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Abstract We study the anatomy and phenomenology of
lepton flavor violation (LFV) in the context of flavored gauge
mediation (FGM). Within FGM, the messenger sector cou-
ples directly to the MSSM matter fields with couplings con-
trolled by the same dynamics that explains the hierarchies
in the SM Yukawas. Although the pattern of flavor violation
depends on the particular underlying flavor model, FGM pro-
vides a built-in flavor suppression similar to wave function
renormalization or SUSY partial compositeness. Moreover,
in contrast to these models, there is an additional suppression
of left–right flavor transitions by third-generation Yukawas
that in particular provides an extra protection against flavor-
blind phases. We exploit the consequences of this setup for
lepton flavor phenomenology, assuming that the new cou-
plings are controlled by simple U (1) flavor models that have
been proposed to accommodate large neutrino mixing angles.
Remarkably, it turns out that in the context of FGM these
models can pass the impressive constraints from LFV pro-
cesses and leptonic electric dipole moments (EDMs) even
for light superpartners, therefore offering the possibility of
resolving the longstanding muon g − 2 anomaly.

1 Introduction

One of the longstanding problems in particle physics is the
origin of flavor hierarchies in the standard model (SM). The
most popular attempt to address this problem is in terms of
flavor symmetries in which the flavor hierarchies arise from
a suitable symmetry breaking pattern. Among the numer-
ous possibilities, the simplest models are based on a single
U (1) flavor symmetry [1–4]. In the quark sector this ansatz
works pretty well and can account for all hierarchies in quark
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masses and mixing, with an order-of-magnitude prediction
Vub ∼ Vus Vcb that is in good agreement with data. Also in the
lepton sector a single U (1) works very well, since charged-
lepton mass hierarchies can arise from large charge differ-
ences of right-handed leptons, while large mixing angles are
due to small charge differences of left-handed leptons. In
this way U (1) models can naturally realize the paradigm of
an “anarchical” structure [5–8] in lepton mixing, which has
recently received renewed attention [9–11] after the reactor
neutrino angle θ13 turned out to be sizable.

Independently of the nature of the underlying flavor sym-
metry, the crucial question about these kind of models regards
their predictivity. Since flavor models aim at explaining the
origin of dimensionless Yukawa couplings, there is no pre-
ferred mass scale of the new degrees of freedom. As new
effects in the SM flavor sector are suppressed by this mass
scale, there are no observable deviations from the SM fla-
vor predictions, unless this scale is unexpectedly light [12].
Therefore the only way to test these models in laboratory
experiments for a high-scale flavor sector is the presence of
new physics around the TeV scale, as suggested by the hier-
archy problem. If such physics comes with a flavor structure,
it can possibly carry down the information of the high-scale
flavor sector to the TeV scale and lead to testable predic-
tions for precision flavor observables. The prime example
is supersymmetry (SUSY), which in the case of high-scale
mediation of SUSY breaking around or above the flavor sec-
tor scale directly contains the imprint of the flavor symmetry
in the soft-breaking sfermion masses.

However, within the context of gravity mediation simple
U (1) models are in big trouble as the suppression of fla-
vor violation is too weak. The reason is that off-diagonal
entries in the left-handed and right-handed sfermion mass
matrices are suppressed by the differences of the correspond-
ing charges due to their non-holomorphic nature. In the left-
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handed sector these charge differences are directly related to
mixing angles, which for the first two generations are siz-
able both in the lepton and quark sector. Since the strongest
constraints precisely arise from observables involving light
families, like εK and μ → eγ , such U (1) flavor models in
the context of Gravity Mediation are essentially incompatible
with SUSY around the TeV scale.1

The situation is completely different in gauge mediation
(see Ref. [14]), where the SUSY breaking and the flavor
sector can be decoupled. Indeed, if the flavor scale is much
higher than the SUSY messenger scale then soft masses are
screened from the high-energy flavor sector and have a flavor
structure determined only by SM Yukawas, thus realizing
the paradigm of minimal flavor violation (MFV) [15]. While
this scenario provides a very appealing mechanism to solve
the SUSY flavor problem, the imprint of the flavor sector
in low-energy physics and thus the possibility to test flavor
symmetry models is completely lost.

It is therefore interesting to construct extensions of min-
imal gauge mediation (MGM) that re-introduce the depen-
dence on the underlying flavor sector, and thus lead to a broad
variety of sfermion flavor structures beyond MFV. An exam-
ple for such extensions is provided by a class of models that
has been dubbed “flavored gauge mediation” (FGM) [16].
In these scenarios, new direct couplings between the mes-
sengers and the MSSM matter fields are introduced with a
flavor structure that is assumed to be controlled by the same
underlying flavor symmetry that explains the smallness of
the Yukawas.2 These couplings generate new contributions to
sfermion masses (on top of the flavor-universal MGM ones)
that are controlled by the underlying flavor symmetry. Inter-
estingly, due to the loop origin of the soft terms, there is a
built-in suppression of flavor violation that is independent
of the underlying flavor model [28]. This implies that even
single U (1) flavor models are perfectly viable (in contrast
to gravity mediation), as the flavor pattern of the resulting
sfermion masses resembles the suppression in wave function
renormalization [29,30] or SUSY partial compositeness [31–
34]. Moreover, in contrast to those scenarios, there is also a
built-in suppression of LR flavor transitions and in particu-
lar flavor-blind phases by third-generation Yukawas, which
becomes very efficient in the down and charged-lepton sector
provided tan β is not very large.

1 This conclusion holds even under the assumption of a mechanism
inducing degenerate sfermion masses at the SUSY breaking mediation
scale. In fact, the assumed flavor universality is broken by the renormal-
ization group evolution of the soft masses down to the flavor breaking
scale, so that large flavor mixing is anyway generated at the level pre-
dicted by the U (1) symmetry [13].
2 Such matter-messenger couplings have recently received new interest,
as they allow one to obtain a large Higgs mass with light stops by
generating non-vanishing A-terms at the messenger scale [17–27].

While in Ref. [28] we have focused on the quark sec-
tor, in this paper we analyze the impact of FGM models with
underlying U (1) flavor models on the lepton sector. There are
good arguments that motivate this study: (i) in contrast to the
quark sector the large neutrino mixing angles require milder
hierarchies in left-handed charges, leading in turn to weaker
suppression in the left-handed slepton sector and therefore
potentially large effects in LFV processes, (ii) the experi-
mental bounds on LFV channels with an underlying μ→ e
transition as well as the electron EDM underwent recently a
very significant improvement challenging many models with
new physics (NP) at the TeV scale, even with modest sources
of flavor violation. Therefore the major aim of this work is
to analyze whether and to which extent single U (1) flavor
models for the lepton sector are viable in the context of FGM.
A related question is whether we can account for the current
muon g−2 anomaly, that is, if light sleptons are still allowed
by the LFV and EDM bounds (for a general discussion on
the interrelationship of leptonic dipoles see Ref. [35]).

The rest of the paper is organized as follows: in Sect. 2
we recall the main ingredients of FGM models providing
explicit expressions for the soft masses in the slepton sector.
Concrete examples of U (1) leptonic flavor models and their
imprint in the soft sector are presented in Sect. 3. The low-
energy phenomenology of FGM models supplemented by the
above U (1) flavor models is studied in Sect. 4. In Sect. 5, we
compare the flavor structure of the soft terms and related phe-
nomenological implications of FGM models to U (1) models
with gravity mediation and models with SUSY partial com-
positeness. We conclude in Sect. 6. In an appendix we col-
lect the formulas for LFV branching ratios, lepton anomalous
magnetic moments and lepton electric dipole moments using
a generalized mass insertion approximation without assum-
ing large tan β, thus improving on existing results that take
into account only the tan β enhanced terms.

2 Flavored gauge mediation

We begin with a brief review of MGM (see Ref. [14]). In
this scenario N copies of heavy chiral superfields �i + �i

in 5+ 5 of SU(5) are introduced. These messenger fields
couple directly to the SUSY breaking sector, which is effec-
tively parameterized by a single spurion field X that gets a
vev 〈X〉 = M + Fθ2. Through the following superpotential
coupling

W ⊃ X�i�i , i = 1 . . . N , (1)

the messengers acquire large supersymmetric mass terms M
and SUSY breaking masses proportional to F . By integrating
out the messengers at loop level, soft terms are generated. At
the messenger scale, A-terms vanish and gaugino masses and
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sfermion masses are given by

Mi (M) = N
αi (M)

4π
	, 	 = F

M
, (2)

m2
f̃
(M) = 2N

3∑

i=1

Ci ( f )
α2

i (M)

(4π)2 	2, f = q, u, d, . . . ,

(3)

where Ci ( f ), i = 1, 2, 3 is the quadratic Casimir of the
representation of the field f under the gauge group SU(3)×
SU(2) × U(1).

