplicity. For
m < M , which we adopt, in this paper the soft scalar mass
spectrum induced by superpotential Eq. (3) is the same as that
of the minimal GM at the leading order. Since the minimal
GM cannot induce the focusing phenomenon, the deforma-
tion to the scalar mass spectrum due to Eq. (4) is crucial
for our purpose. In particular, Eq. (4) gives rise to a negative
one-loop contribution to m2

Hu
with suppression factor F/M2.

Unless we take
√

F << M , the sign of m2
Hu

would be nega-
tive, it will not lead to focusing (see explanation around Eq.
(11)). Therefore, we are restricted to choosing

m < M, and
√

F << M. (6)

For a detailed calculation of the deviation to the scalar mass
spectrum given by Eq. (4), we refer the reader to [15,17].
With small SUSY breaking given by Eq. (6), m2

Hμ
will be

uplifted as required for focusing.
One can verify that the gaugino masses at one loop of

order O(F) vanish due to the fact the mass matrix of the
messengers,

M =
(

X m
m 0

)
, (7)

satisfies det M = const as long as m does not vanish,
although m is small in comparison with the scale M . So we
expect that the RGE for m2

Hμ
is dominated by the stop mass

squared m2
Q3

, m2
u3

, and an induced A term (see Eq. (4)).

2.2 Focusing and mass spectrum

Following the observation [5,6,11] that the REGs for At and
scalar masses such as m2

Hμ
are affected by both themselves

and the gluino masses, while the RGE for gluino mass is only
affected by itself, we can solve the RGEs for the soft scalar
masses,
⎛
⎜⎜⎜⎝

m2
Hμ

(Q)

m2
u3

(Q)

m2
Q3

(Q)

A2
t (Q)

⎞
⎟⎟⎟⎠ = κ12 I 2(Q)

⎛
⎜⎜⎝

3
2
1
6

⎞
⎟⎟⎠+ κ6 I (Q)

⎛
⎜⎜⎝

3
2
1
0

⎞
⎟⎟⎠

+κ0

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠+ κ ′

0

⎛
⎜⎜⎝

0
1

−1
0

⎞
⎟⎟⎠ (8)

for small gluino masses (to be compared with the above scalar
soft masses). Here,

I (Q) = exp

( ∫ ln Q

ln M

6y2
t (Q′)
8π2 d ln Q′

)
, (9)
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Fig. 1 I as a function of M in the context of MSSM below the scale
M

which depends on M and the RGE for the top Yukawa. In
Fig. 1 we show the numerical value of I as a function of M ,
in the context of MSSM below the scale M . In particular,
I (1 TeV) � 0.527 for M = 108 GeV.

The condition for the focusing phenomenon can be
derived from Eq. (8) by imposing m2

Hμ
(1 TeV) � 0. Define

m2
Hμ

(M) = +m2
0. Similar to [11] we choose x to parameter-

ize the splitting between m2
Q3

(M) and m2
u3

(M) and y to be
directly related to At (M). In the case of small SUSY break-
ing, the mass spectrum which induces focusing at the scale
μ = 1 TeV reads

m2
0

⎛
⎜⎜⎝

1
1.41 + x − 1.58y
1.82 − x − 3.16y

9y

⎞
⎟⎟⎠

M

→ m2
0

⎛
⎜⎜⎝

0
0.74 + x − 1.58y
1.48 − x − 3.16y

1.66y

⎞
⎟⎟⎠

μ

.

(10)

Alternatively we rescale the parameter x as in [11] such
that m2

Q3
only depends on x . For m2

Hμ
(M) = −m2

0, Eq. (10)
is instead

m2
0

⎛
⎜⎜⎝

−1
−1.41 + x − 1.58y
−1.82 − x − 3.16y

9y

⎞
⎟⎟⎠

M

→ m2
0

⎛
⎜⎜⎝

0
−0.74 + x − 1.58y
−1.48 − x − 3.16y

1.66y

⎞
⎟⎟⎠ .

This parameterization appears when F/M2 → 1. In this
limit, m2

Hμ
is dominated by the one-loop negative contribu-

tion proportional to the Yukawa coupling λ. From Eq. (11),
there is no consistent solution to x and y in this case.

