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Abstract We review and update current limits on possible
anomalous couplings of the top quark to gauge bosons. We
consider data from top quark decay (as encoded in the W -
boson helicity fractions) and single-top production (in the t-,
s- and W t-channels). We find improved limits with respect
to previous results (in most cases of almost one order of mag-
nitude) and extend the analysis to include four-quark opera-
tors. We find that new electroweak physics is constrained to
live above an energy scale between 430 GeV and 3.2 TeV
(depending on the form of its contribution). For comparison,
strongly interacting new physics is bounded by scales higher
than 1.3 or 1.5 TeV (again depending on its contribution).

1 Motivations and notation

Precision studies of the interaction vertices between the top
quark and the gauge bosons provide an important tool in
testing the standard model (SM) against new-physics contri-
butions. Currently available measurements from the Tevatron
and the LHC already allow one to set stringent limits on pos-
sible deviations in the values of these couplings from their
SM values. A model independent framework to study these
anomalous couplings is provided by effective field theory,
where the modifications are encoded into the coefficients of
a set of higher dimensional operators that parametrize the
effects of new physics at low energy.

The top quark has both strong and electroweak (EW)
interactions. While all interactions come together in collider
physics, it is possible to separate in most processes the EW
from the strong part so that the anomalous vertices can be
discussed separately. In this paper we concentrate on the
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study of the W tb vertex; the strong interaction Gtt̄ vertex
was recently studied in [1]—the results of which are here
reported. Possible deviations in the interaction between the
top quark and the neutral bosons Z and γ—they enter the
associated productions t t̄ Z and t t̄γ—are left out because
they still are poorly measured.

1.1 Effective W tb vertex

Following the literature [2], we write the effective lagrangian
that describes, after EW symmetry breaking, the most general
W tb vertex as

LW tb = − g√
2

b̄γ μ(VL PL + VR PR)tW−μ −
g√
2

b̄
iσμνqν

mW

× (gL PL + gR PR)tW−μ + h.c. , (1)

where g is the SU (2)L gauge coupling, PL ,R the chiral pro-
jectors are (1 ± γ5)/2, and σμν = i[γ μ, γ ν]/2. The coeffi-
cients VL , VR , gL , and gR are, in general, complex dimen-
sionless constants. In this work we will restrict ourselves to
the CP-conserving case and these couplings are taken to be
real. In the SM the W tb vertex in Eq. (1) reduces at the tree
level to the Dirac vertex with VL = 1 (after mass diago-
nalization, VL = Vtb � 1) and we take it to be positive.
Corrections to VL , as well as the other non-zero anomalous
couplings VR , gL , and gR can be generated by new physics.

If the physics beyond the SM lies at an energy scale� that
is larger than the EW scale υ, then we can parametrize its
effects via higher dimensional operators respecting the SM
symmetries in a series suppressed by inverse powers of the
scale�. The leading contributions arise at dimension six and
can be written as an expansion of the local operators {Ôk},
Ldim 6

SM =
∑

k

ck

�2 Ôk , (2)

where ck are dimensionless coefficients.
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The complete list of independent dimension six SM effec-
tive operators is reported in [3] of which we follow the nota-
tion. The subset of operators that contributes to the anoma-
lous couplings in Eq. (1) consists of the following operators:

Ô(3)
ϕq = (ϕ†i

←→
D I
μϕ)(q̄Lσ

Iγ μqL),

Ôϕtb = i(ϕ̃† Dμϕ)(t̄Rγ
μbR),

ÔtW = q̄Lσ
μνσ I tR ϕ̃W I

μν,

ÔbW = q̄Lσ
μνσ I bRϕW I

μν

(3)

where qT = (t, b), ϕ̃ = iσ 2ϕ∗, and Dμϕ = ∂μϕ +
igW I

μ
σ I

2 ϕ + ig′YϕBμϕ. After EW symmetry breaking ϕ =
(0, υ + H/

√
2), υ = 246 GeV, we can express the anoma-

lous couplings in terms of the effective field theory coeffi-
cients as follows:

VL = Vtb + c(3)ϕq
υ2

�2 � 1+ c(3)ϕq
υ2

�2 ,

VR = 1

2
cϕtb

υ2

�2 ,

gL =
√

2 cbW
υ2

�2 ,

gR =
√

2 ctW
υ2

�2 .