Since the messengers have the same gauge quantum num-
bers as the MSSM Higgs fields, in addition to the Yukawa
couplings

W ⊃ (yU )i j QiU j Hu + (yD)i j Qi D j Hd + (yE )i j Li E j Hd ,

(4)

also direct couplings of messengers to MSSM fields are
allowed by the gauge symmetries. If we restrict to R-parity
even messenger fields,3 the messengers can couple only to
the MSSM matter fields. For the messenger doublets these
couplings read in general


W = (λU )i j QiU j�Hu + (λD)i j Qi D j�Hd

+ (λE )i j Li E j�Hd , (5)

where �Hu ,�Hd denote the SU(2) doublet components of
the 5, 5 messengers, and we restricted to the case of one
messenger pair for simplicity.

The presence of direct messenger-matter couplings gives
rise to new contributions to sfermion masses and A-terms
with a flavor structure that depends on the new parameters
λi j . If these couplings were flavor-anarchic O (1) numbers,
the elegant solution of Gauge Mediation to the SUSY flavor
problem would be completely spoiled. Therefore it is usu-
ally assumed that all direct couplings of the messengers to
matter fields vanish, which can be enforced for example by
introducing a new Z2 symmetry under which MSSM fields
are even and messengers are odd. Note that this symmetry
extends to a full accidental U (1) symmetry in the case of one
messenger pair

�→ eiα�, �→ e−iα�. (6)

However, in order to preserve the neat solution of the SUSY
flavor problem in MGM, it is enough that the new couplings
in Eq. (5) are just sufficiently small. Such small couplings
can easily be motivated in the context of flavor models, since
they break the global flavor symmetries of MSSM kinetic

3 For R-parity odd messengers similar couplings to Higgs fields are
allowed and have been discussed in the literature, see e.g. [25]. Note
that in this way one preserves the MFV structure of MGM. Here we are
instead interested in non-trivial flavor structures.

terms exactly as the Yukawas, and therefore they can natu-
rally have a similar hierarchical structure. This can be real-
ized in explicit flavor models in which the messenger fields
transform like the Higgs fields (in particular one can choose
that they do not transform at all under the flavor sector),
which implies that the new couplings have the same para-
metric suppression as the Yukawas,

λU ∼ yU , λD ∼ yD, λE ∼ yE . (7)

Following Ref. [16], we refer to these kind of models as
FGM.

The new contributions to soft terms induced by the cou-
plings in Eq. (5) can be calculated using the general expres-
sions in Ref. [25]. At leading order in SUSY breaking one
finds new contributions to sfermion masses at 2-loop and
non-vanishing A-terms at 1-loop. While these new effects
can have interesting consequences for the low-energy spec-
trum [36,37], here we are mainly interested in the flavor
structure of the new contributions to sfermion masses, in
particular in the slepton sector. Therefore we will now take
a bottom-up point of view and restrict the analysis to the
consequences of the presence of the λE coupling for the lep-
ton sector. We will not discuss the impact of other possible
messenger-matter couplings on the low-energy spectrum, in
particular the mass of the lightest Higgs boson. We just note
that the Higgs mass does not represent a serious constraint
in these kind of models, and can be due to large A-terms or
an implementation in the NMSSM. The latter also represents
a natural possibility to generate the μ-term and to elegantly
solve the μ–Bμ problem of Gauge Mediation, since in the
NMSSM the general structure of FGM motivates a direct
coupling of the NMSSM singlet to the messengers which
can easily allow for correct EWSB [21,38].

Furthermore, let us notice that the couplings λE do not
deform the spectrum predicted by the underlying gauge medi-
ation scheme, at least for low to moderate values of tan β, as
we are going to consider in the next sections. In particular,
if mh ≈ 126 GeV is accounted for by a large top A-term,
induced by an O(1) coupling (λU )33 in Eq. (5), the spec-
trum would resemble the one discussed e.g. in Ref. [28].
This would have interesting consequences for the leptonic
sector we consider here, since (λU )33 = O(1) also sup-
presses the masses of the left-handed sleptons, through an
induced Fayet–Iliopoulos term, thus naturally accomodating
the Higgs mass with a light slepton spectrum that can give a
sizable contribution to the muon g − 2 [19,28].

For soft terms in the slepton sector we use the conventions

L ⊃ −
(
(m̃2

L )i j Li L†
j + (m̃2

E )i j E†
i E j + (Ae)i j Li E j Hd

)
|scalar

= −
(

l̃T
L m̃2

L l̃∗L + ẽT
R(m̃2

E )i j ẽ∗R + l̃T
L Aeẽ∗R Hd

)
, (8)
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where the first line denotes the scalar components of super-
fields. Using the results of Ref. [25], the presence of λE gives
rise to the following expressions for the non-holomorphic
masses4:

m̃2
L =

	2

256π4

[
N

(
3

2
g4

2 +
3

10
g4

1

)
−
(

9

5
g2

1 + 3g2
2

)
λEλ

†
E

+ 3λEλ
†
EλEλ

†
E + 2λE y†

E yEλ
†
E − 2yEλ

†
EλE y†

E

+ λEλ
†
E Tr

(
λEλ

†
E

)
+ yEλ

†
E Tr

(
λE y†

E

)
+ λE y†

E Tr
(

yEλ
†
E

) ]
,

(9)

and

m̃2
E =

	2

256π4

[
6

5
g4

1 N −
(

18

5
g2

1 + 6g2
2

)
λ

†
EλE + 6λ

†
EλEλ

†
EλE

+2λ
†
E yE y†

EλE − 2y†
EλEλ

†
E yE + 2λ

†
EλE Tr

(
λEλ

†
E

)

+2λ
†
E yE Tr

(
λE y†

E

)
+ 2y†

EλE Tr
(

yEλ
†
E

) ]
, (10)

while the A-terms are given by

AE = − 	

16π2

(
λEλ

†
E yE + 2yEλ

†
EλE

)
. (11)

Note that the flavor dependence of the above expressions
can be obtained using a simple spurion analysis, taking into
account also the U (1)M “messenger number” in Eq. (6) as
a spurious symmetry under which the new couplings are
charged. The U (1)M symmetry prevents terms like λE y†

E and

λ
†
E yE for the non-holomorphic masses m̃2

L and m̃2
E , respec-

tively, and terms like λE , λE y†
EλE and λ

†
E yEλ

†
E for the A-

terms. As a result, the A-terms are partially aligned to the
Yukawa couplings and their diagonal components are neces-
sarily real and therefore do not induce contributions to the
EDMs.

For future convenience, we define the flavor violating mass
insertions (MIs) as usual

(δe
L L)i j = (m̃2

L)i j

m̃2
L

, (δe
R R)i j = (m̃2

E )i j

m̃2
E

,

(δe
L R)i j = vd(AE )i j

m̃L m̃ E
. (12)

In the limit of yE , λE 	 1, i.e. for moderate/low tan β

values, we obtain the following approximate expressions at
the messenger scale:

4 We only consider terms in leading order in 	2/M2, i.e. a messenger
scale that is not particularly low.

(δe
L L)i j 
 −

(
10g2

2 + 6g2
1

5g4
2 + g4

1

)
(λEλ

†
E )i j

N
,

(δe
R R)i j −

(
5g2

2 + 3g2
1

g4
1

)
(λ

†
EλE )i j

N
, (13)

(δe
L R)i j 
 − 1√

3N√
5

g1g2

me
j (λEλ

†
E )i j + 2me

i (λ
†
EλE )i j√

m̃Lm̃ E
.

(14)

Few comments are in order:

• The above MIs, as well as all superpotential couplings, are
defined in the basis where we define the flavor model. In
order to study their phenomenological consequences, we
go to the mass basis for the charged-lepton Yukawas by
means of the rotation yE → V T

E L yE VE R = ydiag
E . Under

this change of basis, the spurion λE transforms accord-
ingly. However, one can easily check that in U (1) mod-
els with non-negative charges the parametric flavor sup-
pression remains the same and only the O(1) coefficients
change. We therefore simply ignore these differences, that
is we take V T

E LλE VE R ∼ λE .
• Interestingly, the diagonal A-terms are real. As a result,

the leading CP violating phases generating the EDMs
can only arise at higher order in the MIs, through
the combination (δe

L L)ik(δ
e
L R)k j , (δe

L R)ik(δ
e
R R)k j , and

(δe
L L)ik(δ

e
L R)kk(δ

e
R R)k j when i j = 11. This, however,

leads to an additional suppression by powers of (λE )33 ∼
yτ .5

• As a consequence of Eqs. (13), (14), the naive expectations
for the MIs are enhanced, for a given number of messen-
gers N , by large (mediation-scale dependent) gauge fac-
tors. This is especially true in the case of (δe

R R)i j and, to
less extent, also in the cases of (δe

L L)i j and (δe
L R)i j .

In the following, we will analyze the impact of our FGM
model on the branching ratio of μ → eγ and the electron
EDM which are the most powerful probes of new physics in
the leptonic sector. To do so, we need to specify the underly-
ing flavor model that controls the flavor structure of the new
couplings.