Soft masses in Eq. (8) at the scale μ = 1 TeV are functions
of the Yukawa coupling λ, the number of messenger pairs N ,
the ratio F/M2 and the SUSY-breaking mediated scale M .
By Eq. (10) one connects the variables (x, y) and the model
parameters λ and N . For the three input parameters m0, x ,
and y (with M fixed) for focusing in the model, two of them
can be fixed by the choices of λ and N . We choose x and y
for our analysis. Figure 2 shows the plots of x (dotted) and
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Fig. 2 Plots of x (dotted) and y (solid) as a function of αλ for N =
{1, 2, 3, 4}. The red, blue, purple, and black curves correspond to N =
1, 2, 3, 4, respectively. For each N the focus point values are read from
the crossing points between vertical line and solid curve for y and dotted
curve for x , respectively. The dotted (solid) horizontal lines refer to the
range allowed for x (y)

y (solid) as a function of αλ and N . For each N the focus
point values of x and y are read off from the crossing points
between vertical line and solid curve (dotted curve ) for y (x).
Therefore, there is only one free parameter left in the model
by imposing the focusing condition, which is very predictive
as regards the mass spectrum and signal analysis.

Since we perform our analysis in perturbative theory, in
order to avoid the Landau pole up to GUT scale, the Yukawa
coupling αλ is upper bounded, ∼0.1 for our choice of mes-
senger scale. The dotted and solid horizontal lines in Fig. 2
refer to the allowed ranges for x and y, respectively. These
ranges are derived from the requirement that the stop soft
masses are not tachyon-like and the At squared is positive.
Therefore, we obtain

0 < y < 0.40, −0.74 < x < 1.48,

1.58y − 0.74 < x < 1.48 − 3.16y, (11)

1.58y − 1.41 < x < 1.82 − 3.16y.

It is easy to verify that for each N the crossing points satisfy
the constraints above.

With the focusing phenomenon we have a single free
parameter at hand, namely m0. It can be uniquely determined
in terms of the mass of the Higgs boson observed at the LHC.
Figure 2 shows how mh changes with the parameter m0 for
different Ns. The two-loop level Higgs boson mass in the
MSSM is given by [18]

m2
h = m2

Z cos2 2β + 3m4
t

4π2υ2

{
log

(
M2

S

m2
t

)
+ 1

2
Ãt + 1

16π2

×
(

3

2

m2
t

υ2 − 32πα3

)[
Ãt +log

(
M2

S

m2
t

)]
log

(
M2

S

m2
t

)}
.

(12)
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Fig. 3 mh vs. m0 for different Ns, with N = 1, 2, 3, 4 from bottom
to top, respectively. A multi-TeV m0 is required by the 126 GeV Higgs
boson

Table 1 Given a focus point, the input mass parameter m0 (in unit of
TeV) required for mh = 126 GeV, and the corresponding soft mass
spectrum (in unit of TeV) at the renormalization scale μ = 1 TeV in
the context of MSSM, for different values of the messenger number N

N = 1 N = 2 N = 3 N = 4

m0 7.0 5.9 4.0 3.5

mt̃1 3.12 3.62 4.54 4.83

mt̃2 7.65 4.98 4.80 6.0

At 1.64 1.48 1.50 1.50

μ 0.50 0.42 0.28 0.24

Here υ = 174 GeV and Ãt = 2X2
t

M2
S

(
1 − X2

t
12M2

S

)
, with

Xt = At − μ cot β. We focus on the large tan β region. For
tan β ≥ 20, the fit to the Higgs boson mass does not change
much. From Fig. 3 one observes that m0 ∼ 4.0–7.0 due to
the fit to the 126 GeV Higgs boson.

Substituting the values of m0 from Fig. 3 and x , y from
Fig. 2 into Eq. (10) we find the mass spectrum, which is
shown in Table 1.

The choice on large tan β might be forbidden by a pos-
sibly large Bμ term induced by Eq. (4). As noted in [16],
Bμ ∼ μAt . In terms of the electroweak symmetry-breaking
condition, we have sin(2β) � Bμ/m2

0 ∼ (At/m0)
2 ·(μ/At ).