(4)

There is another operator that enters in the processes we
consider: the four-fermion operator

Ô(3)
qq ′ = q̄Lγ

μσ I qL q̄ ′Lγ μσ I q ′L , (5)

where q ′T = (u, d) and, as before, qT = (t, b). It does
not give a direct contribution to the anomalous couplings but
its interplay with the other operators modifies the limits. For
this reason it must be included and its effect parametrized by
the new coefficient

C4 f = c(3)qq ′
v2

�2 , (6)

which can be further identified by taking c(3)qq ′ = 2π with the
usual convention of writing four-quark operators as

2π

�2 ψ̄Lγ
μψL ψ̄LγμψL , (7)

where the coefficient 2π represents the strength of a strongly
interacting new-physics sector—the integration of which
gives rise to the effective operator.

The effect of these operators on the top-quark EW anoma-
lous couplings can be best studied in two processes: top decay
(by means of the W polarizations) and single-top production.

1.2 Effective Gtt̄ vertex

The effective vertex for the Gtt̄ interactions can be written
as

LGtt̄ = −gs t̄

[
γ μF1(q

2)+ iσμνqν
2mt

F2(q
2)

]
Gμ t , (8)

where gs is the strong SU (3)C coupling constant, Gμ =
TAG A

μ is the gluon field, TA are the SU (3)C group generators,
qμ is the momentum carried by the gluon, and t denotes the
top-quark field. The interaction in Eq. (8) is the most general
one on assuming that the vector-like nature of the gluon–top
quark vertex is preserved by the underlying dynamics giving
rise to the composite state.

The leading contributions come from the following two
higher dimensional operators:

Ô1 = gs
C1

m2
t

t̄γ μTAt DνG A
μν and

Ô2 = gs
C2υ

2
√

2m2
t

t̄σμνTAtG A
μν (9)

where DνG A
μν = ∂νG A

μν + gs f A
BC GνB GC

μν , G A
μν =

∂μG A
ν − ∂νG A

μ + gs f A
BC G B

μGC
ν is the gluon field strength

tensor, and the f A
BC are the SU (3)C structure constants. In

Eq. (9) the operator Ô1 and Ô2 are, respectively, of dimen-
sion six and five. We limit ourselves to the C P-conserving
case and the dimensionless coefficients C1 and C2 are taken
to be real. The operator Ô1 gives the leading q2 dependence
to F1, while Ô2 gives the q2-independent term of F2:

F1(q
2) = 1+ C1

q2

m2
t
+ · · · and F2(0) =

√
2 C2

υ

mt
.

(10)

Operators of higher dimensions can in general contribute—
they gives further terms in the expansion of the form factors—
but their effect is very much suppressed. The form of the coef-
ficients in front of the operators in Eq. (9) is conventional and
dictated, in our case, by the analogy with the electromagnetic
form factors. In addition, the operator Ô2 is written for con-
venience with an extra factor υ/mt because it can be thought
of as coming, after EW symmetry breaking, from a dimen-
sion six SU (3)C×SU (2)L×U (1)Y gauge invariant operator
that includes the Higgs boson field.

These vertices were analyzed (most recently in [1] where
references to all related works can be found) by means of
the t t̄ production cross section and spin correlations. The
following limits are found:

− 0.008 ≤ C1 ≤ 0.015 and − 0.023 ≤ C2 ≤ 0.020.

(11)
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These limits give a direct bound on the magnetic moment μ
and the RMS radius 〈r2〉, traditionally used to characterize
the size of extended objects. They correspond to
√
〈r2〉 < 4.6× 10−4 fm (95 % CL)

and− 0.046 < μ− 1 < 0.040 (95 % CL). (12)

We take the coefficients C1 and C2 to be zero when study-
ing EW anomalous couplings—they only enter one chan-
nel of the single-top production—and assume that the strong
interaction of the top quark follows the SM in all production
processes.

2 Methods

In order to study the effect of anomalous couplings on top
decay rates and single-top production cross sections at the
LHC and Tevatron, we first use FeynRules [4] to implement
our model, which has been defined to be the SM with the
addition of the effective operators in Eqs. (3) and (5). The
dependence on these operators is encoded in the coefficients
ci = VL , VR, gL , gR,C4 f .

FeynRules provides the Universal FeynRules Output
(UFO) with the Feynman rules of the model. The UFO is then
used by MadGraph 5 [5] (MG5) to compute the branching
ratios in the decay rates and production cross sections, which
we denote by FMG5

L ,0 and σMG5, respectively.
MG5 computes the square of the amplitude for each sin-

gle channel. The partonic level result thus obtained can be
compared with the partonic experimental cross section that
is extracted by the experimental collaborations.