3 Flavored gauge mediation and U(1) flavor models

While the results of the last section can be applied to any fla-
vor model that predicts the flavor structure of yE and there-

5 Notice that the μ- and Bμ-terms, which are not controlled by GMSB,
could still introduce CP violating phases depending on the underlying
mechanism that generates them. However, if this mechanism is such
that the phases of μ and Bμ are correlated to the phase of 	, then no
phases arise from this sector [14].
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fore λE , in this section we concentrate on simple U (1) flavor
models. We first recall the basic structure of these models,
then we analyze their predictions for the soft terms in the
lepton sector in the context of our FGM model.

3.1 U (1) Flavor models

In the simplest realization of these models the flavor symme-
try is spontaneously broken by the vev of a single “flavon”
field with negative unit charge. Yukawa couplings then arise
from higher-dimensional operators that involve suitable pow-
ers of the flavon to make the operator invariant under the
U (1) symmetry, with some undetermined coefficients that
are assumed to be O(1). The suppression scale is the typ-
ical scale of the flavor sector that could correspond to the
mass scale of Froggatt–Nielsen messengers in explicit UV
completions. The Yukawas then depend only on powers of
the ratio ε of flavon vev and flavor scale, which typically is
taken to be of the order of the Cabibbo angle ε ∼ 0.2. If we
restrict to models where only the matter fields are charged,
i.e. Hu = Hd = 0, we get for the lepton Yukawa couplings

(yE )i j ∼ εLi+E j , (15)

where Li and Ei stand for the U (1) charges of the left-handed
and right-handed leptons, respectively. The neutrino sector
depends on the origin of neutrino masses. If neutrinos are
Dirac, then the Yukawa coupling takes the same form as the
charged-lepton Yukawa above with E j → N j . In this case,
the left-handed rotations VE L , VN L for the charged-lepton
and neutrino sectors, respectively, and therefore the PMNS
matrix VP M N S , have the same parametric structure

(VP M N S)i j ∼ (VE L)i j ∼ (VN L)i j ∼ ε|Li−L j |. (16)

Large neutrino mixing angles can therefore be reproduced
by taking small left-handed charge differences Li − L j .
Instead small neutrino masses can be accommodated by tak-
ing sufficiently large charges Ni of right-handed neutrinos. A
more plausible explanation of light neutrinos can be achieved
if they originate from the Weinberg operator


W = (yll)i j

	
Li L j Hu Hu, (17)

with a flavor structure determined by the U (1) symmetry

(yll)i j ∼ εLi+L j . (18)

In this way the smallness of neutrino masses can be ele-
gantly explained by assuming a large UV scale vu/	 	 1,
but the prediction for the parametric structure of the left-
handed neutrino rotations and therefore for the PMNS matrix
does not change, and we still get the result of Eq. (16). One
possibility for an explicit UV completion is the type-I see-

saw mechanism. In this scenario, one adds three heavy right-
handed neutrinos and Dirac Yukawa couplings


W = (yν)i j Li N j Hu + 1

2
(MN )i j Ni N j , (19)

with their flavor structure given by

(yν)i j ∼ εLi+N j (MN )i j ∼ MN εNi+N j . (20)

Integrating out the right-handed neutrinos generates the
Weinberg operator with a coefficient given by

(yll)i j

	
= −1

2
(yν M−1

N yT
ν )i j . (21)

Note that in the simple U (1) models that we will consider
here, the parametric flavor structure of the coefficient of the
Weinberg operator is the same as in the effective theory

(yll)i j ∼ εLi+L j , (22)

and therefore we recover the same estimate for the PMNS
matrix as in Eq. (16).

Various U (1) models have been discussed in the litera-
ture; see e.g. [6,10,39,40]. There is some ambiguity in the
choice of charge assignments, since ε is typically not a very
small parameter (one has ε ≈ 0.2÷0.5) so that the unknown
O(1) parameters can account for one or two units of charge
differences. Here we choose to consider just two representa-
tive models that have been presented in Ref. [10] and more
carefully analyzed in Ref. [11]. The first one, “Anarchy”,
features degenerate charges of left-handed lepton doublets,
so that all mixing angles are predicted to be O(1). The sec-
ond one, “Hierarchy”, has non-degenerate charges in order to
account for the relative smallness of θ13 and 
m2

solar/
m2
atm.

Other models that have been considered in Ref. [10,39] fall
in between these two models as regards their phenomenolog-
ical consequences in FGM. The charge assignments of the
two models are given by

• Anarchy

Ei = (3, 2, 0) Li = (L3, L3, L3), Ni = (0, 0, 0),

εA ≈ 0.2. (23)

• Hierarchy

Ei = (5, 3, 0) Li = (2+ L3, 1+ L3, L3),

Ni = (2, 1, 0), εH ≈ 0.3. (24)

For simplicity the expansion parameters are taken here as the
central values of the accurate fit in Ref. [11], although there
is of course some range due to the unknown order one coef-
ficients. We will use these values in the numerical analysis
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of Sect. 4. Note the dependence on an overall charge shift L3

that essentially corresponds to tan β.

3.2 Application to FGM

We now discuss the implementation of the above U (1) mod-
els in FGM. For this we only have to specify the charges of
the messengers. While in principle they can be arbitrary, we
only consider the simplest choice in which they have the same
charges as the Higgs fields, i.e. they transform trivially under
the flavor symmetry � = � = 0. This immediately implies
that the new couplings of matter fields to the messengers
have exactly the same parametric suppression as the corre-
sponding matter-Higgs couplings, but with different O(1)

coefficients. In order to see this point more explicitly, we go
to the mass basis for the charged leptons by means of the
superfield transformations

L =
(

L N

L E

)
→
(

VN L L N

VE L L E

)
, E → VE R E, (25)

so that

yE → V T
E L yE VE R = ydiag

E . (26)

Note that in U (1) models the rotations have the simple
parametric structure

(VE L)i j ∼ ε|Li−L j | (VE R)i j ∼ ε|Ei−E j |. (27)

The spurion λE transforms accordingly under the above
rotations. However, it is straightforward to check that its para-
metric flavor suppression remains unchanged and only the
O(1) coefficients do change so that V T

E LλE VE R ∼ λE . As a
result, since the flavor suppression of λE is the same of yE ,
one gets in the mass basis

(yE )i i = aiiε
Li+Ei , (λE )i j = κi jε

Li+E j , (28)

where aii and κi j account for unknown, flavor dependent,
O(1) coefficients. Assuming hierarchical charges (E3 ≤ Ek

etc.), we finally find the following MIs:

(δe
L L)i j ∼ εLi+L j+2E3 ∼ y2

τ εLi+L j−2L3 , (29)

(δe
R R)i j ∼ εEi+E j+2L3 ∼ y2

τ εEi+E j−2E3, (30)

and similarly

(δe
L R)i j ∼ y2

τ

me
j εLi+L j−2L3 + 2me

i εEi+E j−2E3

√
m̃Lm̃ E

, (31)

where the overall coefficients are given by a calculable part
that can be read off from Eqs. (13), (14) and an unknown
O(1) coefficient coming from Eq. (28).

Ẽ∗
i Ẽj

Φ̃±

L̃kEi+Lk Ej+Lk

Fig. 1 Example diagram for the 2-loop generation of (δe
R R)i j . L̃i , Ẽi

denotes the scalar components of the superfields Li , Ei and �̃± denotes
the scalar mass eigenstates of the messengers

As already discussed, since the diagonal A-terms are
real, the EDMs can only be generated by means of the
combination of MIs (δe

L L)ik(δ
e
L R)k j , (δe

L R)ik(δ
e
R R)k j , and

(δe
L L)ik(δ

e
L R)kk(δ

e
R R)k j when i j = 11. In particular, it turns

out that the leading effect is captured by

(δe
L L)i3(δ

e
L R)33(δ

e
R R)3 j ∼ μ tan β mτ

m̃Lm̃ E
y3
τ εLi+E j , (32)

which involves additional powers of yτ . In principle, the
effective MI of Eq. (32) also contributes to μ → eγ when
i j = 12, 21, however, within our models, single MI contri-
butions always dominate.

We conclude this section with a discussion of the general
structure of the flavor suppression in these terms. First of
all, note that LL and RR mass insertions are suppressed by
powers of the spurion that are the sum of U(1) charges, in
contrast to the leading-order terms allowed by the symmetry
that have powers given by charge differences. The origin
of this suppression is due to the fact that the U (1) controls
soft terms only indirectly via the messenger sector, which
in turn generates soft terms only at loop level, thus leading
to a double suppression by small couplings. As can be seen
e.g. in Eq. (30) and the corresponding 2-loop diagram for
δe

R R in Fig. 1, this suppression can be split into two parts,
one given by the sum of charges of the external sfermions
and the second by (twice) the charge of the field that runs in
the loop together with the messenger.

As we will discuss later on, the first suppression is exactly
the same as in SUSY partial compositeness, while the second
can lead to a further suppression by powers of yτ .

