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Abstract We investigate the brane models in arbitrary
dimensional critical gravity presented in Lu and Pope (Phys
Rev Lett 106:181302, 2011). For the models of the thin
branes with codimension one, the Gibbons–Hawking sur-
face term and the junction conditions are derived, with which
the analytical solutions for the flat, AdS, and dS branes are
obtained at the critical point of the critical gravity. It is found
that all these branes are embedded in an AdSn spacetime,
but, in general, the effective cosmological constant Λ of the
AdSn spacetime is not equal to the naked one Λ0 in the
critical gravity, which can be positive, zero, and negative.
Another interesting result is that the brane tension can also
be positive, zero, or negative, depending on the symmetry of
the thin brane and the values of the parameters of the theory,
which is very different from the case in general relativity. It
is shown that the mass hierarchy problem can be solved in
the braneworld model in the higher-derivative critical grav-
ity. We also study the thick brane model and find analytical
and numerical solutions of the flat, AdS, and dS branes. It is
found that some branes will have inner structure when some
parameters of the theory are larger than their critical values,
which may result in resonant KK modes for some bulk mat-
ter fields. The flat branes with positive energy density and
AdS branes with negative energy density are embedded in
an n-dimensional AdS spacetime, while the dS branes with
positive energy density are embedded in an n-dimensional
Minkowski one.

1 Introduction

The idea that the spacetime has more than four dimensions
and our universe is a brane or domain wall embedded in
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higher dimensional spacetime [1–6] has been proposed for
a long time and discussed extensively. It is believed that
the braneworld scenario can supply new insights for solving
the gauge hierarchy problem and the cosmological constant
problem [7–17].

There are many discussions of branes both in the frames
of general relativity and modified gravities. In Refs. [18–23],
non-minimal coupling branes in scalar–tensor gravity were
discussed and the mass hierarchy problem can be solved in
scalar–tensor thin branes model [18]. A brane model in the
recently presented EiBI gravity theory was constructed in
Ref. [24] and it was found that the four-dimensional Einstein
gravity can be recovered on the brane at low energy. Branes
in spacetime with torsion were investigated in Refs. [25,26]
and it was shown that in f (T ) gravity that the torsion of
spacetime can affect the inner structure of branes [25]. Ref-
erence [27] investigated braneworld teleparallel gravity. For
brane models in higher-derivative gravity there are also many
references; see for examples Refs. [28–38].

In this paper, we are interested in brane solutions in the
framework of higher-derivative gravities. As is well known,
general relativity is a non-renormalizable theory and it suffers
from the singularity problem as well as other problems. In a
quantum gravity theory or the low energy effective theory of
string theory, higher-order curvature terms would be added to
the Einstein–Hilbert action. The principal candidates for such
corrections are contracted quadratic products of the Riemann
curvature tensor. With this kind of corrections, the most gen-
eral correction terms has the form of α′ R2 +β ′ RM N RM N +
γ ′ RM N P Q RM N P Q , or αR2 + β RM N RM N + γLGB, where

LGB = RM N P Q RM N P Q − 4RM N RM N + R2 (1)

is the Gauss–Bonnet term and it is topological invariant in
four dimensions. Gravity theories with this kind of correc-
tions were studied in detail in Ref. [39].

Nevertheless, an action with quadratic curvature terms
implies that the field equations contain the fourth derivations
of the metric and thus would lead to a massive ghost-like
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graviton. Recently, it was shown in Ref. [40] that the mas-
sive scalar mode can be eliminated and the massive ghost-
like graviton becomes massless when the parameters of the
quadratic curvature terms satisfy the critical condition. The
corresponding theory is called critical gravity. It was gener-
alized to higher dimensions in Ref. [41]. See Refs. [42–46]
for work related to critical gravity.

In general, it is very hard to solve analytically the Einstein
field equations of a higher-derivative gravity for a system
with matter fields. However, for a codimension-1 brane sys-
tem with the metric ds2 = e2A(y)ĝμν dxμdxν + dy2 (ĝμν is
the maximally symmetric metric) in critical gravity, the Ein-
stein field equations are of second order at the critical point.
So it is possible to get analytical solutions in this higher-
derivative gravity theory and to give some insight into some
interesting questions. In Ref. [47], a flat brane scenario in
five-dimensional critical gravity was investigated and some
analytical solutions were found for a thin brane with the use
of the junction conditions and for a thick brane. It was found
that scalar perturbations for all these brane solutions are sta-
ble.

However, the flat brane scenario is the simplest case for
the study of the brane world. It is well known that there
are three types of branes with maximally symmetry: flat, de
Sitter, and anti-de Sitter branes. Furthermore, the study of
Friedmann–Robertson–Walker (FRW) branes is also inter-
esting. It is expected that the warped brane models in higher-
derivative gravities such as critical gravity may provide a new
scenario in the study of the AdS/CFT correspondence, cos-
mologies, and phenomenological model building [29,48]. In
this paper, we generalize the work of Ref. [47] and construct
the flat and warped brane solutions in n-dimensional criti-
cal gravity. The organization of this paper is as follows. In
Sect. 2, we first derive the Gibbons–Hawking boundary term
on the thin brane and give the junction conditions. Then we
construct analytic flat and warped brane solutions with the
junction conditions and investigate the hierarchy problem in
the thin brane scenario. In Sect. 3, thick branes generated
by a scalar field are investigated and the conditions of the
splitting of the branes are obtained. Finally, our conclusion
is given in Sect. 4.

2 Thin brane solutions

First we consider the thin brane models in the frame of n-
dimensional critical gravity. The action is [41]

S = 1

2κ2

∫
dn x

√−gLG + SB, (2)

where

LG = R − (n − 2)Λ0 + αR2 + β RM N RM N + γLGB, (3)

and κ denotes the n-dimensional gravitational constant with
κ2 = 8π/M4∗ , where M∗ is the n-dimensional Planck mass
scale. The parameters α and β satisfy the following critical
condition [41]:

4(n − 1)α + nβ = 0. (4)

The brane part SB of the above action is given by

SB =
∫

dn−1x
√−q(−V0), (5)

where V0 is the brane tension and qμν is the induced met-
ric on the brane, which is assumed to be located at the
origin of the extra dimension xn = y. The capital letters
M, N , . . . = 0, 1, 2, 3, . . . , n − 2, n and the Greek letters
μ, ν, . . . = 0, 1, 2, . . . , n − 2 denote the indices of the n-
dimensional bulk and (n − 1)-dimensional brane, respec-
tively.

