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Abstract In this work the dynamics of a 2D Dirac oscil-
lator in the spacetime of a magnetic cosmic string is con-
sidered. It is shown that earlier approaches to this problem
have neglected a δ function contribution to the full Hamilto-
nian, which comes from the Zeeman interaction. The inclu-
sion of spin effects leads to results which confirm a modi-
fied dynamics. Based on the self-adjoint extension method,
we determined the most relevant physical quantities, such as
energy spectrum, wave functions and the self-adjoint exten-
sion parameter by applying boundary conditions allowed by
the system.

1 Introduction

The Dirac oscillator is a natural model for studying proper-
ties of physical systems. This model is based on the dynamics
of a harmonic oscillator for spin-1/2 particles by introduc-
ing a nonminimal prescription into free Dirac equation [1].
Because it is an exactly solvable model, several investiga-
tions have been developed in the context of this theoreti-
cal framework in the last years. The interest in this issue
appears in different contexts, such as quantum optics [2–4],
supersymmetry [5–7], nuclear reactions [8], Clifford alge-
bra [9,10], and noncommutative space [11,12]. Recently, the
one-dimensional Dirac oscillator has been verified experi-
mentally by J. A. Franco-Villafañe et al., based on a tight-
binding system [13]. A detailed description for the Dirac
oscillator is given in Ref. [14] and for other contributions see
Refs. [15–22].

Among the various contexts in which the Dirac oscilla-
tor can be addressed, we refer to the cosmic string, a lin-
ear defect that change the topology of the medium when
viewed globally. This framework has inspired a great deal
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of investigation in recent years. Such works encompass sev-
eral distinct aspects to investigate the effects produced by
topological defects of this nature [23–29].

In this work, we generalize the results in [17] for a 2D
Dirac oscillator in the magnetic cosmic string background
showing rigorously how the dynamics of this system is
affected when the effects of spin are taken into account. Our
approach is based on the self-adjoint extension method which
is appropriate to address any system endowed with a singu-
lar Hamiltonian (due to localized field sources or quantum
confinement). We determine the most relevant physical quan-
tities from the present model, such as energy spectrum, wave
functions, and self-adjoint extension parameter by applying
boundary conditions allowed by the system.

2 The 2D Dirac oscillator in the magnetic cosmic string
background

In this section, we study the motion of the particle in the mag-
netic cosmic string background. The cosmic string spacetime
with an internal magnetic field is an object described by the
following line element in cylindrical coordinates (t, r, ϕ, z):

ds2 = −dt2 + dr2 + α2r2dϕ2 + dz2, (1)

with −∞ < (t, z) < ∞, r ≥ 0, and 0 ≤ ϕ ≤ 2π . The
parameter α is related to the linear mass density m̃ of the
string by α = 1 − 4m̃ runs in the interval (0, 1] and cor-
responds to a deficit angle γ = 2π(1 − α). Geometrically,
the metric (1) corresponds to a Minkowiski spacetime with
a conical singularity [30].

We begin with the Dirac equation in the curved spacetime
(with h̄ = c = 1):
[
iγ μ(∂μ + Γμ)− eγ μAμ − M

]
	 = 0, (2)

where e is the charge, M is mass of the particle, 	 is a
four-component spinorial wave function, andΓμ is the spinor
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affine connection, which is given by [31,32]

Γμ = 1

4
iωμāb̄σāb̄ = −1

8
ωμāb̄

[
γ ā, γ b̄

]
, (3)

where γ ā are the standard Dirac matrices in Minkowski
spacetime and ωμāb̄ is the spin connection, given by

ωμāb̄ = ηācec̄
νeσ

b̄
Γ νσμ − ηāc̄ec̄

ν∂μeν
b̄
, (4)

with (μ, ν) = (0, 1, 2, 3) and (ā, b̄) = (0, 1, 2, 3); Γ νσμ is

the Christoffel symbol, ηāb̄ is the metric tensor, eνā is the basis
tetrad which will be defined below. The spin connection (3)
allows us to construct a local frame through the basis tetrad
which gives the spinors in the curved spacetime. Also, the
γ μ matrices are the generalized Dirac matrices defining the
covariant Clifford algebra,
{
γ μ, γ ν