Turning to LR mass insertions, again the loop origin
implies a much stronger suppression than the leading-order
term εLi+E j respecting the U (1) symmetry; see Fig. 2. This
suppression is partially due to the alignment to Yukawas in
the pure LR term, which potentially can be avoided in the
effective LR terms at the price of an additional suppression
by powers of yτ . This is also the only way in which phases
can arise in the diagonal elements, since the pure LR term is
always the product of a hermitian and a real diagonal matrix.
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Ẽj

L̃i

Hd

Ej+Lk

Φ̃±

L̃k

Ei+Lk(yE)ii

Fig. 2 Example diagram for the 1-loop generation of (δe
L R)i j in the

fermion mass basis

4 Flavor phenomenology

We are now ready to discuss the lepton flavor phenomenol-
ogy of the FGM model, which includes LFV processes with
an underlying μ→ e transition, the electron EDM de and the
anomalous magnetic moment of the muon aμ ≡ (g − 2)/2.
The current experimental bounds and future sensitivities for
some of the most relevant LFV channels and for de are
reported in Table 1. On the other hand, aμ currently shows a
discrepancy between the SM prediction and the experimental
value [50–57]


aμ = aEXP
μ − aSM

μ = 2.90(90)× 10−9. (33)

One of the goals of the present paper is to investigate
whether it is possible to explain this anomaly in our model
while being compatible with LFV and EDM bounds.

Concerning LFV processes, hereafter we focus only on
μ → eγ since it represents the best probe of our scenario.
The branching ratio of μ→ eγ is defined as

BR(μ→ eγ ) = 48π3α

G2
F

(∣∣∣A21
L

∣∣∣
2 +

∣∣∣A21
R

∣∣∣
2
)

, (34)

where the amplitudes A21
L and A21

R , in the limit of M1 =
M2 = μ = m̃L = m̃ R = m̃ and keeping only tan β enhanced

Table 1 Current experimental bounds and future sensitivities for some
low-energy LFV observables and the electron EDM

LFV process Present bound Future sensitivity

μ→ eγ 5.7× 10−13 [41] ≈ 6× 10−14 [42]

μ→ 3e 1.0× 10−12 [43] ≈ 10−16 [44]

μ− Au→ e− Au 7.0× 10−13 [45] ?

μ− Ti→ e− Ti 4.3× 10−12 [46] ?

μ− Al→ e− Al − ≈ 10−16 [47,48]

Electron EDM Present bound Future sensitivity

de(e cm) 8.7× 10−29 [49] ?

terms,6 read

A21
L =

4α2 + 5αY

240π

tan β

m̃2 (δe
L L)21

+ αY

48π

(
m̃

mμ

)
1

m̃2 (δe
L R)∗12, (35)

A21
R = −

αY

240π

tan β

m̃2 (δe
R R)21 + αY

48π

(
m̃

mμ

)
1

m̃2 (δe
L R)21.

(36)

Notice that in the above amplitudes we have kept only
single MI effects since they are dominant in our scenarios.
The expressions for 
aμ and de are well approximated by


aμ = 5α2 + αY

48π

m2
μ

m̃2 tan β, (37)

de

e
= αY

120π

mτ

m̃2 tan β Im[(δe
L L)13(δ

e
R R)31]. (38)

In order to highlight the relevant effects, we now provide
some numerical estimates for the above observables outlining
also their possible correlations. We find that

BR(μ→ eγ ) ≈ 3× 10−14
(

200 GeV

m̃

)4

tan2 β

( |(δe
L L)21|

10−4

)2

, (39)


aμ ≈ 3× 10−10
(

200 GeV

m̃

)2

tan β, (40)

|de| ≈ 2× 10−29
(

200 GeV

m̃

)2

tan β

∣∣∣∣
Im[(δe

L L)13(δ
e
R R)31]

10−6

∣∣∣∣ e cm. (41)

Making the correlations among BR(μ → eγ ), 
aμ and
de more explicit, it turns out that

BR(μ→ eγ ) ≈ 3× 10−13
(


aμ

10−9

)2 ( |(δe
L L)21|

10−4

)2

, (42)

|de| ≈ 7× 10−29
(


aμ

10−9

) ∣∣∣∣
Im[(δe

L L)13(δ
e
R R)31]

10−6

∣∣∣∣ e cm.

(43)

Equations (39–40) deserve a few comments:

• In both flavor models we have considered, the dominant
contribution to BR(μ→ eγ ) stems from A21

L , in particu-
lar from the tan β-enhanced term proportional to (δe

L L)21,

6 We will eventually prefer low values for tan β (� 5). For the numerical
analysis later on one has therefore to take into account all contributions,
which are collected in the appendix. At this point we are rather inter-
ested in keeping the formulas simple and just give order-of-magnitude
estimates.
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due to smaller flavor hierarchies in the left-handed lepton
sector.
• The dominant μ → eγ amplitude grows with tan β as

A21
L ∼ (δe

L L)21 tan β ∼ tan3 β, since (δe
L L)21 ∼ y2

τ ≈
10−4 tan2 β, which implies that A21

L is very efficiently
suppressed for relatively low tan β. As a result, the very
stringent experimental bound on BR(μ→ eγ ) might be
fulfilled even for a light spectrum m̃ ∼ 200 GeV provided
tan β ∼ 1.
• The electron EDM can be induced at the leading order

only through the effective MI of Eq. (32) and it turns out
that de ∼ tan5 β. Therefore de is well under control for
low tan β values, analogously to BR(μ→ eγ ).
• The aμ anomaly can be accounted for while satisfying the

stringent bounds from BR(μ→ eγ ) and de, only provided
that the relevant flavor mixing angles are suppressed at the
level of (δe

L L)21 � 10−4 and (δe
L L)13(δ

e
R R)31 � 10−6.

In order to quantify the above considerations, we special-
ize now to the U (1) flavor models that have been introduced
in the previous section: the anarchical and the hierarchi-
cal models. The predictions of other scenarios discussed in
Refs. [10,11], fall in between the ones we discuss here. In
these two models, the relevant MIs entering the predictions
of BR(μ→ eγ ) and de are estimated as:

• Anarchy

(δe
L L)21 ≈ κ

6

N
y2
τ ≈ κ

6× 10−4

N
tan2 β,

(δe
L L)13(δ

e
R R)31 ≈ κ ′ 200

N 2 y4
τ ε3

A

≈ κ ′ 2× 10−8

N 2

( εA

0.2

)3
tan4 β. (44)

• Hierarchy

(δe
L L )21 ≈ κ

6

N
y2
τ ε3

H ≈ κ
2× 10−5

N
tan2 β

( εH

0.3

)3
,

(δe
L L )13(δe

R R)31 ≈ κ ′ 200

N 2 y4
τ ε7

H

≈ κ ′ 4× 10−10

N 2

( εH

0.3

)7
tan4 β. (45)

where we have used Eqs. (13), (28) assuming an intermediate
mediation scale M ∼ 1010 GeV. Moreover, we have explic-
itly included the dependence on the unknown O(1) coeffi-
cients parameterized through κ and κ ′ that are defined as

κ ≡ κ23κ
∗
13

a2
33

, κ ′ ≡ κ13κ31κ
∗2
33

a4
33

. (46)

A prominent feature emerging from Eqs. (44)–(45) is the
sensitivity of the MIs to the number of messenger N , since

the diagonal sfermion masses are dominated by the MGM
contribution proportional to N . We finally get for theμ→ eγ
branching ratio

BR(μ→ eγ ) ≈ tan6 β
( κ

N

)2
(

200 GeV

m̃

)4

×
{

1× 10−12 Anarchy

9× 10−16 Hierarchy
(47)

≈ tan4 β
( κ

N

)2
(


aμ

10−9

)2

×
{

1× 10−11 Anarchy

9× 10−15 Hierarchy
(48)

and the eEDM

|de| ≈ tan5 β

(
κ ′

N 2

)(
200 GeV

m̃

)2

e cm

×
{

4× 10−31 Anarchy

1× 10−32 Hierarchy
(49)

≈ tan4β

(
κ ′

N 2

)(

aμ

10−9

)
e cm

×
{

1× 10−30 Anarchy

3× 10−32 Hierarchy.
(50)

Reformulating the constraint from μ→ eγ as a bound on
the SUSY scale gives approximately

m̃

200 GeV
� tan3/2 β

√
κ

N

(
BR(μ→ eγ )

5.7× 10−13

)−1/4

×
{

1 Anarchy

0.2 Hierarchy.
(51)

Having outlined the expected behaviors and main features
of flavor observables within our FGM setup supplemented by
U (1) flavor models, we are ready now to perform a complete
numerical analysis.

In Fig. 3, we show the predictions for BR(μ → eγ ) vs.

aμ for different values of tan β: purple, blue and orange
dots correspond to tan β = 1.5, 3, 5, respectively. The plots
on the left (right) refer to the anarchical (hierarchical) case.
For the upper (lower) plots the number of messenger is set
to N = 1 (5). In Fig. 4, we show the analogous plots for
de vs. 
aμ. In the scan we have varied the unknown O(1)

coefficients κ, κ ′ for the MIs in the range (0.3, 1.5). The other
parameters were varied in the following ranges:

106 GeV ≤ M ≤ 1015 GeV, 100 GeV≤ m̃ E (M)≤1 TeV,

100 GeV ≤ μ ≤ μmax, (52)
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Fig. 3 Predictions for BR(μ → eγ ) vs. 
aμ for different values of
tan β: purple, blue and orange dots correspond to tan β = 1.5, 3, 5,
respectively. The plots on the left (right) refer to the anarchical (hier-
archical) case. For the upper (lower) plots the number of messenger is

set to N = 1 (5). Gray regions are excluded by MEG [41]. In the green
(dark green) bands the (g − 2)μ discrepancy is reduced below the 2σ

(1σ ) level

where μmax ≡ m̃τL m̃τR /(mτ tan β) is the maximal value
giving a non-tachyonic stau. Low-energy values of slepton
and gaugino masses were obtained by solving the 1-loop
renormalization group equations.