The equations of motion (EoMs) derived from the action
(2) read

GM N + EM N − γ

2
HM N = κ2TM N , (6)

where

GM N = RM N − 1

2
R gM N + 1

2
(n − 2)Λ0gM N , (7)

EM N = 2αR

(
RM N − 1

4
R gM N

)

+(2α + β)(gM N � − ∇M∇N )R

+2β R P Q
(

RM P N Q − 1

4
RP Q gM N

)

+β�
(

RM N − 1

2
R gM N

)
, (8)

HM N = gM N LGB − 4R RM N + 8RM P R P
N

+8RM AN B R AB − 4RM ABC R ABC
N , (9)

TM N = − 2√−g

δSB

δgM N
. (10)

In an n-dimensional space, we have the following relation:

αR2 + β RM N RM N + γLGB

= (n−2)β

4(n−3)
C2− ζLGB

4(n−3)
+ 4(n−1)α + nβ

4(n−1)
R2, (11)

where

ζ = (n − 2)β − 4(n − 3)γ, (12)

and C2 := C M N P QCM N P Q is the square of the n-
dimensional Weyl tensor,

CM N P Q = RM N P Q − 2

n − 2
(gM[P RQ]N − gN [P RQ]M )

+ 2

(n − 1)(n − 2)
R gM[P gQ]N . (13)
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Note that, under the critical condition (4), the last term R2 in
the right hand side of Eq. (11) vanishes. So, the Lagrangian
density LG for the critical gravity can be reexpressed as

LG = LEGB + (n − 2)β

4(n − 3)
C2, (14)

where LEGB is the Einstein–Gauss–Bonnet (EGB) term:

LEGB = R − (n − 2)Λ0 − ζLGB

4(n − 3)
. (15)

In the following, we first generalize the result of the junc-
tion conditions in five dimensions in Ref. [47] to n dimen-
sions for flat, AdS, and dS thin branes. Then we will use the
generalized junction conditions to give the thin brane solu-
tions.

2.1 Junction conditions

Following Ref. [47], we adopt the Gibbons–Hawking method
to derive the junction conditions. The basic idea is as follows.
The whole spacetime M is divided into two submanifolds by
the thin brane, which is the boundary ∂ M of the two sub-
manifolds. The unit vector normal to the boundary ∂ M is
denoted by nQ and it is outward pointing. Then the induced
metric on the brane is q M N = gM N − nM nN . The extrin-
sic curvature is defined as KM N = LnqM N /2. We denote
[F]± := F(0+)−F(0−). In the following, we let nQ(0+) =
nQ := (0, 0, 0, 0,−1) and nQ(0−) := (0, 0, 0, 0,+1) for
the right and left sides, respectively. Due to the Z2 symmetry
of the extra dimension, we only need to calculate the right
side. See e.g. Refs. [47,49,50] for details.

We will deal with the C2 term and EGB term, respectively.
We first consider a general geometry instead of the special
case of branes with ds2 = e2A(y)ĝμν(x)dxμdxν + dy2. For
the C2 term, we have

δ

∫
M

dn x
√−gC2 ⊃ 4

∫
∂ M

dn−1x
√−g

[
(C M P N QnQδgM N );P −

(
(C M P N QnQ);P

+ C M P N Q
;Q n P

)
δgM N

]
. (16)

Here, the bulk term has been omitted and only the rele-
vant boundary term is given explicitly. In order to have
a well-posed variational principle, we introduce an auxil-
iary field ϕM N P Q and replace C2 with 2ϕM N P QCM N P Q −
ϕM N P QϕM N P Q . Then from the EoM of the auxiliary field,
ϕM N P Q = C M N P Q , we can see that ϕM N P Q has the same
symmetry as the Weyl tensor and is also totally traceless.
With the new field ϕM N P Q , Eq. (16) becomes

δ

∫
M

dn x
√−gC2 ⊃ 4

∫
∂ M

dn−1x
√−g

[
(ϕM P N QnQδgM N );P −

(
(ϕM P N QnQ);P

+ϕ
M P N Q

;Q n P

)
δgM N

]
. (17)

Then with the identity [47]

X M
;M = DM (q M

N X N ) + K nN X N + Ln(nN X N ), (18)

where DM (q P
N X N ) := q Q

M q P
R (q R

N X N );Q , we can show that
∫

∂ M
dn−1x

√−g(ϕM P N QnQδgM N );P

=
∫

∂ M
dn−1x

√−g
[
ϕM P N QnQn PLnδgM N

+
(

KϕM P N QnQn P + Ln(ϕM P N QnQn P )
)
δgM N

]
.

(19)

Further, the first term in the above equation can be reduced
to

ϕM P N QnQn PLnδgM N

= 2ϕM N δKM N − ϕM N KM N n P nQδgP Q

+2DN (ϕM N n PδgP M ) − 2ϕP M
;P nN δgM N , (20)

where ϕM N := ϕM P N QnQn P . So the surface term for the
C2 part is

δSC2 ⊃ δ

(
1

2κ2

(n − 2)β

4(n − 3)

∫
M

dn−1x
√−gC2

)

= (n − 2)β

2(n − 3)κ2

∫
∂ M

dn−1x
√−g

{
2ϕM N δKM N

+
[
LnϕM N + KϕM N − ϕP Q K P QnM nN

−2ϕ
P(M
;P nN ) − (ϕM P N QnQ);P

−ϕ
M P N Q

;Q n P

]
δgM N

}
. (21)