} = 2gμν, (5)

and are written in terms of the standard Dirac matrices γ ā in
Minkowski spacetime as

γ μ = eμā γ
ā, (6)

with γ ā =
(
γ 0̄, γ ı̄

)
, and

γ 0̄ =
(
1 0
0 −1

)
, γ ı̄ =

(
0 σ i

−σ i 0

)
(i = 1, 2, 3), (7)

where σ i are the standard Pauli matrices and 1 is the 2 × 2
identity matrix. The basis tetrad eμā in Eq. (6) is chosen to be
[17]

eμā =

⎛

⎜⎜
⎝

1 0 0 0
0 cosϕ sin ϕ 0
0 − sin ϕ/αr cosϕ/αr 0
0 0 0 1

⎞

⎟⎟
⎠ , (8)

satisfying the condition

eμā eν
b̄
ηāb̄ = gμν. (9)

The matrices γ μ in Eq. (6) are given more explicitly as

γ 0 = et
0γ

0̄ ≡ γ t , (10a)

γ 3 = ez
0̄
γ 0̄ ≡ γ z, (10b)

γ 1 = e1
āγ

ā ≡ γ r , (10c)

γ r = er
0̄
γ 0̄ + er

1̄
γ 1̄ + er

2̄
γ 2̄ = γ 1̄ cosϕ + γ 2̄ sin ϕ, (10d)

γ 2 = e2
āγ

ā ≡ γ ϕ

αr
, (10e)

γ ϕ = eϕ
0̄
γ 0̄ + eϕ

1̄
γ 1̄ + eϕ

2̄
γ 2̄ = −γ 1̄ sin ϕ + γ 2̄ cosϕ. (10f)

The starting point for the derivation of Eq. (3) is that the
curved-space gamma matrices are covariantly constant [31–
33], i.e., ∇μγ λ = 0 (see Appendix A). For the specific basis

tetrad (8), the connection is found to be

Γ = (0, 0, Γϕ, 0), (11)

with the non-vanishing element given as

Γϕ = −1

2
(1 − α) γ1̄γ2̄. (12)

Details for the calculation of the connection are given in
Appendix B.

According to the tetrad postulated [31–34], the matrices
γ ā could be any set of constant Dirac matrices. Thus, we are
free to choose a representation for the matrices γ ā . Making
use of the symmetry under z translations of the system, we
can reduce the four-component Dirac equation (2) to two
two-component spinor equations. To do this, we consider the
vector potential A as being intrinsically two-dimensional,
i.e., it has only two components and depends on only two
spatial coordinates, and we take pz = z = 0. In this manner,
the relevant equation is
[
β̃γ̃ · π + β̃M

]
ψ = Eψ, (13)

where ψ is a two-component spinor and

π = −i(∇α + Γ )− eA (14)

is the generalized momentum,

∇α = ∂

∂r
r̂ + 1

αr

∂

∂ϕ
ϕ̂ (15)

is the gradient operator in polar coordinates, and the γ̃ ā matri-
ces are given in terms of the Pauli matrices as

β̃ = γ̃ 0̄ = σ z, β̃γ̃ 1̄ = σ 1, β̃γ̃ 2̄ = sσ 2, (16)

where the parameter s, which has a value of twice the spin
value, can be introduced to characterizing the two spin states
[35,36], with s = +1 for spin “up” and s = −1 for spin
“down” [37].