In the plots, the gray shaded regions are excluded by the
current bounds from μ→ eγ or de reported in Table 1, while

the green (dark green) area approximately corresponds to val-
ues of 
aμ lowering the discrepancy below the 2σ (1σ ) level.

A direct comparison of the bounds and the discovery
potential of μ→ eγ and de is shown in Fig. 5, where we plot
the result of a random variation of the full set of parameters
for the anarchical (left) and hierarchical (right) cases:
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Fig. 4 The same scenarios as in Fig. 3 for de vs. 
aμ. Gray regions are excluded by ACME [49]. In the green (dark green) bands the (g − 2)μ
discrepancy is reduced below the 2σ (1σ ) level

106 GeV ≤ M ≤ 1015 GeV, 100 GeV ≤ m̃ E (M) ≤ 2 TeV,

100 GeV ≤ μ ≤ μmax,

1 ≤ N ≤ 5, 1.5 ≤ tan β ≤ 5, 0.3 ≤ κ, κ ′ ≤ 1.5. (53)

In addition, the yellow (green) points correspond to

aμ ≥ 10−9 (2× 10−9).

The main results emerging from our numerical analysis
can be summarized as follows:

• In the anarchical scenario, it is very difficult if not impos-
sible to explain the 
aμ anomaly because of the strong
bounds from both BR(μ→ eγ ) and de (see left panels of
Figs. 3–5). The latter observables have a comparable sen-
sitivity to the scenario in question and might reach experi-
mentally visible values even for SUSY masses far beyond
the LHC reach in the multi-TeV regime. As already dis-
cussed, BR(μ → eγ ) and de grow fast with tan β (like

123



Eur. Phys. J. C (2014) 74 :3211 Page 11 of 20 3211

Fig. 5 Predictions for BR(μ→ eγ ) vs. de for the anarchical (left) and hierarchical (right) cases. Yellow (green) points correspond to 
aμ ≥ 10−9

(2× 10−9). Gray regions are excluded by MEG [41] and/or ACME [49]

tan6 β and tan5 β, respectively) and are both suppressed
by increasing N . As a result, the scenario with low tan β

and N = 5 (we remind the reader that for low mediation
scales perturbativity requires N � 5) is the most favorable
scenario, as clearly shown in Figs. 3 and 4.
• The hierarchical scenario easily offers the possibility to

explain the 
aμ anomaly while satisfying the limits on
BR(μ → eγ ) and de (right panels of Figs. 3, 4, 5). This
happens thanks to the stronger suppression of the flavor
mixing angles compared to the anarchical case. On the
other hand, all the other considerations made above for
the anarchical case apply here as well.
• μ → eγ and de have comparable sensitivities, but μ →

eγ is currently more constraining, as we can see from
Fig. 5. Interestingly, an improvement of the sensitivity by
one or two orders of magnitude would make the electron
EDM the most powerful probe of FGM scenarios espe-
cially in the case of heavy superpartners, corresponding to
the red points in Fig. 5. This is a consequence of the slower
decoupling of de with respect to the NP scale: de ∼ m̃−2,
while BR(μ→ eγ ) ∼ m̃−4.
• Given the expected future sensitivities to the μ→ e tran-

sitions reported in Table 1 and the following approxi-
mate relations among different modes (branching ratios
of μ → eγ and μ → eee, μ → e conversion rate (CR)
in nuclei):

BR(μ→ eee) 
 α

3π

(
log

m2
μ

m2
e
− 3

)
BR(μ→ eγ ),

CR(μ→ e in N) 
 α × BR(μ→ eγ ), (54)

we see that there are good prospects for a full test of the
parameter space favored by 
aμ at future experiments.

Let us now also show how the μ→ eγ and de constraints
appear in terms of the gaugino and slepton masses. For illus-
tration purposes, we adopt a more general low-energy spec-
trum than the one predicted by MGM, which allows us to
parameterize in a model-independent way possible distor-
tions of the spectrum due to the full set of matter-messenger
couplings studied in [25], including the other couplings in
Eq. (4), as well as more generic SUSY breaking sectors, in
the spirit of General Gauge Mediation [58]. In practice, we
still use Eqs. (9–11) to set the off-diagonal entries but we
treat slepton and gaugino masses as free parameters at low
energy.

In Fig. 6, we show the current bounds on the O(1) coef-
ficient κ , as defined in Eq. (46), from μ→ eγ for different
choices of μ and tan β in the hierarchical case. For defi-
niteness, we fixed the relation among gauginos and slepton
masses as follows: M2 = 2×M1, m̃L = 2×m̃ E . The yellow
(green) areas give 
aμ ≥ 10−9 (2 × 10−9). As we can see,
it is not necessary that the unknown coefficients conspire to
provide an unnaturally small suppression, in order to take
μ→ eγ under control in the region favored by (g − 2)μ.

In Fig. 7, we show contours of BR(μ → eγ ) and de for
the same choice of the parameters as above and the specific
values κ = 0.5, κ ′ = 1, in order to illustrate the present
bounds and the possible impact of the future experiments in
terms of the masses of the SUSY particles in the game. In
particular, the gray shaded regions are presently excluded by
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Fig. 6 Bounds on the O(1) coefficient κ , see Eq. (46), from μ→ eγ in the hierarchical scenario. For definiteness, we have assumed M2 = 2M1,
m̃L = 2m̃ E and different choices of μ and tan β. The yellow (green) areas give 
aμ ≥ 10−9 (2× 10−9)

μ → eγ or de. Again, we see that a large contribution to
(g − 2)μ is perfectly compatible with the present bounds,
but there are good prospects for a full test of the relevant
parameter space in the future.

Besides the LEP constraints (corresponding to m̃ E , m̃L ,

M2 � 100 GeV), the mass plane shown in the above plots
is now challenged by searches for the electroweak produc-
tion of SUSY particles performed by the LHC experiments,
based on events with two or more leptons plus missing trans-
verse momentum. The exact bounds are model dependent
and their precise derivation is beyond the scope of the present
study. Nevertheless, we briefly summarize here their possible
impact.

Since we are considering scenarios with gauge-mediated
SUSY breaking, the LSP is always a practically massless
gravitino. The limits set by LHC searches then strongly
depend on the nature and the life-time of the next to LSP
(NLSP). In case the sleptons are lighter than the Bino, as it
can occur even in MGM for large values of N , each decay
chain would end with the degenerate sleptons NLSP decay-
ing into leptons and gravitino. If this decay occurs promptly
(which requires low mediation scales, M � 106 GeV),
then the bounds from direct (Drell–Yan) slepton production
translate to a limit on the mass of the right-handed (left-
handed) sleptons at about 250 (300) GeV [59]. In case slep-
tons are long-lived compared to the detector scale, searches
for charged tracks set a bound on degenerate slepton NLSP
mass at about 400 GeV [60]. Interestingly, no searches per-
formed so far constrain the intermediate case, featuring a

disappearing track with a displaced vertex inside the detec-
tor, occurring for a wide range of the messenger scale,
106 GeV � M � 109 GeV [61]. The above limits can be
substantially relaxed if the Bino is lighter than the sleptons
and escapes the detector, thus resembling searches within
gravity mediation. In particular for a neutralino NLSP heav-
ier than about 150 GeV, there is no constraint from direct
slepton production [59].

The most stringent constraint would occur in the case
of the hierarchy M1 < m̃L < M2 from Wino-like
chargino/neutralino production followed by decays into on-
shell sleptons/sneutrinos, with bounds up to 700 GeV on the
Wino mass from multi-lepton plus missing energy searches
[62]. However, such searches lose sensitivity if the mass split-
ting of the sleptons with either the Bino or the Wino gets
small.

Comparing the limits reported above, with our plots in
Fig. 6 and 7, we see that there is still room for a large
SUSY contribution to aμ, at least at the 10−9 level (yel-
low regions), especially if μ approaches the maximal value
μmax ≡ m̃τL m̃τR /(mτ tan β). This conclusion is supported
by the results of Refs. [63,64] where a systematic study of the
LHC constraints on the parameter space favored by (g−2)μ
has been presented.