Then with 2ϕM N δKM N = 2ϕM N δ(KM N − 1
n−1 qM N K ) +

2
n−1 KϕM N δqM N , we finally obtain

δSC2 ⊃ (n − 2)β

2(n − 3)κ2

∫
∂ M

dn−1x
√−g

[
2ϕM N δ K̄M N

+ (
W M N − ϕP Q K P QnM nN )

δgM N

]
, (22)

where

K̄M N := KM N − 1

n − 1
qM N K , (23)

W M N := n + 1

n − 1
KϕM N + LnϕM N − 2ϕ

P(M
;P nN )

− (ϕM P N QnQ);P − ϕ
M P N Q

;Q n P . (24)

123



3185 Page 4 of 14 Eur. Phys. J. C (2014) 74 :3185

It can be shown that W M N nM = W M N qM N = W M N gM N

= 0.
Now we can introduce the corresponding Gibbons–

Hawking surface term [51] for the C2 term:

Ssuf
C2 = − (n − 2)β

(n − 3)κ2

∫
∂ M

dn−1x
√−g ϕM N K̄M N . (25)

So we have (considering the whole spacetime)

δ(SC2 + Ssuf
C2 ) = (n − 2)β

2(n − 3)κ2

∫
∂ M

dn−1x
√−g

×
{

− 2
[
K̄M N

]
±δϕM N − [

ϕP Q K P Q
]
±nM nN δgM N

+[
W M N ]

±δgM N

}
. (26)

Next, we come to the EGB term in Eq. (15), for which the
Gibbons–Hawking surface term was given in Refs. [52–54]:

Ssurf
EGB = 1

2κ2

∫
∂ M

dn−1x
√−g

×
(

2K − ζ

(n − 3)
(J − 2G̃μν K μν)

)
(27)

with G̃μν = R̃μν−qμν R̃/2 the Einstein tensor of the induced
metric qμν and J the trace of the following tensor:

JM N = 1

3

(
2K K P

M K P N + K P Q K P Q KM N

−K 2 KM N − 2KM P K P Q K QN

)
. (28)

Then we have

δ(SEGB + Ssurf
EGB)

= 1

2κ2 δ

∫
M

dn x
√−g

[
R − (n − 2)Λ0 − ζ

4(n − 3)
LGB

]

+ 1

2κ2 δ

∫
∂ M

dn−1x
√−g

(
2K − ζ

(n−3)
(J −2G̃μν K μν)

)

⊃ 1

2κ2

∫
∂ M

dn−1x
√−g(−E M N

EGB)δgM N , (29)

where

E M N
EGB := [K M N ]± − q M N [K ]±

− ζ

2(n − 3)

(
3[J M N ]± − q M N [J ]±

−2P M P N Q[K P Q]±
)
, (30)

PM N P Q := R̃M N P Q − 2qM[Q R̃P]N

+2qN [Q R̃P]M + R̃qM[PqQ]N . (31)

Thus, from Eqs. (26) and (29), for n-dimensional critical
gravity theory, we finally get

δ
(
SEGB + SC2 + Ssurf

EGB + Ssuf
C2

)

⊃ 1

2κ2

∫
∂ M

dn−1x
√−g

{ (n − 2)β

(n − 3)

(
− 2

[
K̄M N

]
±δϕM N

−[
K P QϕP Q]

±nM nN δgM N + [
W M N ]

±δgM N

)

−E M N
EGBδgM N

}
. (32)

So, the junction conditions are
[
K̄M N

]
± = 0, (33)[

K P QϕP Q]
± = K̄ P Q[ϕP Q]± = 0, (34)

[
E M N

EGB

]
± − (n − 2)β

n − 3

[
W M N ]

± = κ2T M N
(brane). (35)

Here T M N
(brane) denotes the singular part of T M N . To avoid the

δ-function in the junction conditions, we need the stronger
condition [ϕM N ]± = 0.

For the special warped geometries of flat, AdS, and dS
branes, whose metrics have the form

ds2 = e2A(y)ĝμν(x)dxμdxν + dy2, (36)

the first condition (33) gives no more constraint for brane
solutions because K̄M N ≡ 0; and C M P N Q is continuous and
its contribution vanishes. So the above junction conditions
for flat, AdS, and dS brane solutions in the critical gravity
are simplified as
[
E M N

EGB

]
± = κ2T M N

(brane), (37)

where the nonvanishing components of the brane energy-
momentum tensor are T brane

μν = −V0 ĝμν . The reduced met-

ric is qμν = ĝμν(x)e2A(y). With the constraint A(0) = 0
and the assumption of the Z2 symmetry of the extra dimen-
sion (A(y) = A(−y)), we have Kμν(0+) = −Kμν(0−) =
−A′(0+)ĝμν , and hence [Kμν]± − qμν[K ]± = 2(n −
3)A′(0+)ĝμν .

Next, we mainly consider the branes with maximum sym-
metry, namely, flat (Minkowski), AdS, and dS branes. With
the explicit junction conditions, we will give the thin brane
solutions. The flat brane solution in five-dimensional critical
gravity has been found in Ref. [47].

2.2 Flat brane

The line element of a flat brane with the most general (n−1)-
dimensional Poincaré-invariant is

ds2 = e2A(y)ημνdxμdxν + dy2, (38)

where e2A(y) is the warp factor. Such a compactification is
known as a warped compactification. Considering the Z2

symmetry of the brane model, we have A(y) = A(−y).
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Furthermore, we can set e2A(0) = 1 in order to get qμν = ημν

on the brane. The bulk energy-momentum tensor reads

TM N = −V0δ
μ
Mδν

N e2A(y)ημνδ(y), (39)

from which the brane energy-momentum tensor is given by

T brane
M N = −V0δ

μ
Mδν

N ημν or T brane
μν = −V0ημν. (40)

For arbitrary α and β, the field equations (6) are fourth-
order differential ones. However, at the critical point α =
− n

4(n−1)
β [41], the bulk field equations turn out to be

[2 + (n − 4)ζ A′2]A′′ = 0, (41)