In the representation (16), Eq. (12) yields

Γϕ = −1

2
(1 − α) iσ2 (−isσ1) = i

(1 − α)

2
sσ z . (17)

The magnetic vector potential in polar coordinates in the
Coulomb gauge is chosen to be

eA = − φ

αr
ϕ̂, (18)

where φ = �/�0 is the flux parameter with �0 = 2π/e
((r̂, ϕ̂) denote the unit vectors in polar coordinates.) This
choice for the vector potential gives a magnetic flux tube, in
the background space described by the metric (1), coinciding
with the cosmic string and with the magnetic field strength
given by

eB = −φ
α

δ(r)

r
. (19)
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Note that, in the limit as α → 1, we obtain the magnetic field
in Euclidean space.

The 2D Dirac oscillator is introduced by the non-minimal
substitution [1]

1

i
∇α → 1

i
∇α − i Mωβr, (20)

where r is the position vector andω the frequency of the oscil-
lator (for a comprehensive discussion of the Dirac oscillator
see Ref. [14]). In this case, Eq. (13) reads

[α · (π − i Mωβr)+ βM]ψ = Eψ. (21)

The second order equation implied by Eq. (21) is obtained
by applying the matrix operator

[βM + E + α · (π − i Mωβr)]. (22)

So, one finds

(E2 − M2)ψ = [α · (π − i Mωβr)][α · (π − i Mωβr)]ψ.
(23)

Inserting Eqs. (19), (18), and the expression for Γϕ in (17)
into Eq. (23), one obtains

(E2 − M2)ψ = Hψ, (24)

where

H =
[
−i∇α +

(
φ

α
+ 1 − α

2α
sσ z

)
1

r
ϕ̂

]2

−2Mω

[
σ z + s

(
1

iα

∂

∂ϕ
+ φ

α
+ 1 − α

2α
sσ z

)]

+M2ω2r2 + φs

α

δ(r)

r
σ z . (25)

In Eq. (25), the quantity

φ

α
+ 1 − α

2α
sσ z (26)

contributes to the term which depends explicitly on the spin
of the particle. The first term is the contribution due to the
magnetic flux while the second is due to the spin connec-
tion. Note that, by making α = 1 (flat spacetime) and φ = 0
(absence of a magnetic field) in Eq. (24), we obtain, for the
planar case, the 2D Dirac oscillator as proposed by Moshin-
sky and Szczepaniak [1] and discussed in Appendix C.

Making use of the underlying rotational symmetry we can
express the two-component spinor as

ψ(r, ϕ) =
(
ψ1

ψ2

)
=

(
fm(r) eimϕ

gm(r) ei(m+s)ϕ

)
, (27)

with m ∈ Z. By replacing Eq. (27) into Eq. (24), we obtain
the radial equation for fm(r)

H fm(r) = k2 fm(r), (28)

where

k2 = E2 − M2 + 2Mω(s j + 1), (29)

j = 1

α

(
m + φ + 1 − α

2
s

)
, (30)

H = H0 + φs

α

δ(r)

r
, (31)

and

H0 = − d2

dr2 − 1

r

d

dr
+ j2

r2 + M2ω2r2. (32)

The Hamiltonian in Eq. (31) governs the dynamics of a Dirac
oscillator in a magnetic cosmic string background, i.e., a
Dirac oscillator problem in the presence of the Aharonov–
Bohm effect in a conical spacetime. The presence of a two-
dimension δ interaction in the radial Hamiltonian H , which
is singular at the origin, makes the problem more compli-
cated to solve. The most adequate manner to address this
kind of point interaction potential is by making use of the
self-adjoint extension approach [38,39]. This is the method
adopted in this work and discussed in the next section.

3 Self-adjoint extension analysis

In this section, we review some concepts on the self-adjoint
extension approach. An operator O , with domain D(O),
is said to be self-adjoint if and only if O = O† and
D(O) = D(O†), O† being the adjoint of operator O . For
smooth functions, ξ ∈ C∞

0 (R
2) with ξ(0) = 0, we should

have Hξ = H0ξ , and it is possible to interpret the Hamil-
tonian (31) as a self-adjoint extension of H0|C∞