We compute, using MG5, the top-quark decay width and
the single-top production cross section varying the values of
the anomalous couplings ci in a range that goes from −2 to
2—except for VL that is varied only for positive values. These
different values of branching ratios FMG5

L ,0 (ci ) and cross sec-
tions σMG5(ci ) are used to obtain the limits on the coefficients
by comparing the MG5 computation with the measured cross
sections and helicity fractions at the LHC at the center-of-
mass (CM) energies

√
s = 7 and 8, as discussed in the next

section. By proceeding in the same way, we have also com-
puted the rate and production cross section at the Tevatron
and compared it with the measured cross section at the CM
energy

√
s = 1.98 TeV.

Analytical expressions for the amplitudes that we study
numerically can be found in [6].

2.1 Statistical analysis

To obtain 95 % confidence level (CL) limits on the coeffi-
cients ci from the production cross sections, we use the quan-
tity �σexp, defined to be the difference between the central

value of the measured cross section σ̄exp and the theoretical
value of the SM, σ̄th:

�σexp = σ̄exp − σ̄th. (13)

The uncertainty on�σexp is given by summing in quadra-
ture the respective uncertainties:
√
(δσexp)2 + (δσth)2 . (14)

Using the cross sections σMG5(ci ) calculated with MG5
we compute the value of the cross section coming from new
physics as:

�σMG5(ci ) = σMG5(ci )− σMG5(0). (15)

The quantity �σMG5(ci ) represents the contribution to the
cross section coming from the interference between SM
leading order and new-physics diagrams as well as terms
quadratic in the anomalous couplings.

Values of ci for which �σMG5(ci ) is more than two stan-
dard deviations from �σexp, namely

�σMG5(ci ) > �σexp + 2
√
(δσexp)2 + (δσth)2 (16)

or

�σMG5(ci ) < �σexp − 2
√
(δσexp)2 + (δσth)2 , (17)

are considered excluded at 95 % CL.
To obtain the limits from the branching ratios in top decay,

as measured by the W -boson helicity fractions, a similar pro-
cedure is used. The experiments measure the three fractions
F0, FL , and FR (see below for the definition). Being extracted
from the same data set and from the same observable, these
fractions are not independent. FR is constrained to be equal
to 1 − F0 − FL and is therefore not considered in the limit
extraction. In addition, there is a correlation factor ρ different
from 0 between the measured values of F0 and FL .

The helicity fractions FMG5
0 (ci ) and FMG5

L (ci ) are com-
puted within MG5, after adjusting for higher order QCD
corrections, and compared to the measured values Fexp

0 and
Fexp

L . The only uncertainties we consider are the experimen-
tal uncertainties δFexp

0 and δFexp
L , the theoretical ones being

negligible.
To extract the limits, a likelihood function is defined as:

L(ci ) ∝ e
− 1

2(1− ρ2)

[
χ2

0 (ci )+ χ2
L (ci )− 2ρ · χ0(ci ) · χL (ci )

]

,

(18)

where

χ0(ci ) = Fexp
0 − FMG5

0 (ci )

δF0
and χL (ci ) = Fexp

L − FMG5
L (ci )

δFL
,

(19)

and the constraint
∫

L(ci )dci = 1 is imposed.

123



3193 Page 4 of 7 Eur. Phys. J. C (2014) 74 :3193

Then the quantity L95 % is defined as
∫

L(ci )>L95 %
L(ci )dci = 0.95 (20)

and values of ci for which L(ci ) > L95 % are considered
excluded at 95 % CL.

3 Results

Top-quark decay and single-top production are the two pro-
cesses where we can directly probe the top coupling to the
weak bosons.

The W bt vertex in top-quark decay is best studied by
means of the helicity fractions F0 and FL defined, respec-
tively, as the ratios between the rates of polarized decay of
the top quark into zero and left-handed W bosons and the total
decay width. In the SM they are found, neglecting mb, to be

F0 = m2
t

m2
t + 2m2

W

� 0.7 and FL = 2m2
W

m2
t + 2m2

W

� 0.3;
(21)

the helicity fraction into right-handed W bosons is vanish-
ingly small. These branching ratios receive corrections from
the operators ÔtW and ÔbW . The SM values at the next-to-
next-to-leading order (NNLO) order in QCD are computed
in [7,8].

The best current experimental results are given by CMS [9]
for data at

√
s = 8 TeV (integrated luminosity 19.6 fb−1) as

F0 = 0.659± 0.015 (stat.)± 0.023 (syst.)