4Λ0 + (n − 1)A′2[4 + (n − 4)ζ A′2] = 0, (42)

where ζ is given by Eq. (12), and the prime and double prime
stand for the first-order and second-order derivations with
respect to y, respectively. Throughout this paper we will use
the critical condition (4). The junction conditions read

(n − 2)
[

A′ + 1

6
(n − 4)ζ A′3]

± = −κ2V0 (43)

or

2(n − 2)
(

A′(0+) + 1

6
(n − 4)ζ A′3(0+)

)
= −κ2V0, (44)

due to the Z2 symmetry of the extra dimension.
The solution for the warp factor A(y) is

A(y) = −k|y|, (45)

where k is a positive parameter since we are interested in
the exponentially decreasing warp factor, which could solve
the hierarchy problem if we consider the two-brane model
with an S1/Z2 extra dimension [7]. Then, from Eq. (42), the
naked cosmological constant is given by

Λ0 = −(n − 1)

(
1 + 1

4
(n − 4)ζk2

)
k2. (46)

The brane tension is determined by the junction condition
(44):

V0 = n − 2

3κ2

(
6 + (n − 4)ζk2

)
k. (47)

It is clear that the result is consistent with the one in general
relativity when ζ = 0. The naked cosmological constant and
brane tension are, respectively, negative and positive when
ζ = 0 (in this paper, we assume that n ≥ 5), and they can
be positive, zero, and negative when ζ < 0, depending on
the magnitude of ζ compared with k−2. If we require that
the higher-order terms in (3) are small compared with the R
term, which implies ζk2 	 1, then we will have negative
Λ0 and positive brane tension for any such ζ . If we rewrite
the Einstein equations (6) as G M N = κ2T eff

M N , namely, and
identify (EM N − γ

2 HM N )/κ2 + TM N as an effective energy-
momentum tensor, then we will always get an effective pos-
itive brane tension.

The flat thin brane is embedded in an AdSn spacetime,
with the effective cosmological constant Λ given by Λ =
−(n − 1)k2. Therefore, the higher-order terms only affect
the naked cosmological constant and brane tension.

For the case n = 5, the result reads

Λ0 = −(4 + ζk2)k2, (48)

V0 = κ−2
(

6 + ζk2
)

k, (49)

which is the thin brane solution found in Ref. [47].

2.3 AdS brane

The metric describing an AdS brane embedded in an AdSn

spacetime is assumed to be

ds2 = e2A(y)
[
e2H xn−2(−dt2 + dx2

1 + · · · + dx2
n−3)

+dx2
n−2

] + dy2. (50)

The corresponding Einstein equations beyond the thin brane
turn out to be

(e2A A′′−H2)
[
2 + (n−4)H2ζe−2A + (n−4)ζ A′2]=0,

(51)

(n − 1)A′2 [
2(n − 4)H2ζ + e2A(4 + (n − 4)ζ A′2)

]

+4(n−1)H2 + (n−1)(n − 4)H4ζe−2A + 4Λ0e2A =0.

(52)

The junction conditions read

(n − 2)
[

A′ + 1

6
(n − 4)ζ(A′3 + 3H2 A′)

]
± = −κ2V0. (53)

The solution for Eq. (51) is

A(y) = ln

[
H

k
cosh(k|y| + σ)

]
(54)

with

σ = arccosh

(
k

H

)
. (55)

Here, the two parameters should satisfy the relation: k > H .
Substituting the solution (54) into the second Eq. (52), we
get the naked cosmological constant:

Λ0 = −(n − 1)

(
1 + 1

4
(n − 4)ζk2

)
k2. (56)

Since RM N = ΛgM N = −(n − 1)k2gM N , the cosmolog-
ical constant of the AdSn is Λ = −(n − 1)k2. The naked
cosmological constant can be positive, zero, and negative,
depending on the value of the combine of the parameters β

and γ (i.e., ζ = −4γ (n − 3) + β(n − 2)). The junction
conditions (53) give the brane tension:

V0 = n − 2

3κ2

[
6 + (n − 4)(k2 + 2H2)ζ

]√
k2 − H2, (57)
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which can be positive, negative, or zero.

2.4 dS brane

The metric describing a dS brane has the following form:

ds2 = e2A(y)[dt2 + e−2Htδi j dxi dx j ] + dy2. (58)

The EoMs at y 
= 0 are

(e2A A′′ + H2)
[
2−(n−4)H2ζe−2A + (n−4)ζ A′2]=0,

(59)

(n − 1)A′2 [
−2(n − 4)H2ζ + e2A(4 + (n − 4)ζ A′2)

]

−4(n−1)H2 + (n−1)(n − 4)H4ζe−2A + 4Λ0e2A =0.

(60)

The junction condition is similar to the case of the AdS brane:

(n − 2)
[

A′ + 1

6
(n − 4)ζ(A′3 − 3H2 A′)

]
± = −κ2V0. (61)

The solution is

A(y) = ln

[
H

k
sinh(k|y| + σ)

]
, (62)

where

σ = arcsinh

(
k

H

)
. (63)

The naked cosmological constant and other parameters are
related by

Λ0 = −(n − 1)k2
(

1 + 1

4
(n − 4)k2ζ

)
. (64)

The junction condition gives the relation between the
brane tension and other parameters:

V0 = n − 2

3κ2

[
6 + (n − 4)(k2 − 2H2)ζ

]√
k2 + H2. (65)

Just as the case of the AdS brane, the brane tension here can
also be positive, negative, or zero.