0 (R2/{0}) [40–
42]. The self-adjoint extension approach consists, essen-
tially, in extending the domain of D(O) in order to match
D(O†). From the theory of symmetric operators, it is a well-
known fact that the symmetric radial operator H0 is essen-
tially self-adjoint for | j | ≥ 1, while for | j | < 1 it admits an
one-parameter family of self-adjoint extensions [43], H0,λm ,
where λm is the self-adjoint extension parameter. To charac-
terize this family, we will use the approach in [38,39], which
is based on the boundary conditions at the origin. All the
self-adjoint extensions H0,λm of H0 are parametrized by the
boundary condition at the origin

�0 = λm�1, (33)

with

�0 = lim
r→0+ r | j | fm(r), (34)

�1 = lim
r→0+

1

r | j |

[
fm(r)−�0

1

r | j |

]
, (35)

where λm ∈ R is the self-adjoint extension parameter. For
λm = 0, we have the free Hamiltonian (without the δ
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function) with regular wave functions at the origin, and for
λm 	= 0 the boundary condition in Eq. (33) permit an r−| j |
singularity in the wave functions at the origin.

4 The bound state energy and wave function

In this section, we determine the energy spectrum for the
Dirac oscillator in the cosmic string background by solving
Eq. (28). For r 	= 0, the equation for the component fm(r)
can be transformed by the variable change ρ = Mωr2 result-
ing in

ρ f ′′
m(ρ)+ f ′

m(ρ)−
(

j2

4ρ
+ ρ

4
− k2

4γ

)
fm(ρ) = 0, (36)

with γ = Mω. Due to the boundary condition in Eq. (33), we
seek regular and irregular solutions for Eq. (36). Studying the
asymptotic limits of Eq. (36) leads us to the following regular
(+) (irregular (−)) solution:

fm(ρ) = ρ±| j |/2e−ρ/2 F(ρ). (37)

With this, Eq. (36) is rewritten as

ρF ′′(ρ)+ (1 ± | j | − ρ)F ′(ρ)

−
(

1 ± | j |
2

− k2

4γ

)
F(ρ) = 0. (38)

Equation (36) is of the confluent hypergeometric equation
type

zF ′′(z)+ (b − z)F ′(z)− aF(z) = 0. (39)

In this manner, the general solution for Eq. (36) is

fm(r) = amρ
| j |/2e−ρ/2 F (d+, 1 + | j |, ρ)

+bmρ
−| j |/2e−ρ/2 F (d−, 1 − | j |, ρ), (40)

with

d± = 1 ± | j |
2

− k2

4γ
. (41)

In Eq. (40), F(a, b, z) is the confluent hypergeometric func-
tion of the first kind [44] and am and bm are, respectively, the
coefficients of the regular and irregular solutions.

In this point, we apply the boundary condition in Eq. (33).
Doing this, one finds the following relation between the coef-
ficients am and bm :

λmγ
| j | = bm

am

[
1 + λmk2

4(1 − | j |) lim
r→0+ r2−2| j |

]
. (42)

We note that limr→0+ r2−2| j | diverges if | j | ≥ 1. This con-
dition implies that bm must be zero if | j | ≥ 1 and only the
regular solution contributes to fm(r). For | j | < 1, when the
operator H0 is not self-adjoint, there arises a contribution of
the irregular solution to fm(r) [29,37,45–49]. In this man-
ner, the contribution of the irregular solution for the system

wave function stems from the fact that the operator H0 is not
self-adjoint.

For fm(r) be a bound state wave function, it must vanish at
large values of r , i.e., it must be normalizable. So, from the
asymptotic representation of the confluent hypergeometric
function, the normalizability condition is translated in

bm

am
= −Γ (1 + | j |)

Γ (1 − | j |)
Γ (d−)
Γ (d+)

. (43)

From Eq. (42), for | j | < 1 we have bm/am = λmγ
| j |. Using

this result in Eq. (43), one finds

Γ (d+)
Γ (d−)

= − 1

λmγ | j |
Γ (1 + | j |)
Γ (1 − | j |) . (44)