With a small μ term of order ∼300–500 GeV (as shown in
Table 1) at the messenger scale M , one does not have to
worry about μ being made very large by a radiative correc-
tion involving heavy soft scalar masses (see, e.g., [17]). So,
one obtains sin(2β) of order ∼ (1/4)2 · (1/4) from Table 1,
and the choice of a large value of tan β is not violated by the
Bμ term.

2.3 Gaugino mass

As mentioned above due to det M = const the gaugino
masses vanish at one-loop level of order O(F) and at the

two-loop level of order O(F). Their leading contributions
appear at one-loop level of order O(F3/M5) [12]. In the
small SUSY-breaking limit the magnitude of the gaugino
mass relative to m Q3 at the input scale is given by2

mg̃i

m Q3

∼
(

F

M2

)2

·
√

Nαi√
2 × ( 4

3α2
3(M) + 3

4α2
2(M) + 1

60α2
1(M)

) .
(13)

Using one-loop RGEs for the gluino masses, we find their
values at the renormalization scale μ = 1 TeV. One observes
from Eq. (13) that the gluino mass is far below the 2013 LHC
bound �1.3 TeV due to the suppression by a factor F2/M4.

Without extra significant modifications to the gaugino
mass spectrum, the LHC bound would exclude this simple
model, despite it providing a natural explanation of the Higgs
boson mass and being consistent with the present experi-
mental limits. Here, we propose a recipe [19] in terms of
imposing a small modification to the superpotential δW =
m′(l̄ ′l ′ + q̄ ′q ′), with a small mass m′ < m. These mass terms
are consistent with the gauge symmetries and matter parity
of the messenger sector.

If so, Eq. (7) will be instead

M =
(

X m
m m′

)
(14)

The correction to the soft scalar mass spectrum is of the order
O(m′4/m4) and very weak. However, the correction to the
gaugino mass, which is of order

mg̃i � N · αi

4π
· F

m
· m′

m
, (15)

can be large enough to reconcile with the LHC bound when
m′/m is larger than F2/M4. For example, we choose N = 1,
M = 108 GeV and m = 0.1M . Then m0 ∼ 7 TeV and√

F ∼ 8.2 × 106 GeV, and further mg̃3 ∼ 7 × 10−3 × m′
from Eq. (15). The LHC gluino mass bound requires m′ ≥
2 × 105 GeV, which is consistent with the constraint m′ <

m < M . The bino and wino masses are both near 1 TeV. So
they are the main target of 14-TeV LHC.

3 Discussion

As shown in the mass spectrum of Table 1, the main source for
fine tuning arises from the μ term and the gluino mass Mg̃3 .
The fine tuning parameter c, which is defined as c = max{ci },
with

ci =
∣∣∣∣∣
∂ ln m2

Z

∂ ln ai

∣∣∣∣∣
2 We thank the referee for pointing out a critical error in the estimation
of the gaugino mass in the previous version of this manuscript.
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where the ai are the soft mass parameters involved, is given
by c = max{cμ, cMg̃3

}. We find that c = cMg̃3
∼ 200 for

M = 108 GeV and the electroweak value Mg̃3 = 1.3 TeV
by using the gluino mass induced RG correction to δm2

Hu
.

As for other indirect experimental limits, such as flavor
changing neutral violation, the model feels comfortable. This
is because the masses of the three-generation sleptons and
first two-generation squarks are all of order ∼ multi-TeV,
with a high degeneracy in each sector.

What about the sensitivity of our results to the messenger
scale? At first, the assumption that there exists a completion
of strong dynamics at high energy indicates that M should
be smaller than the GUT scale. Typically, we have M <

1010 GeV in the context of direct gauge mediation. For the
case of low-scale mediation, i.e., M < 108 GeV, the gluino
mass is already close to the 2013 LHC mass bound. In other
words, M = 108 GeV, as we studied in detail, is a reference
value for intermediate-scale SUSY model. The promising
signals for this simple and natural model include searching
gluinos, neutralinos, and charginos at the LHC.

Along this line it is of interest to extend the model-
independent focusing condition to the whole energy range
below the GUT scale [20], and construct natural SUSY mod-
els in the context of either direct or non-direct GM.
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