For the flat, AdS, and dS thin branes, the metric at y 
= 0
satisfies RM N = ΛgM N , where Λ is the n-dimensional effec-
tive cosmological constant. It is because these thin branes are
all embedded in AdSn spacetime. Λ is related to the naked
cosmological constant Λ0 by

Λ0 = Λ − n − 4

4(n − 1)
ζΛ2. (66)

As discussed in Ref. [41], Eq. (66) has two roots, which
correspond to two AdS vacuums. One of the AdS vacuums
has negative energy excitations. On the other hand, to render
the massive spin-2 mode into massless, we need a second
critical condition [41]

1 + [−(n − 2)2β + 4(n − 3)(n − 4)γ ]Λ
2(n − 1)

= 0. (67)

Under this condition, one obtains the effective cosmological
constant Λc of the critical vacuum,

Λc = − n(n − 1)

2(n − 1)(n − 2)2α + 2n(n − 3)(n − 4)γ
, (68)

and the corresponding critical naked cosmological constant,

Λ0c = −n2(n − 1)
[
(n − 1)(n − 2)α + (n − 3)(n − 4)γ

]
2(n − 1)(n − 2)2α + 2n(n − 3)(n − 4)γ

.

(69)

As shown in Ref. [41], for the critical vacuum, the massive
spin-2 mode become massless, and the excitation energy of
the massless graviton vanishes; while for the noncritical vac-
uum, the spectrum still contains both massive and massless
modes, and their excitation energies are of opposite signs.

Furthermore, if we require ζ = 0, Eq. (66) renders Λ0 =
Λ, and there will be only one AdS vacuum. Equation (3) now
is reduced to

LG = R − (n − 2)Λ0 + (n − 2)β

4(n − 3)
C2 (70)

with Λ0 = − n
8α

.

2.5 Effective action and mass hierarchy

To derive the effective action of gravity on the brane, we fol-
low the procedure in Ref. [7]. The nth dimension coordinate
ranges from −yb to yb with the topology of S1/Z2, brane I
is located at y = 0, and brane II at y = yb. We consider the
massless gravitational fluctuations of the background metric
(38):

ds2 = e2A(y)ĝμν(x)dxμdxν + dy2

= e2A(y)(ημν + hμν(x))dxμdxν + dy2. (71)

These massless gravitational fluctuations are the zero modes
of the classical solution (38) and hμν(x) is the physical gravi-
ton of the four-dimensional effective theory. With the help of
solution (45), we have
√−gLG = √−g

[
R − (n − 2)Λ0 + αR2

+β RM N RM N + γLGB
]

=
√

−ĝ
[
ae−(n−3)k|y| R̂

+e−(n−5)k|y| (α R̂2 + β R̂μν R̂μν + γ L̂GB

)

+function of A(y), A′(y), and A′′(y)
]
, (72)

where

a = 1 − 2k2
[
−1

4
(n − 2)2β + (n2 − 5n + 2)γ

]
, (73)

Mpl is the (n − 1)-dimensional Planck scale on the brane,
M is the n-dimensional Planck scale satisfying 2Mn−2 =

1
2κ2 , and terms like ĝ and R̂ are constructed by ĝμν(x). Note
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that in the action (3) the terms like R2 and RM N RM N etc.
are considered as higher-order terms compared with the R
term. This is equivalent to αR2, β RM N RM N , and γLGB	R,
which imply βk2, γ k2	1. So we have |1 − a| 	 1. The
action of the n-dimensional gravity is reduced to

SG = 2Mn−2
∫

dn x
√−gLG

⊃ 2aMn−2
∫ yb

−yb

dy e−(n−3)k|y|
∫

dn−1x
√

−ĝ R̂

+2Mn−2
∫ yb

−yb

dy e−(n−5)k|y|

×
∫

dn−1x
√

−ĝ
(
α R̂2 + β R̂μν R̂μν + γ L̂GB

)

⊃ Seff , (74)

where the (n − 1)-dimensional effective action is

Seff = 2Mn−3
pl

∫
dn−1x

√
−ĝ

×
[

R̂ + b
(
α R̂2 + β R̂μν R̂μν + γ L̂GB

)]
, (75)

b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(n − 3)
[
1 − e−(n−5)kyb

]
a(n − 5)

[
1 − e−(n−3)kyb

] , n ≥ 6,

(n − 3)kyb

a
[
1 − e−(n−3)kyb

] , n = 5.

(76)

Here, the effective Planck scale Mpl is related by the funda-
mental mass M via

Mn−3
pl = 2Mn−3

(n − 3)k
a

[
1 − e−(n−3)kyb

]
. (77)

From this, we can see that the relationship between the fun-
damental scale and the effective one reduces to the case in
the RS1 model because a

.= 1. Hence, the n-dimensional
critical gravity reduces to the (n − 1)-dimensional critical
gravity on the brane. Substituting the metric (71) into the
junction condition (37), we obtain the brane tensions of the
two branes:

VI = −VII = n − 2

3κ2

(
6 + (n − 4)ζk2

)
k. (78)

Let us consider a Higgs field on the brane II with the action
(for the case n = 5)

SH =
∫

d4x
√

−q̂(yb)

×
[
−q̂μν(yb)DμH† Dν H − λ(|H |2 − v2

0)2
]
, (79)

where v0 is the vacuum expectation value of the Higgs field.
Redefining the field Ĥ = e−kyb H , we obtain the canonical
normalized action of the Higgs field Ĥ :

SH =
∫

d4x
√

−ĝ

×
[
−ĝμν Dμ Ĥ† Dν Ĥ − λ(|Ĥ |2 − e−2kybv2

0)2
]
. (80)

Therefore, the vacuum expectation value of the Higgs field
Ĥ would have a redshift due to the influence of the warped
extra dimension:

v̂0 = e−kybv0, (81)

which implies that the electro-weak scale has a redshift. On
the other hand, the mass of the particles originates from the
Yukawa coupling, and the vacuum expectation value of the
Higgs field is one of the parameters that determine the mass.
Hence, the effective (physical) mass also has a redshift

m = e−kyb m0. (82)

From the above expression, we see that the redshift of the
vacuum expectation value of the Higgs field and the mass of
the particles are the same as the RS1 model in Ref. [7]. So,
the mass hierarchy problem is also solved in the higher-order
braneworld model in the critical gravity.

3 Thick branes generated by a scalar field

In this section we study thick branes generated by a scalar
field. The brane part of the action (2) is

SB =
∫

dn x
√−g

(
−1

2
gM N ∂Mφ∂N φ − V (φ)

)
, (83)

where the scalar field is assumed as φ = φ(y) for flat, AdS,
and dS branes considered below.