The LHC collaborations have obtained the limits dis-
cussed above from events with leptons and missing energy
under the implicit assumption of no flavor mixing among
the sleptons. This is the reason why they only employed
flavor-conserving categories, e.g. opposite-sign, same-flavor
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Fig. 7 Contours of BR(μ → eγ ) and de for the same choice of the parameters as in Fig. 6 and κ = 0.5, κ ′ = 1. The gray shaded regions are
presently excluded by μ→ eγ or de. The yellow (green) areas give 
aμ ≥ 10−9 (2× 10−9)

leptons (e+e− and μ+μ−) for the search of Drell–Yan slep-
ton production [59]. The interpretation of these searches
in terms of mass limits can, however, be affected in pres-
ence of large flavor mixing. For instance, di-slepton produc-
tion can lead in such a case to a sizeable number of e±μ∓
events, effectively relaxing the bounds on smuon/selectron
masses obtained from e+e− and μ+μ− events alone. A
quantitative discussion of this effect will be given else-
where.

5 Comparison with other models

In this section, we compare the peculiar flavor structure of
FGM to other models that predict the parametric flavor sup-
pression of soft terms. In particular, we consider U (1) flavor
models within SUGRA scenarios and models with SUSY
partial compositeness (PC).

In those models the SUSY mediation scale 	S is assumed
to be above the scale of flavor messengers 	F , so that the
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flavor structure of soft terms at the scale 	F is controlled
entirely by the flavor dynamics at this scale, irrespectively
of their structure at the scale 	S . In FGM the situation is
reversed as the SUSY messenger scale 	S = M is below
	F . We stress that this setup is therefore complementary to
the other scenarios, allowing also for very low SUSY medi-
ation scales. All the unspecified dynamics of the flavor sec-
tor is imprinted in the matter-messenger couplings, just like
Yukawas, and the full SUSY spectrum is totally calculable
in terms of these couplings.

5.1 U (1) and gravity mediation

In gravity mediation the natural expectation for soft terms at
the flavor scale is given by the most general terms invariant
under the symmetry using the flavon as a spurion. This gives
for slepton mass insertions

(δe
L R)i j ∼ Avd

m̃Lm̃ E
εLi+E j , (55)

(δe
L L)i j ∼ ε|Li−L j |, (δe

R R)i j ∼ ε|Ei−E j |. (56)

Focusing on the anarchical and hierarchical models of
Sect. 3.1, the relevant MIs for BR(μ→ eγ ) and de are again
(δe

L L)21 and (δe
L L)13(δ

e
R R)31, respectively. In the anarchic

case we find:

• Anarchy

(δe
L L)21 ∼ 1, (δe

L L)13(δ
e
R R)31 ∼ ε3

A, (57)

leading to the following predictions:

BR(μ→ eγ ) ∼ 5× 10−13
(

10 TeV

m̃

)4

tan2 β, (58)

|de| ∼ 7× 10−29
(

10 TeV

m̃

)2

tan β e cm. (59)

• Hierarchy

(δe
L L)21 ∼ εH ∼ 0.3, (δe

L L)12(δ
e
R R)21 ∼ ε3

H , (60)

where we took (δe
L L)12(δ

e
R R)21 instead of (δe

L L)13(δ
e
R R)31

since the contribution of the latter to the eEDM is smaller
by a factor of (yτ /yμ) × ε4

H ∼ 0.1 compared to that
induced by (δe

L L)12(δ
e
R R)21. We therefore have the fol-

lowing predictions:

BR(μ→ eγ ) ∼ 7× 10−13
(

5 TeV

m̃

)4

tan2 β
( εH

0.3

)2
,

(61)

|de| ∼ 6× 10−29
(

5 TeV

m̃

)2

tan β e cm. (62)

As a result, single U (1) flavor models with gravity media-
tion need sleptons well above the TeV scale, m̃ � 10 TeV×√

tan β (5 TeV × √tan β) in the anarchical (hierarchical)
scenario. Note that the bounds on the SUSY spectrum in the
quark sector, in particular from εK , are much stronger [28].

5.2 SUSY partial compositeness

According to the paradigm of partial compositeness, the lep-
ton Yukawa matrices have the form

(yE )i j ∼ gρε�
i εe

j , (63)

where gρ is a strong coupling and ε
�,e
i � 1 measures the

amount of compositeness for the leptons. Such a scheme
closely resembles the case of a single U (1) flavor model,
with the correspondence (in the limit of gρ = 1)

ε
�,e
i ←→ εLi ,Ei . (64)

As a result, the MIs are expected to take the following
form [34]:

(δe
L L)i j ∼ ε�

i ε�
j ∼ εLi+L j , (δe

R R)i j ∼ εe
i ε

e
j ∼ εEi+E j .

(65)

(δe
L R)i j ∼ vd Agρ

m̃Lm̃ E
ε�

i εe
j ∼

me
i A

m̃Lm̃ E
εE j−Ei ∼ me

j A

m̃Lm̃ E
εLi−L j .

(66)

In PC, the leading contributions to BR(μ→ eγ ) typically
arise from (δe

L R)12. In particular, in the anarchical scenario
we find

BR(μ→ eγ ) ∼ 6× 10−13
(

5 TeV

m̃

)4

, (67)

while in the hierarchical case we have a mild additional sup-
pression by a factor of ε2

H ≈ 0.1.
Note, however, that in PC the left-handed “charges” Li

are determined from the PMNS matrix analogously to U (1)

models only in the case of light Dirac neutrinos. If instead
light neutrinos are Majorana, then the Weinberg operator can
arise from a bilinear coupling to the composite sector (instead
of linear couplings that resemble the U (1) structure). In this
case only the combination Li+E j is determined by charged-
lepton Yukawa couplings, and the constraints from LFV can
be significantly relaxed by choosing symmetric charges [34]

εLi ∼ εEi ∼
√

ye
i

gρ

. (68)
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Table 2 Predictions for the mass insertions in various SUSY models
with an underlying U (1) flavor model where Li (Ei ) stands for the
charges of SU (2) doublets (singlets). Note that for the sake of simplicity
we compare only single mass insertions, for large tan β triple mass
insertions can possibly give the dominant contributions to LR transitions

SUGRA U (1) PC FGM U (1)

m̃
me

Im(δL R)11 1 1 y4
τ tβ

m̃
mμ

(δL R)12 εL1−L2 εL1−L2 y2
τ εL1+L2−2L3

m̃
mμ

(δL R)21 εE1−E2 εE1−E2 y2
τ εE1−E2+2L1−2L3

(δL L )12 εL1−L2 εL1+L2 y2
τ εL1+L2−2L3

(δR R)12 εE1−E2 εE1+E2 y2
τ εE1+E2−2E3

This implies

m̃

mμ

(δe
L R)12 ∼ εL1−L2 ∼

√
me

mμ

, (69)

and thus

BR(μ→ eγ ) ∼ 7× 10−13
(

1.5 TeV

m̃

)4

. (70)

On the other hand, the predictions for the electron EDM are
completely independent of any charge assignments since in
PC the diagonal elements of the A-terms are generally com-
plex. As a result, we find

|de| ∼ 7× 10−29
(

3 TeV

m̃

)2

Im

(
M1 A

m̃2

)
e cm, (71)

and therefore the eEDM now provides the strongest con-
straint on the PC scenario. Notice that the electron EDM has
a similar sensitivity to NP effects in PC scenarios and U (1)

flavor models, independently of the particular charge assign-
ments, pushing the SUSY scale to m̃ � 3÷ 5 TeV. Needless
to say, neither PC scenarios nor SUGRA with an underlying
U (1) flavor model can explain the muon g − 2 anomaly.

In Table 2, we summarize the predictions for the MIs most
relevant for phenomenology in various models: SUGRA
(first column), PC (second column) and FGM (last column).
On general ground, comparing the flavor structure of the
soft sector of SUGRA and PC/FGM scenarios, the most
prominent feature is the higher suppression for off-diagonal
sfermion masses in the LL and RR sectors in the PC/FGM
case. The LR sector has the same parametric structure in
PC and SUGRA, since in both scenarios the A-terms are
proportional to the SM Yukawas, while in FGM we have a
much stronger suppression arising from a partial alignment
among SM Yukawas and A-terms. Finally, PC and SUGRA
share also the same SUSY CP problem as they allow com-
plex diagonal elements for the A-terms. In contrast, within
FGM, the leading CPV phases arise only at higher order in
MI expansions and therefore are very suppressed.

6 Conclusions

Now that the Higgs boson has been discovered, naturalness
becomes a pressing question waiting for the final answer of
LHC14. If new dynamics is present around the TeV scale,
as needed to explain the smallness of the electroweak scale,
one would expect too large contributions to flavor transitions
mediated by the new physics states unless some protection
mechanism is at work. Therefore, the possibility of finding
new physics at the LHC is closely related to the existence of
a suppression of flavor violating processes.

In this respect, MGM provides an ideal framework to
accomplish this job. Indeed, if the flavor scale is much higher
than the SUSY messenger scale then the flavor structure of
the soft terms is entirely determined by the SM Yukawas, thus
realizing the paradigm of MFV [15]. The drawback of this
scenario is that any imprint of the flavor sector in low-energy
physics and thus the possibility to test the flavor dynamics is
completely lost.

On the other hand, minimal realizations of GMSB are
now seriously challenged by the Higgs boson discovery at
the LHC, since they can account for mh ≈ 126 GeV only at
the price of a SUSY spectrum that is beyond the reach of the
LHC. This has motivated extensions of minimal GMSB mod-
els by introducing new direct couplings between the messen-
gers and the MSSM matter fields in order to obtain a large
Higgs mass for light stops by generating non-vanishing A-
terms at the messenger scale [17–27].