FL = 0.350± 0.010 (stat.)± 0.024 (syst.) , (22)

with a correlation coefficient ρ = 0.95.
The single-top production occurs through t-, s- and W t-

channel (see Fig. 1). The SM NNLO cross sections have been
computed in [10–12], respectively. The corresponding exper-
imental cross sections σt , σs and σW t are available from the
LHC and Tevatron data and we utilize the following results
(in which the error includes both statistical and systematic
contributions):

σt = 67.2± 6.1 pb (LHC@7 TeV)[13]
σt = 83.6± 7.7 pb (LHC@8 TeV)[14] , (23)

for single-top production in the t-channel (integrated lumi-
nosities of 1.17 and 1.56 fb−1 for, respectively, muon and

Fig. 2 95 % CL exclusion limits on the coefficients gR and gL (VL = 1,
VR = C4 f = 0). The full yellow, striped red, striped blue, and shaded
gray areas indicate the excluded regions from the s- and t-channel
production cross sections and from the helicity fractions. Brown areas
result from the superposition of yellow and gray areas. The area outside
the dashed (dotted) ellipses is excluded by the W t-channel cross section
measurement at the LHC at 8 TeV (7 TeV). The region of allowed values
is −0.109 ≤ gL ≤ 0.076 and −0.142 ≤ gR ≤ 0.024

electron final states at 7 TeV and 19.7 fb−1 at 8 TeV),

σs = 1.29+0.26
−0.24 (CDF+D0@1.98)[15] , (24)

for the s-channel (integrated luminosity 7.5 pb−1) and

σW t = 16+5
−4 pb (LHC@7 TeV)[16]

σW t = 25± 4.7 pb (LHC@8 TeV)[17] , (25)

for the W t-channel (integrated luminosities 4.9 fb−1 at 7 TeV
and 12.2 fb−1 at 8 TeV).

We study the effect of the operators in Eqs. (3) and (5)
by varying the coefficients of two of them at the time and
we derive the related limits following the statistical analysis
described in the previous section. The results are shown in
Figs. 2, 3, and 4.

The determination of the limits on the coefficients gR and
gL is dominated by the top-quark decay but the single-top
production cross section is useful in eliminating larger values
(the small area on top of Fig. 2). Accordingly, only the lower
region is allowed and

− 0.109 ≤ gL ≤ 0.076 and − 0.142 ≤ gR ≤ 0.024.

(26)

Fig. 1 Tree-level diagrams for,
from left to right, s-, t- and
W t-channel in top-quark
production
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Fig. 3 95 % CL exclusion limits on the coefficients C4 f and VL
(gL = gR = VR = 0). The full yellow, striped red, striped blue,
and shaded gray areas indicate the excluded regions from the s- and
t-channel production cross sections and from the helicity fractions.
The areas outside the dashed (dotted) vertical lines are excluded by
the W t-channel cross-section measurement at the LHC at 8 TeV (7
TeV). The region of allowed values is 0.732 ≤ VL ≤ 1.145 and
−0.037 ≤ C4 f ≤ 0.120

Fig. 4 95 % CL exclusion limits on the coefficients VR and VL (gL =
gR = C4 f = 0). The full yellow, striped red, striped blue, and shaded
gray areas indicate the excluded regions from the s- and t-channel
production cross sections and from the helicity fractions. Brown areas
result from the superposition of yellow and gray areas. The areas outside
the dashed (dotted) vertical lines are excluded by the W t-channel cross-
section measurement at the LHC at 8 TeV (7 TeV). The region of allowed
values is 0.891 ≤ VL ≤ 1.081 and −0.121 ≤ VR ≤ 0.173

The interplay among the various channels of single-top pro-
duction is crucial in delimiting the allowed region for the
parameters C4 f and VL in Fig 3. Unfortunately, the W t-
channel is not sensitive to VR and C4 f and the remain-
ing channels are not sufficient in completely delimiting the
allowed range of the coefficients to a single region. Accord-

Table 1 Limits (95 % CL) on the coefficients ci = VL , VR, gL ,

gR,C4 f , and C1,2 when they are varied independently of each other
and energy scale of the corresponding effective operators

−0.142 ≤ gR ≤ 0.023 |gR | ≤ 0.142, � � 780 GeV

−0.081 ≤ gL ≤ 0.049 |gL | ≤ 0.081, � � 1 TeV

0.902 ≤ VL ≤ 1.081 |VL − 1| ≤ 0.0099, � � 780 GeV

−0.112 ≤ VR ≤ 0.162 |VR | ≤ 0.162, � � 430 GeV

−0.036 ≤ C4 f ≤ 0.025 |C4 f | ≤ 0.036, � � 3.2 TeV

−0.008 ≤ C1 ≤ 0.015 |C1| ≤ 0.015, � � 1.3 TeV

−0.023 ≤ C2 ≤ 0.020 |C2| ≤ 0.023, � � 1.5 TeV

ingly, the final bound is weakened when both coefficients are
allowed to vary simultaneously and we find

0.732 ≤ VL ≤ 1.145 and − 0.037 ≤ C4 f ≤ 0.120. (27)

A future improvement in the W t-channel measurement at the
LHC could be instrumental in delimiting the range to a single
region.