3.1 Flat brane

The line element of a flat brane generated by a scalar field is
also assumed to be (38). The EoMs (6) reduce to the following
second-order coupled equations:

[2 + (n − 4)ζ A′2]A′′ = − 2κ2

n − 2
φ′2, (84)

4Λ0 + (n − 1)A′2[4 + (n − 4)ζ A′2] = 8κ2

n − 2

(φ′2

2
− V

)
,

(85)

φ′′ + (n − 1)A′φ′ − Vφ = 0, (86)

where Vφ ≡ dV/dφ. Note that the above three equations are
not independent. To solve these equations, we introduce the
superpotential function W (φ), which is defined as

A′ = − κ2

n − 2
W. (87)

Substituting Eq. (87) into Eqs. (84) and (85), we obtain [47]

φ′ = (1 + c1W 2)Wφ, (88)

V = 1

2
(1 + c1W 2)2W 2

φ − c2W 4 − c3W 2 − n − 2

2κ2 Λ0,

(89)
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where

c1 = (n − 4)

2(n − 2)2 ζκ4,

c2 = (n − 1)(n − 4)

8(n − 2)3 ζκ6, (90)

c3 = (n − 1)

2(n − 2)
κ2.

3.1.1 The case ζ = 0

For the case ζ = 0, we have c1 = c2 = 0. In order to
support a kink solution for the scalar field, we first use the

superpotential W = kv0

(
φ − φ3

3v2
0

)
, for which the potential

is

V (φ)=− (n − 1)k2κ2

18(n − 2)v2
0

(φ2 − v2
0)2

[
φ2−4v2

0 − 9(n − 2)

(n − 1)κ2

]
.

(91)

The naked cosmological constant Λ0 = − 4(n−1)k2v4
0κ4

9(n−2)2 is
negative. Substituting the superpotential into Eqs. (87) and
(88), we obtain

φ(y) = v0 tanh(ky), (92)

e2A(y) = e− v2
0κ2

3(n−2)
tanh2(ky)[cosh(ky)]−

4v2
0κ2

3(n−2) . (93)

Also we can take another superpotential W = kφ2
0

sin(φ/φ0). The solution is

V (φ) = 1

2
k2φ2

0

(
1 + n − 1

n − 2
κ2φ2

0

)
cos2(φ/φ0), (94)

φ(y) = 2sign(y)φ0 arccos

(
1 + e−ky

√
2 + 2e−2ky

)
, (95)

e2A(y) = [sech(ky)] 2
n−2 κ2φ2

0 , (96)

Λ0 = − n − 1

(n − 2)2 k2κ4φ4
0 . (97)

Note that the potential here is the Sine-Gordon potential and
the scalar has a single kink-like configuration. The naked
cosmological constant Λ0 is also negative.

3.1.2 The case ζ 
= 0

In the last subsection we cannot get a physical brane solution
for a usual φ4 potential for vanishing ζ with the superpoten-
tial method. However, for the case ζ 
= 0, we can consider
the usual φ4 potential by setting W = aφ. The potential turns
to

V = b(φ2 − v2
0)2, (98)

where

b = −a4(n − 4)ζκ6
[− 4a2ζκ2(n − 4) + (n − 2)(n − 1)

]
8(n − 2)4 ,

v2
0 = − 2(n − 2)2

a2(n − 4)ζκ4 ,

and the corresponding cosmological constant is

Λ0 = n − 1

(n − 4)ζ
. (99)

Here, we consider the case of n > 4 and require v2
0 > 0 and

b > 0, these lead to ζ < 0 and Λ0 < 0. The solutions of the
scalar field and the warped factor are

φ(y) = v0 tanh(ky), (100)

e2A(y) = [cosh(ky)]−
2κ2v2

0
n−2 , (101)

where

k =
√−(n − 4)ζ

2

κ2a2

n − 2
. (102)

If a trigonometric superpotential is used, the scalar field
can be a single kink, double kink, or even multi-kink, and
there can be various kinds of structure of the brane. The
warped factor A(y) and the scalar field are related with the
extra dimension y by

y =
∫

1(
1 + c1W 2

)
Wφ

dφ, (103)

A(y) = − κ2

n − 2

∫
W(

1 + c1W 2
)

Wφ

dφ. (104)

For the case W (φ) = qφ0 sin φ
φ0

, we find that the param-
eters ζ and q can affect the structure of the brane. To see
this, we first plot the scalar potential V (φ) in Figs. 1a,
b, which show the influence of the parameters ζ and q,
respectively. We can see that as ζ and q get larger, a fake
vacuum of the scalar potential will emerge, which is dif-
ferent from the case in general relativity, i.e. ζ = 0. So
we can expect that the scalar field has a double kink solu-
tion, which is shown in Figs. 2a and 3a; and the brane is
a double brane, which can be seen from the energy density
ρ(y) = TM N U MU N = −T 0

0 = 1
2φ′2 + V in Figs. 2b and

3b.
The corresponding cosmological constant is

Λ0 = − (n − 1)q2κ4φ4
0

[
(n − 4)q2ζκ4φ4

0 + 4(n − 2)2
]

4(n − 2)4 .

(105)

The condition that the single brane splits into a double
brane is

ρ′′|y=0 > 0, (106)
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Fig. 1 The shape of the scalar potential V (φ) for different values of q
and ζ . The parameters are set to n = 5, φ0 = 1, and κ = 1

i.e.,

ζ > ζc1 ≡ (n − 2)
[
2(n − 2) + (n − 1)κ2φ2

0

]
2(n − 4)κ4φ2

0q2
. (107)

From Fig. 3b, it can be seen that with the increase of the
parameter ζ , the brane becomes fatter. When ζ reaches the
critical value ζc1, there will be a wide platform around the
brane location. When ζ > ζc1, there will be a minimum
for the energy density at the center of the brane and two sub-
branes appear. Such a brane with inner structure may support
resonant KK modes for various bulk matter fields.