Equation (44) implicitly determines the bound state energy
for the Dirac oscillator in the cosmic string background
for different values of the self-adjoint extension parameter.
Two limiting values for the self-adjoint extension parameter
deserve some attention. For λm = 0, when the δ interaction
is absent, only the regular solution contributes for the bound
state wave function. On the other side, for λm = ∞ only
the irregular solution contributes for the bound state wave
function. For all other values of the self-adjoint extension
parameter, both regular and irregular solutions contribute for
the bound state wave function. The energies for the limiting
values are obtained from the poles of the gamma function,
namely,
{

d+ = −n for λm = 0 (regular solution),
d− = −n for λm = ∞ (irregular solution),

(45)

with n a nonnegative integer, n = 0, 1, 2, . . .. By manipula-
tion of Eq. (45), we obtain

E = ±
{

M2 + 2Mω

[
2n ± 1

α

∣∣∣m + φ + 1 − α

2
s
∣∣∣

− s

α

(
m + φ + 1 − α

2
s

)]}1/2

. (46)

In particular, it should be noted that for the case when | j | ≥ 1
or when the δ interaction is absent, only the regular solution
contributes for the bound state wave function (bm = 0), and
the energy is given by Eq. (46) using the plus sign. Note that,
for α = 1 (flat space) and φ = 0 (no magnetic flux), Eq.
(46) coincides with the energy found for the usual 2D Dirac
oscillator (cf. Eq. (C.35) in C). Without loss of generality,
let us suppose 0 < φ < 1 [42,50,51]. In this interval, and
recalling that we are interested in the case where 0 < α ≤ 1,
another interesting feature is present in the energy eigenval-
ues. For the regular solution, the eigenvalues are independent
of m, φ, and α for s = 1. This situation is shown in Fig. 1a
for n = 1 and m = 1. However, this independence is absent
for s = −1, as shown in Fig. 1b for n = 1 and m = 1.
In the other hand, for the irregular solution, the eigenvalues
are independent of m, φ and α for s = −1 and dependent
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Fig. 1 The energy eigenvalues for the regular solution for a 2D Dirac
oscillator in the cosmic string background as a function of the declina-
tion α and the magnetic flux φ for n = 1, m = 1, and for a s = 1 and
b s = −1. For convenience, we plot (E2 − M2)/2Mω instead E

for s = 1. Also, for s = −1, decreasing the value of α, the
energy increase as an effect of the quantum localization.

The unnormalized bound state wave functions for our
problem are

fm(r) = ρ±| j |/2e−ρ/2 F(−n, 1 ± | j |, ρ). (47)

The self-adjoint extension is related with the presence of
the δ interaction. In this manner, the self-adjoint extension
parameter must be related with the δ interaction coupling
constant φs/α. In fact, as shown in Refs. [28,29] (see also
Refs. [45,52]), from the regularization of the δ interaction,
it is possible to find such a relationship. Using the regular-
ization method, one obtains the following equation for the
bound state energy:

Γ (d+)
Γ (d−)

= − 1

r2| j |
0

(
φs + α| j |
φs − α| j |

)
1

γ | j |
Γ (1 + | j |)
Γ (1 − | j |) . (48)

By comparing Eqs. (44) and (48), this relation is found to be

1

λm
= 1

r2| j |
0

(
φs + α| j |
φs − α| j |

)
(49)

where r0 is a very small radius which comes from the δ
regularization [28,29].

5 Nonrelativisitic limit

We shall now take the nonrelativistic limit of Eq. (24). Using
E = M + E with M � E , we obtain

2MEψ = Hψ. (50)

Performing the same steps as for the relativistic case, one
obtains the shifted energy levels (cf. Appendix C)

E + ω =
[

1 + 2n ± 1

α

∣∣∣m + φ + 1 − α

2
s
∣∣∣

− s

α

(
m + φ + 1 − α

2
s

)]
ω. (51)

In this equation, the+ (−) sign is forλm = 0 (λm = ∞) when
one has regular (irregular) solution. We note that the energy
in Eq. (51) corresponds to equation (54) of Ref. [53] (cf. also
Eq. (C.37) in Appendix C) with two additional contributions,
the spin–orbit coupling and the spin connection.