Finally, it is the interplay between top decay and the t-
channel of single-top production that provides the limit on
the coefficients VR and VL (see Fig. 4). We find

0.891 ≤ VL ≤ 1.081 and − 0.121 ≤ VR ≤ 0.173. (28)

Notice that all these coefficient are very much constrained
by flavor physics. In particular, the coefficient VR should
be [13]

− 0.0004 ≤ VR ≤ 0.0013. (29)

When this limit is included, Fig. 4 should be read only along
the line VR � 0 with a slightly improved bound

0.902 ≤ VL ≤ 1.081. (30)

Similarly, the coefficient gL should be approximately less
than 0.001 [14,15]. Limits comparable to those from collider
physics hold for the other coefficients.

Our results are summarized in Table 1 in the case in which
the various anomalous couplings are turned on one at the
time.

The limits found can be interpreted in terms of the energy
scale of the effective operators in Eq. (3) (see second column
of Table 1). By inspection, we see that all EW limits are
around 10−1 which translates into a characteristic scale� �
700 GeV (actually from 430 GeV to 1 TeV, depending on the
contribution) except for the four-quark interaction which has
� � 3.2 TeV, if we follow the definition in Eq. (6). Above
these limits, there is still room for new physics. These results
can be compared with the strong sector interactions of the
top quark where the corresponding energy scale is � � 1.3
and 1.5 TeV for, respectively, the operators Ô1 and Ô2 in Eq.
(9) [1].
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Fig. 5 95 % CL exclusion limits on the coefficients C4 f and VL
(gL = VR = 0) for the two extreme allowed values of the coeffi-
cient gR = −0.142 (top) and gR = −0.023 (bottom). The full yellow,
striped red, striped blue, and shaded gray areas indicate the excluded
regions from the s- and t-channel production cross sections and from
the helicity fractions. The areas outside the dashed (dotted) vertical
lines are excluded by the W t-channel cross-section measurement at the
LHC at 8 TeV (7 TeV)

4 Discussion

Constraints on the W tb vertex from Tevatron and early LHC
data were reported in [16]. Future limits for the LHC at 14
TeV were estimated in [17]. The bounds were obtained, as in
this paper, by combining the experimental measurements of
W -boson helicity fractions and single-top production and by
varying two operators at the time. More recently, the mea-
surement of the W -boson helicity fractions has been substan-
tially improved by ATLAS and CMS in [18–20] and limits on
the coefficients gR and gL were extracted by the experimen-
tal collaborations based on these new measurements. Con-
cerning the single-top production, many detailed results have

been released by both Tevatron and LHC experiments [21–
25], as reported in the previous section. The improvement is
substantial, in most cases of almost one order of magnitude.

We confirm and improve the above limits by means of the
most recent data set at 8 TeV by CMS [9] and the combined
use of the helicity fractions and single-top production cross
sections. The result for the four-fermion operator (5), and its
impact on the determination of the coefficient VL is new.

As expected, the simultaneous presence of more than one
anomalous coupling weakens the limits. We have verified that
the variation of more than two of the coefficients does not sig-
nificantly change the result. As an example, in Fig. 5, we show
how the limits on the coefficients VL vs. C4 f are changed by
taking the two extreme values among those allowed for the
coefficient gR . For gR = −0.142 we have

0.753 < VL < 1.116 and − 0.030 < C4 f < 0.094, (31)

while for gR = 0.023

0.720 < VL < 1.138 and − 0.041 < C4 f < 0.105. (32)

These results show that the variation in the value of the lim-
its is around 20 %. Simultaneous variation of other subsets
of coefficients, with respect to their limits as taken two at the
time, are even smaller. This is explained by the dominance
of different processes in the constraints for different pairs of
coefficients: helicity fractions in top-quark decay dominate
the limits for gL and gR while single-top production domi-
nates those of VL and C4 f .
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