3.2 AdS thick brane

Now we consider the AdS thick brane, for which the line
element is also assumed as (50) and the EoMs read

1.0 0.5 0.5 1.0
y

1.5

1.0

0.5

0.5

1.0

1.5

(a) The shape of the scalar field

1.0 0.5 0.5 1.0
y

20

40

60

80

(b) The shape of the energy density

Fig. 2 The shape of the scalar field and the energy density for different
values of ζ for the flat thick brane. The parameters are set as q = 3, n =
5, φ0 = 1, κ = 1, and ζ = 0 for the dashed red line, ζ = ζc1 = 5

3 for
the thick blue line, ζ = 6 for the thin black line, and ζ = 12 for the
dotdashed green line

[
(n − 4)ζ H2e−2A + (n − 4)ζ A′2 + 2

]
(A′′ − H2e−2A)

= − 2κ2

n − 2
φ′2, (108)

(n − 1)A′2 [
(n − 4)ζ A′2 + 2(n − 4)H2ζe−2A + 4

]

+4(n − 1)H2e−2A + (n − 4)(n − 1)ζ H4e−4A + 4Λ0

= 8κ2

n − 2

(1

2
φ′2 − V

)
, (109)

φ′′ + (n − 1)A′φ′ − ∂V

∂φ
= 0. (110)

3.2.1 The case ζ = 0

For the case ζ = 0, we consider the Sine-Gordon potential

V (φ) = − 1

16
(n − 2)φ2

0

[
cos

(
4kφ

φ0

)
+ 1

]
. (111)
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0.4 0.2 0.2 0.4
y

1.5

1.0

0.5

0.5

1.0

1.5

(a) The shape of the scalar field
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(b) The shape of the energy density

Fig. 3 The shape of the scalar field and the energy density for different
values of q for the flat thick brane. The parameter q is set to q = 4 for
the dashed red line, q = 6 for the thick blue line, and q = 8 for the thin
black line. The other parameters are set as ζ = 1, n = 5, φ0 = 1, and
κ = 1

Then we get the following solution:

e2A(y) = cosh2(ky), (112)

φ(y) = φ0

k
arctan

(
tanh

(
ky

2

))
, (113)

where

φ0 = 2
√

(n − 2)(H2 − k2)

κ
. (114)

The cosmological constant is

Λ0 = −(n − 1)k2, (115)

which is negative. Therefore, the AdS thick brane is embed-
ded in an asymptotic AdS spacetime. It is interesting to note
that the single kink scalar connects the adjacent locations of
the extrema of the scalar potential, and the energy density

ρ = −1

8
(n − 2)φ2

0sech2(ky) (116)

is negative. This is very different from the case of flat branes.

3.2.2 The case ζ 
= 0

For the case ζ < 0, we find a solution for a φ4 model:

eA(y) =
√

−1

2
H2ζ(n − 4) cosh(ky), (117)

φ(y) = sign(y)φ0(1 − sech(ky)), (118)

V (φ) = b[(|φ| − φ0)
2 − v2

0]2 − bv4
0, (119)

in which

b = − (n − 3)(n − 4)ζκ2k4

2(n − 2)
[
2 + k2(n − 4)ζ

]2 , (120)

φ0 = 1

kκ

∣∣∣2 + (n − 4)ζk2
∣∣∣
√

− (n − 2)

2(n − 4)ζ
, (121)

v2
0 = n − 2

n − 3
φ2

0 . (122)

The energy density ρ(y) of the system is

ρ(y) = φ2
0

4k2 [(k4 − n + 2)cosh(2ky)

−k2 − 1]sech[ky]4. (123)

From the above expression of the energy density we can see
that the brane tension of the AdS brane is negative, which is
different from the cases of flat and dS branes. The solution of
the scalar field is a double kink. At the boundaries of the extra
dimension, the scalar field φ → ±φ0, which are locations
of the extrema of the scalar potential, but not the locations
of the minima. This is the reason why the energy density is
negative. The shape of the scalar field, the potential, and the
energy density are shown in Fig. 4a–c.

The cosmological constant is

Λ0 = −1

4
k2(n − 1)

[
(n − 4)ζk2 + 4

]
. (124)

For the following warped factor:

e2A(y) = cosh−2(ky), (125)

the numerical solutions of the scalar field and energy den-
sity are shown in Fig. 5a, b for different values of ζ . From
Eq. (108), φ′2(y) ≥ 0 implies

ζ ≥ − 2

(n − 4)H2 , (126)

which yields

ρ ≤ 0, ρ′′|y=0 > 0. (127)

Therefore, the brane is a single brane with negative tension.
It is interesting to note that, the scalar is a double kink when
ζ = − 2

(n−4)H2 . This double-kind structure could contribute
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Fig. 4 The shape of the potential, the scalar field, and the energy den-
sity for different values of k for the AdS thick brane. The parameter ζ

is set to ζ = −1.0 for the dashed red line, ζ = −1.5 for the thick blue
line, and ζ = −2.0 for the thin black line. The other parameters are set
as n = 5, H = 1.0, k = 0.5, and κ = 1.0

to the resonant structure of bulk fermions. The cosmological
constant is

Λ0 = −1

4
(n − 1)k2

[
(n − 4)ζk2 + 4

]
. (128)
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y
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(a) The shape of the scalar field

4 2 2 4
y
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4

2

(b) The shape of the energy density

Fig. 5 The shape of the scalar field and energy density for different
values of ζ for the AdS thick brane. The parameter ζ is set to ζ =
− 2

(n−4)H2 for the dashed red line, ζ = 0 for the thick blue line, and

ζ = 2
(n−4)H2 for the thin black line. The other parameters are set to

n = 5, κ = 1.0, k = 1.0, and H = 2.0

3.3 dS thick brane

In order to simplify the EoMs in the case of dS brane, we
introduce the conformal coordinates. The line element is
assumed as

ds2 = e2A[−dt2 + e−2Htδi j dxi dx j + dz2]. (129)