6 Conclusions

In this contribution, we have addressed the Dirac oscillator
interacting with a topological defect and in the presence of
the Aharonov–Bohm potential. This system has been studied
in Ref. [17]. However, the authors do not take into account
the effects of spin. In other words, the term proportional to the
δ interaction was discarded, by considering only the regular
solution of the problem. The presence of this term has direct
implications in the energy spectrum and wave functions of the
oscillator. The correct approach to this problem must include
spin effects, which are explicitly manifested by the spin–
orbit coupling term, and so we have a complete description
for the dynamics of the 2D Dirac oscillator. We consider the
self-adjoint extension method and show that the spin–orbit
coupling term, which results in a δ interaction, cannot be
dropped from the Hamiltonian. Although being singular at
the origin, this term reveals that both regular and irregular
solutions contribute for the bound state wave function and,
consequently, for the energy spectrum. Expressions for the
bound states energy for different values of the self-adjoint
extension parameter were obtained. For two specific values
for the self-adjoint extension parameter, i.e., λm = 0 and
λm = ∞, the bound state energies are given explicitly in Eq.
(46). We also verified that, for the flat space (α = 1) and
no magnetic flux (φ = 0), the results of the usual 2D Dirac
oscillator are recovered.
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Appendix A: Covariancy of γ matrices in the curved
spacetime

In this appendix, we give the details of the calculation of the
covariant derivative of γ μ in Eq. (6). As a consequence of
the tetrad we postulate

∇μeā
ν ≡ ∂μeā

ν − eā
σΓ

σ
μν + ωā

μb̄
eb̄
ν = 0, (A.1)

together with the condition
[
γ ā, Γμ

]
= ωā

μb̄
γ b̄, (A.2)

we have

∇μγ λ = ∂μγ
λ + Γ λμνγ

ν + [
γ λ, Γμ

] = 0. (A.3)

To check this, first we need to find the relevant Christoffel
symbols. They are found to be

Γ r
ϕϕ = −α2r, (A.4)

Γ ϕrϕ = Γ ϕϕr = 1

r
. (A.5)

Moreover, we also make use of Eqs. (10a)–(10e) and Eq.
(A.3) and then calculate for each (μ, λ = t, r, ϕ). Then, for
μ = t , we write

∇tγ
λ = ∂tγ

λ + Γ λtνγ
ν + [

γ λ, Γt
]

(μ = t). (A.6)

Since Γ t
tν = Γt = ∂tγ

t = 0, Γ r
tν = ∂tγ

r = 0, and Γ ϕtν =
∂tγ

ϕ = 0, it follows that

∇tγ
t = ∂tγ

t + Γ t
tνγ

ν + [
γ t , Γt

] = 0 (λ = t), (A.7)

∇tγ
r = ∂tγ

r + Γ r
tνγ

ν + [
γ r , Γt

] = 0 (λ = r), (A.8)

∇tγ
ϕ = ∂tγ

ϕ + Γ
ϕ

tνγ
ν + [

γ ϕ, Γt
] = 0 (λ = ϕ), (A.9)

so that

∇tγ
λ = ∇tγ

t + ∇tγ
r + ∇tγ

ϕ = 0 (λ = t, r, ϕ). (A.10)

Next, we have

∇rγ
λ = ∂rγ

λ + Γ λrνγ
ν + [

γ λ, Γr
]
(μ = r), (A.11)

and by using Γ ϕrϕ = 1/r (with ν = ϕ), Γ t
rν = Γ r

rν = 0,
∂tγ

t = ∂rγ
r = 0, we get

∇rγ
t = ∂rγ

t + Γ t
rνγ

ν + [
γ t , Γr

] = 0 (λ = t) , (A.12)