Among these scenarios, FGM [16] assumes that these new
couplings have a flavor structure which is controlled by the
same underlying flavor symmetry that explains the small-
ness of Yukawa couplings. As a result, FGM allows one to
generate soft masses which still carry information about the
high-scale flavor sector. Interestingly, due to the loop origin
of soft terms, sfermion masses exhibit a flavor pattern that
is much stronger suppressed than in gravity mediation. This
strong suppression, arising even in the context of single U (1)

flavor models, is reminiscent of what happens in the case of
wave function renormalization [29,30] or Partial Composite-
ness [31–34]. In addition there is a strong suppression of LR
flavor transitions that is particularly effective for accompa-
nying flavor-blind phases, thus rendering the strong bounds
from EDMs under control. Therefore FGM does not only
modify the SUSY spectrum of MGM in a way interesting
for collider phenomenology, but it also allows one to obtain
a rich flavor phenomenology beyond MFV. In particular it
offers a viable SUSY implementation of simple U(1) flavor
symmetry models that in the context of gravity mediation
have huge difficulties in passing the bounds from precision
observables, and in the context of MGM are not testable at
all.

While in Ref. [28] we concentrated on the quark sector, in
this work we have focused on the lepton sector analyzing the
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implications of FGM with underlying U (1) flavor models. In
particular, we have studied the predictions of two models (the
anarchical and hierarchical scenarios of Ref. [10]) that are
representative for a whole class of U (1) models that accom-
modate lepton masses and mixing angles. We have analyzed
μ→ eγ (which turned out to be the most constraining LFV
channel), the electron EDM de and the muon anomalous mag-
netic moment 
aμ. Since the experimental bounds on both
μ→ eγ and de underwent recently an impressive improve-
ment, an important question of this work was to establish
whether and to which extent single U (1) flavor models were
viable in the context of FGM models. A related relevant ques-
tion was to establish whether the current muon g−2 anomaly
could be resolved while being compatible with the LFV and
EDM bounds.

In the following, we summarize our main findings:

• The non-holomorphic soft masses (LL and RR mass inser-
tions) are suppressed by powers of the spurion that are
the sum of U(1) charges, in contrast to the corresponding
gravity-mediated case where charge differences enter. The
origin of this suppression is due to the fact that the U (1)

controls soft terms only indirectly via the messenger sec-
tor, which in turn generates soft terms only at loop level,
thus leading to a double suppression by small couplings.
This strong suppression is similar to the cases of wave
function renormalization or SUSY partial compositeness.
• The A-terms are much more suppressed than in PC and

gravity-mediated scenarios where they are proportional to
the leading-order term εLi+E j allowed by the U (1) sym-
metry. Moreover, the A-terms are partially aligned to the
Yukawa couplings and their diagonal components are real
therefore not inducing contributions for the EDM. The first
non-vanishing CP violating phase in the diagonal A-terms
can arise only through higher-order expansions in the MIs,
which leads to an additional suppression by powers of yτ

that becomes particularly effective for low tan β.
• LFV processes and the electron EDM can be kept under

control even for a light spectrum well below the TeV scale,
provided that tan β is small (the smaller the better). This is
true both in the anarchical and especially in the hierarchi-
cal scenarios. In contrast, PC and gravity-mediated scenar-
ios require a very heavy spectrum above the TeV scale in
order to fulfill the experimental bounds on BR(μ→ eγ )

and de. Very low values for tan β also perfectly fit a com-
plete realization of this setup within the NMSSM, which
is the natural choice to generate the μ-term in FGM sce-
narios, solving also the μ− Bμ problem of MGM [21,38].
• In spite of the tremendous experimental bounds on the

electron EDM and LFV processes, we have found that it is
still possible to account for the muon g−2 anomaly within
FGM models in the hierarchical but not in the anarchi-
cal scenarios. The same conclusion is not true in PC and

gravity-mediated models, where both μ → eγ and de

prevent any sizable effect in 
aμ.
• Although BR(μ→ eγ ) and de have comparable sensitiv-

ities to FGM scenarios, μ → eγ is currently more con-
straining. However, considering the slower decoupling of
NP effects in de ∼ m̃−2 with respect to BR(μ→ eγ ) ∼
m̃−4, the electron EDM might become the most powerful
probe of the scenarios in question with improved experi-
mental data especially in the case of heavy superpartners.

In conclusion, we have analyzed in detail the anatomy
and phenomenology in the lepton sector of FGM models with
underlying U (1) models. Remarkably, it turned out that these
models can pass the impressive bounds on LFV processes
and leptonic EDMs even for light superpartners, potentially
observable at LHC14, leaving open the possibility of accom-
modating the longstanding muon (g−2) anomaly and testing
U (1) flavor models in upcoming experiments.
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Appendix A: Formulas for the leptonic dipoles

In this appendix we collect the formulae for LFV branching
ratios BR(li → l jγ ), lepton anomalous magnetic moments

ai , and lepton electric dipole moments di . The results have
been obtained from the exact results of Refs. [65,66] using a
generalized mass insertion approximation (see e.g. Ref. [67])
without assuming large tan β.

A.1 Lepton flavor violation: li → l jγ

The branching ratio BR(li → l jγ ) is given by

BR(li → l jγ )

BR(li → l jνiν j )
= 48π3α

G2
F

(
|Ai j

L |2 + |Ai j
R |2
)

. (72)

The amplitude Ai j
L receives a neutralino and chargino con-

tribution Ai j
L = Ai j (n)

L + Ai j (c)
L , whereas Ai j

R receives only

a neutralino contribution Ai j
R = Ai j (n)

R . These contributions
are given by

123



Eur. Phys. J. C (2014) 74 :3211 Page 17 of 20 3211

Ai j (n)
L = α2

4π

(m2
L L)i j

m4
L

×
[

f1n(x2L)+ (|M2|2 + μM2tβ)

|M2|2 − |μ|2 f2n(x2L)

− (|μ|2 + μM2tβ)

|M2|2 − |μ|2 f2n(xμL)

]
+ αY

4π

(m2
L L)i j

m4
L

×
[

f1n(x1L)− (|M1|2 + μM1tβ)

|M1|2 − |μ|2 f2n(x1L)

+ (|μ|2 + μM1tβ)

|M1|2 − |μ|2 f2n(xμL)

]

− αY

4π

M1

mμ

(m2
L R)∗j i

m2
L − m2

R

×
[

1

m2
L

f3n(x1L)− 1

m2
R

f3n(x1R)

]

− αY

4π

M1

mμ

(m2
L Rm2

R R)∗j i
(m2

L − m2
R)m2

R

×
[

m2
R

m2
L − m2

R

(
1

m2
L

f3n(x1L)− 1

m2
R

f3n(x1R)

)

+ 2

m2
R

f2n(x1R)

]

+ αY

4π

M1

mμ

(m2
L Lm2

L R)∗j i
(m2

L − m2
R)m2

L

×
[

m2
L

m2
L − m2

R

(
1

m2
L

f3n(x1L)− 1

m2
R

f3n(x1R)

)

+ 2

m2
L

f2n(x1L)

]

+ αY

2π

M1

mμ

(m2
L Lm2

L Rm2
R R)∗j i

(m2
L − m2

R)2m2
Lm2

R

×
[

m2
Lm2

R

m2
L − m2

R

(
1

m2
L

f3n(x1L)− 1

m2
R

f3n(x1R)

)
D

+m2
R

m2
L

f2n(x1L)+ m2
L

m2
R

f2n(x1R)

]
, (73)

Ai j (c)
L = α2

4π

(m2
L L)i j

m4
L

×
[

f1c(x2L)+ (|M2|2 + μM2tβ)

|M2|2 − |μ|2 f2c(x2L)

− (|μ|2 + μM2 tan β)

|M2|2 − |μ|2 f2c(xμL)

]
, (74)

Ai j (n)
R = αY

2π

(m2
R R)i j

m4
R

×
[

2 f1n(x1R)+ (|M1|2 + μM1tβ)

|M1|2 − |μ|2 f2n(x1R)

− (|μ|2 + μM1tβ)

|M1|2 − |μ|2 f2n(xμR)

]
− αY

4π

M1

mμ

(m2
L R)i j

m2
L − m2

R

×
[

1

m2
L

f3n(x1L)− 1

m2
R

f3n(x1R)

]

− αY

4π

M1

mμ

(m2
L Rm2

R R)i j

(m2
L − m2

R)m2
R

×
[

m2
R

m2
L − m2

R

(
1

m2
L

f3n(x1L)− 1

m2
R

f3n(x1R)

)

+ 2

m2
R

f2n(x1R)

]
+ αY

4π

M1

mμ

(m2
L Lm2

L R)i j

(m2
L − m2

R)m2
L

×
[

m2
L

m2
L − m2

R

(
1

m2
L

f3n(x1L)

− 1

m2
R

f3n(x1R)

)
+ 2

m2
L

f2n(x1L)

]

+ αY

2π

M1

mμ

(m2
L Lm2

L Rm2
R R)i j

(m2
L − m2

R)2m2
Lm2

R

×
[

m2
Lm2

R

m2
L − m2

R

(
1

m2
L

f3n(x1L)− 1

m2
R

f3n(x1R)

)

+m2
R

m2
L

f2n(x1L)+ m2
L

m2
R

f2n(x1R)

]
. (75)

Here (m2
L R)i i = mli (Ai−μ∗tβ), xi A = |M2

i |/m2
A, xμA =

|μ|2/m2
A with i = 1, 2 and A = L , R.