Then the EoMs turn out to be[
(n − 4)ζe−2A(A′2 − H2) + 2

]
(A′′ + H2 − A′2)

= − 2κ2

n − 2
φ′2, (130)

(n − 1)(A′2 − H2)
[
(n − 4)ζe−2A(A′2 − H2) + 4

]

+4e−2AΛ0 = 4κ2

n − 2
(φ′2 − 2e2AV ), (131)

e−2A [
φ′′ + (n − 2)A′φ′] − ∂V

∂φ
= 0, (132)
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Fig. 6 The shape of the scalar field and energy density for different
values of H for the dS thick brane. The parameter H is set to H = 0.8
for the dashed red line, H = 1.1 for the thick blue line, and H = 1.4
for the thin black line. The other parameters are set to n = 5, p =
0.1,Λ0 = 0.0, κ = 1.0, and ζ = 1.0

where the prime denotes the derivative with respect to z.

3.3.1 The case ζ = 0

For the case ζ = 0, the EoMs reduce to the ones in general
relativity. The solution for n = 5 has been given in Ref. [55–
57] in general relativity. For arbitrary n, we consider the
following potential:

V (φ) = (n − 2)

2pκ2 [(n − 2)p + 1] H2 cos2(1−p)

(
2φ

φ0

)
,

(133)

where the parameter p satisfies 0 < p < 1. The solution of
the warped factor and scalar field is

e2A(z) = cosh−2p
(

H z

p

)
, (134)
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(a) The shape of the scalar field
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25

30

(b) The shape of the energy density

Fig. 7 The shape of the scalar field and energy density for different
values of ζ for the dS thick brane. The parameters are set to n = 5,Λ0 =
0.0, κ = 1.0, p = 0.1, H = 1.0, and ζ = 0 for the dashed red line,
ζ = ζc2 = 1.12195 for the thick blue line, ζ = 1.56 for the thin black
line, and ζ = 2

(n−4)H2 = 2 for the dotdashed green line

φ(z) = φ0arctan

(
tanh

(
H z

2p

))
, (135)

with

φ0 = 2

κ

√
(n − 2)p(1 − p). (136)

The corresponding naked cosmological constant is

Λ0 = 0. (137)

Since RM N (z → ∞) → 0, the effective cosmological con-
stant is also zero. So the dS thick brane is embedded in an
n-dimensional Minkowski spacetime. The energy density is
given by

ρ = 3(1 + p)H2

pκ2 sech2(1−p)

(
H

p
z

)
. (138)
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3.3.2 The case ζ 
= 0

For the case ζ 
= 0, it is hard to find a closed solution. For
the following warped factor:

e2A(z) = cosh−2p
(

H z

p

)
, (139)

the numerical solutions of the scalar field and energy density
are shown in Figs. 6 and 7 for different values of H and ζ ,
respectively.

We can see that as H and ζ get larger, the scalar field turns
to a double kink (see Figs. 6a, 7a); and the brane splits into
two sub-branes, which can be seen from the energy density
ρ in Figs. 6b and 7b. This is different from the case of ζ = 0.

The condition that the single brane splits into a double
brane is

ζ > ζc2 ≡ 2(n − 2)p + 4

(n − 4) [(n − 4)p + 4] H2 . (140)

4 Conclusion

In this paper, we generalized the Minkowski brane models
in five-dimensional critical gravity in Ref. [47] to warped
ones in n dimensions. For thin brane models in arbitrary
dimensional critical gravity theory, the Gibbons–Hawking
surface term and the junction conditions were derived. It was
found that for the special case of flat, AdS, and dS thin branes
the C2 term in the action has no contribution to these junction
conditions. The solutions for both thin and thick branes were
obtained at the critical point α = − n

4(n−1)
β.

We found that the combination of the parameters β and
γ in the action (3), i.e., ζ ≡ β(n − 2) − 4γ (n − 3), has
a nontrivial effect on the brane solutions. All the flat, AdS,
and dS thin branes are embedded in an AdSn spacetime, and
the effective cosmological constant Λ of the AdSn spacetime
equals the naked one Λ0 only when the combined coefficient
ζ = 0. The naked cosmological constant and brane tension
can be positive, zero, and negative, depending on the value
of ζ . Following the procedure in Ref. [7], we reduce the n-
dimensional critical gravity to the (n−1)-dimensional critical
gravity on the brane, and the mass hierarchy problem was also
solved in the higher-order braneworld model in the critical
gravity.

For the thick flat branes, when ζ = 0, we got two analyti-
cal solutions, both of which describe a single brane generated
by a kink-like scalar. When ζ 
= 0, the analytical and numer-
ical solutions were obtained. It was found that the brane will
split into a double brane when one of the parameters ζ and k
is larger than its critical value. Such a brane with inner struc-
ture may support resonant KK modes for various bulk matter
fields. All these flat branes are embedded in an n-dimensional
AdS spacetime.

For the thick AdS branes, the scalar connects the adjacent
locations of the extrema of the scalar potential, and the energy
density is negative. This is very different from the cases of
flat and dS branes. The scalar can have a single or double kink
configuration, but the brane has no inner structure. These AdS
branes are also embedded in an n-dimensional AdS space-
time.

For the thick dS branes, when ζ = 0 and the scalar poten-
tial is taken as the Sine-Gordon one, the brane has positive
energy density but has no inner structure. When ζ 
= 0, the
inner structure of the dS brane will appear when the parame-
ter ζ or H is larger than its critical value. The energy density
of the brane system is positive for any ζ . These dS branes are
embedded in an n-dimensional Minkowski spacetime.

We have investigated the branes with maximally sym-
metry, where a dS brane can be considered as an (n − 1)-
dimensional exponentially expanding universe. We can also
consider a FRW brane and reconsider the cosmological con-
stant problem and inflation in the frame of brane cosmology
[58]. Moreover, we can also consider higher codimension
branes, but the equations of motion will be fourth-order dif-
ferential ones even if the critical condition (4) is satisfied. It
will be difficult to solve them analytically.
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