∇rγ
r = ∂rγ

r + Γ r
rνγ

ν + [
γ r , Γr

] = 0 (λ = r) , (A.13)

∇rγ
ϕ = ∂rγ

ϕ + Γ ϕrνγ
ν + [

γ ϕ, Γr
]

= 1

αr2

(
γ 1̄ sin ϕ − γ 2̄ cosϕ

)

+ 1

αr2

(
−γ 1̄ sin ϕ + γ 2̄ cosϕ

)

= 0 (λ = ϕ), (A.14)

and consequently

∇rγ
λ = ∇rγ

t + ∇rγ
r + ∇rγ

ϕ = 0 (λ = t, r, ϕ). (A.15)

Now, for μ = ϕ, we write

∇ϕγ λ = ∂ϕγ
λ + Γ λϕνγ

ν + [
γ λ, Γϕ

]
(μ = ϕ), (A.16)

and again, since ∂ϕγ t = Γ t
ϕν = 0, and using Eqs. (A.4) and

(A.5), we have

∇ϕγ t = ∂ϕγ
t + Γ t

ϕνγ
ν − [

Γϕ, γ
t ]

= 1

2
(1 − α)γ1̄γ2̄γ

t − 1

2
(1 − α)γ tγ1̄γ2̄

= 0 (λ = t), (A.17)

∇ϕγ r = ∂ϕγ
r + Γ r

ϕνγ
ν − [

Γϕ, γ
r ]

= −(1 − α)γ 2̄ cosϕ − (1 − α)γ 1̄ sin ϕ

+ (1 − α) γ 2̄ cosϕ − (1 − α) γ 1̄ sin ϕ

= 0 (λ = r), (A.18)

∇ϕγ ϕ = ∂ϕγ
ϕ + Γ ϕϕνγ

ν − [
Γϕ, γ

ϕ
]

= − 1

αr
(1 − α)

(
γ 1̄ cosϕ + γ 2̄ sin ϕ

)

+ 1

αr
(1 − α)

(
γ 1̄ cosϕ + γ 2̄ sin ϕ

)

= 0 (λ = ϕ), (A.19)

so that

∇ϕγ λ = ∇ϕγ t + ∇ϕγ r + ∇ϕγ ϕ = 0 (λ = t, r, ϕ). (A.20)

Therefore, Eqs. (A.10), (A.15), and (A.20), imply that

∇μγ λ = 0 (μ, λ = t, r, ϕ). (A.21)

Thus, we have verified that the matrices γ μ, in the basis tetrad
given in Eq. (6), are covariantly constant.
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Appendix B: Derivation of the spin connection

The spinor affine connection in Eq. (3) can be written more
explicitly as

Γt = 1

4
ω0̄1̄

t
[
γ0̄, γ1̄

] + 1

4
ω0̄2̄

t
[
γ0̄, γ2̄

] + 1

4
ω1̄2̄

t
[
γ1̄, γ2̄

]
, (B.22)

Γr = 1

4
ω0̄1̄

r
[
γ0̄, γ1̄

] + 1

4
ω0̄2̄

r
[
γ0̄, γ2̄

] + 1

4
ω1̄2̄

r
[
γ1̄, γ2̄

]
, (B.23)

Γϕ = 1

4
ω0̄1̄
ϕ

[
γ0̄, γ1̄

] + 1

4
ω0̄2̄
ϕ

[
γ0̄, γ2̄

] + 1

4
ω1̄2̄
ϕ

[
γ1̄, γ2̄

]
, (B.24)

Γz = 1

4
ω0̄1̄

z
[
γ0̄, γ1̄

] + 1

4
ω0̄2̄

z
[
γ0̄, γ2̄

] + 1

4
ω1̄2̄

z
[
γ1̄, γ2̄

]
. (B.25)

In order to calculate the spin connection ωμāb̄ in Eq. (4), we
use the Christoffel symbols given in Eqs. (A.4) and (A.5).
Since ω0̄1̄

t = ω0̄2̄
t = ω1̄2̄

t = 0, ω0̄1̄
r = ω0̄2̄

r = ω1̄2̄
r = 0,

and ω0̄1̄
z = ω0̄2̄

z = ω1̄2̄
z = 0, we find Γt = Γr = Γz = 0.