The explicit expressions for the loop functions are

f1n(x) = −17x3 + 9x2 + 9x − 1+ 6x2(x + 3) ln x

24(1− x)5
, (76)

f2n(x) = −5x2 + 4x + 1+ 2x(x + 2) ln x

4(1− x)4 , (77)

f3n(x) = 1+ 2x ln x − x2

2(1− x)3 , (78)

f1c(x) = −x3 − 9x2 + 9x + 1+ 6x(x + 1) ln x

6(1− x)5
, (79)

f2c(x) = −x2 − 4x + 5+ 2(2x + 1) ln x

2(1− x)4 . (80)

123



3211 Page 18 of 20 Eur. Phys. J. C (2014) 74 :3211

In the degenerate SUSY limit M1 = M2 = μ = mL =
m R = m̃ one obtains

Ai j (n)
L = − α2

120π

(m2
L L)i j

m̃4

[
1

8
+ tβ

]
+ αY

120π

(m2
L L)i j

m̃4

×
[
−5

8
+ tβ

]
+ αY

48π

m̃

mli

(m2
L R)∗j i
m̃4

− αY

80π

m̃

mli

[
(m2

L Rm2
R R)∗j i

m̃6 + (m2
L Lm2

L R)∗j i
m̃6

− 2

3

(m2
L Lm2

L Rm2
R R)∗j i

m̃8

]
, (81)

Ai j (c)
L = α2

40π

(m2
L L)i j

m̃4

[
1

3
+ tβ

]
, (82)

A(n)
R = −

αY

60π

(m2
R R)i j

m̃4

[
1

2
+ tβ

]

+ αY

48π

m̃

mli

(m2
L R)i j

m̃4 − αY

80π

m̃

mli

(m2
L Rm2

R R)i j

m̃6

− αY

80π

m̃

mli

(m2
L L m2

L R)i j

m̃6 + αY

120π

m̃

mli

(m2
L L m2

L Rm2
R R)i j

m̃8 .

(83)

A.2 Anomalous magnetic moments

The supersymmetric contributions to the anomalous mag-
netic moment 
ali come from neutralino and chargino loops


ali = 
a(n)
li
+
a(c)

li
. They read


a(n)
li
= α2

8π

m2
li

m2
L

×
[
− f L

n (x2L )+ 2
|M2|2 + Re(μM2) tβ
|M2|2 − |μ|2 f3n(x2L )

−2
|μ|2 + Re(μM2) tβ
|M2|2 − |μ|2 f3n(xμL )

]
− αY

2π

m2
li

m2
R

×
[

f L
n (x1R)− |M1|2 + Re(μM1) tβ

|M1|2 − |μ|2 f3n(x1R)

+|μ|
2 + Re(μM1) tβ
|M1|2 − |μ|2 f3n(xμR)

]
+ αY

8π

m2
li

m2
L

×
[
− f L

n (x1L )− 2
|M1|2 + Re(μM1) tβ
|M1|2 − |μ|2 f3n(x1L )

+2
|μ|2 + Re(μM1) tβ
|M1|2 − |μ|2 f3n(xμL )

]

+ αY

2π

mli

m2
L − m2

R

Re(M1m2
L R)i i

×
[

1

m2
L

f3n(x1L )− 1

m2
R

f3n(x1R)

]

+ αY

2π

mli

m2
L − m2

R

Re(M1m2
L Rm2

R R)i i

×
⎡

⎣
1

m2
L

f3n(x1L )− 1
m2

R
f3n(x1R)

m2
L − m2

R

+ 2
1

m4
R

f2n(x1R)

⎤

⎦

− αY

2π

mli

m2
L − m2

R

Re(M1m2
L L m2

L R)i i

×
⎡

⎣
1

m2
L

f3n(x1L )− 1
m2

R
f3n(x1R)

m2
L − m2

R

+ 2
1

m4
L

f2n(x1L )

⎤

⎦

− αY

π
mli

Re(M1m2
L L m2

L Rm2
R R)i i

(m2
L − m2

R)2

×
⎡

⎣
1

m2
L

f3n(x1L )− 1
m2

R
f3n(x1R)

m2
L − m2

R

+ f2n(x1L )

m4
L

+ f2n(x1R)

m4
R

⎤

⎦ ,

(84)


a(c)
li
= α2

4π

m2
li

m2
L

×
[

f L
c (x2L )− |M2|2 + Re(μM2) tβ

|M2|2 − |μ|2 f L R
c (x2L )

+|μ|
2 + Re(μM2) tβ
|M2|2 − |μ|2 f L R

c (xμL )

]
. (85)

Here we introduced the additional loop functions:

f L
n (x) = 1− 6x + 3x2 + 2x3 − 6x2 log x

6(1− x)4 , (86)

f L
c (x) = 2+ 3x − 6x2 + x3 + 6x log x

6(1− x)4 , (87)

f L R
c (x) = −3+ 4x − x2 − 2 log x

(1− x)3 . (88)

In the degenerate SUSY limit M1 = M2 = μ = mL =
m R = m̃ one obtains


a(n)
li
= − α2

48π

m2
li

m̃2

[
−1

2
+ Re(μM2)

m̃2 tβ

]
− αY

48π

m2
li

m̃2

×
[(

3

2
+ Re(μM1)

m̃2 tβ

)
+ 2Re(M1m2

L R)i i

mli m̃
2

]

+ αY

40π

mli

m̃2

×
[

Re(M1m2
L Rm2

R R)i i

m̃4 + Re(M1m2
L Lm2

L R)i i

m̃4

−2

3

Re(M1m2
L Lm2

L Rm2
R R)i i

m̃6

]
, (89)


a(c)
li
= α2

8π

m2
li

m̃2

[
−1

6
+ Re(μM2)

m̃2 tβ

]
. (90)

A.3 Electric dipole moments

The supersymmetric contributions to the electric dipole
moment di come from neutralino and chargino loops di =
d(n)

i + d(c)
i . They read
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d(n)
i
e
= α2

8π

mli

m2
L

Im(μM2)

|M2|2 − |μ|2
tβ
[

f3n(x2L )− f3n(xμL )
]

+ αY

4π

mli

m2
R

Im(μM1)

|M1|2 − |μ|2
tβ
[

f3n(x1R)− f3n(xμR)
]

− αY

8π

mli

m2
L

Im(μM1)

|M1|2 − |μ|2
tβ
[

f3n(x1L )− f3n(xμL )
]

+ αY

4π

Im(M1m2
L R)i i

m2
L − m2

R

[
1

m2
L

f3n(x1L )− 1

m2
R

f3n(x1R)

]

+ αY

4π

Im(M1m2
L Rm2

R R)i i

m2
L − m2

R

×
⎡

⎣
1

m2
L

f3n(x1L )− 1
m2

R
f3n(x1R)

m2
L − m2

R

+ 2
1

m4
R

f2n(x1R)

⎤

⎦

− αY

4π

Im(M1m2
L L m2

L R)i i

m2
L − m2

R

×
⎡

⎣
1

m2
L

f3n(x1L )− 1
m2

R
f3n(x1R)

m2
L − m2

R

+ 2
1

m4
L

f2n(x1L )

⎤

⎦

− αY

2π

Im(M1m2
L L m2

L Rm2
R R)i i

(m2
L − m2

R)2

×
⎡

⎣
1

m2
L

f3n(x1L )− 1
m2

R
f3n(x1R)

m2
L − m2

R

+ 1

m4
L

f2n(x1L )

+ 1

m4
R

f2n(x1R)

]
, (91)

d(c)
i
e
= − α2

8π

mli

m2
L

Im(μM2)

|M2|2 − |μ|2
tβ
[

f L R
c (x2L )− f L R

c (xμL )
]
.

(92)

In the degenerate SUSY limit M1 = M2 = μ = mL =
m R = m̃ one obtains

d(n)
i

e
= − α2

96π

mli

m̃2

Im(μM2)

m̃2 tβ − αY

96π

mli

m̃2

Im(μM1)

m̃2 tβ

− αY

120π

Im(M1m2
L Lm2

L Rm2
R R)i i

m̃8

− αY

48π

Im(M1m2
L R)i i

m̃4 + αY

80π

Im(M1m2
L Rm2

R R)i i

m̃6

+ αY

80π

Im(M1m2
L Lm2

L R)i i

m̃6 , (93)

d(c)
i

e
= α2

16π

mli

m̃2

Im(μM2)

m̃2 tβ. (94)
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