Furthermore, we also can verify that ω0̄1̄
ϕ = ω0̄2̄

ϕ = 0. As a
result, we have

Γ μϕν 	= 0, (B.26)

for μ = ϕ, ν = r and μ = r , ν = ϕ. Thus, the only
contribution for the spin connection is obtained from

ω1̄2̄
ϕ = e1̄

μeν2̄Γ μϕν − eν2̄∂ϕe1̄
ν, (B.27)

which gives

ω1̄2̄
ϕ = −αr sin ϕ sin ϕ

1

r
+ cosϕ

1

αr
cosϕ

(
−α2r

)

− sin ϕ∂ϕ cosϕ − 1

αr
cosϕ∂ϕ (−αr sin ϕ)

= 1 − α. (B.28)

Thus, for the specific basis tetrad (8), the connection is found
to be

Γ = (
0, 0, Γϕ, 0

)
, (B.29)

with the non-vanishing element given as

Γϕ = −1

4
(1 − α)

[
γ1̄, γ2̄

] = −1

2
(1 − α) γ1̄γ2̄. (B.30)

Appendix C: 2D Dirac oscillator

In this appendix, we briefly discuss the usual 2D Dirac oscil-
lator. We mention that although fully equivalent, the present
construction is slightly different from the previous one in the
literature [54]. Let us consider Eq. (13) with π = p−i Mωβ̃r.
By using the representation for the γ̃ matrices in Eq. (16),
we are left with

[σ 1π1 + sσ 2π2 + σ 3 M − E]ψ = 0, (C.31)

with πi = pi − i Mωσ 3ri . By squaring Eq. (C.31), one
obtains

[
p2 + M2ω2r2 − 2Mω(σ 3 + sL3)

]
ψ = (E2 − M2)ψ. (C.32)

Equation (C.32), restoring the factors h̄ and c, in terms of
components, provides

2Mc2
[

H2D
ho − h̄ω − sωL3

]
ψ1 = (E2 − M2c4)ψ1, (C.33a)

2Mc2
[

H2D
ho + h̄ω − sωL3

]
ψ2 = (E2 − M2c4)ψ2, (C.33b)

where

H2D
ho = p2

2M
+ 1

2
Mω2r2. (C.34)

Equation (84) for s = 1 agreed with the expressions found in
Eq. (A2) of Ref. [55] and Eqs. (9) and (22) of Ref. [56]. Using
the ansatz in Eq. (27) the energy eigenvalues are determined:

E = ±
√

M2 + 2Mω (2n + |m| − sm), (C.35)

showing that the energy eigenvalues are spin dependent. It
should be noted that for s = 1 (s = −1) and m > 0 (m <

0) the energy eigenvalues are independent of the quantum
number m.

From Eq. (C.32), in the nonrelativistic limit E = M + E
with M � E , we have
[

H2D
ho − ω(σ 3 + sL3)

]
ψ = Eψ. (C.36)

The first term on the left side of Eq. (C.36) is the Hamilto-
nian of the nonrelativistic circular harmonic oscillator [57],
explaining why this system is called the Dirac oscillator. The
second term is a constant which shifts all energy levels. The
last term is the spin–orbit coupling, which (restoring the fac-
tor h̄) is of strength ω/h̄. Summarizing, the nonrelativistic
limit of the 2D Dirac oscillator is the circular harmonic oscil-
lator with a strong spin–orbit coupling term with all levels
shifted by the factor ω. Indeed, the shifted energy levels are

E + ω = (1 + 2n + |m| − sm)ω. (C.37)

As for the relativistic case, for s = 1 (s = −1) and m >

0 (m < 0) the energy eigenvalues are independent of the
quantum number m.
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