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Abstract We study models of translational symmetry
breaking in which inhomogeneous matter field profiles can
be engineered in such a way that black-brane metrics remain
isotropic and homogeneous. We explore novel Lagrangians
involving square root terms and show how these are related
to massive gravity models and to tensionless limits of branes.
Analytic expressions for the DC conductivity and for the low
frequency scaling of the optical conductivity are derived in
phenomenological models, and the optical conductivity is
studied in detail numerically. The square root Lagrangians
are associated with linear growth in the DC resistivity with
temperature and also lead to minima in the optical conduc-
tivity at finite frequency, suggesting that our models may
capture many features of heavy fermion systems.
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1 Introduction

Holographic modelling of strongly coupled condensed mat-
ter systems has generated a great deal of interest over recent
years; for reviews see [1,2]. It is remarkable that many
features of strongly coupled matter can be captured by
static, isotropic solutions of Einstein–Maxwell-dilaton mod-
els. Nonetheless as one tries to develop more realistic models
it is clear that such holographic geometries cannot adequately
capture many important features of strongly interacting sys-
tems.

The focus of this paper will be on modelling systems with
broken spatial translational symmetry. Realistic condensed
matter systems never have perfect translational symmetry:
the symmetry is explicitly broken both by lattice effects
and by the presence of inhomogeneities. This breaking of
translational invariance is necessary for particles to dissipate
momentum, without which there would be a delta function
in the conductivity at zero frequency.

Diffeomorphism invariance of a field theory implies con-
servation of the stress energy tensor Ti j via the diffeomor-
phism Ward identity. If one considers a field theory which has
a conserved current Ji and a scalar operator O then diffeo-
morphism invariance is violated whenever there is a position
dependent source Ai for the current Ji or a similar source
φ for the scalar operator, and the corresponding operators
acquire expectation values. The diffeomorphism Ward iden-
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tity takes the form

∇ i 〈Ti j 〉 − 〈J i 〉Fi j + 〈O〉∂ jφ = 0, (1.1)

with Fi j = ∂i A j − ∂ j Ai .
From this Ward identity it is evident that one can gener-

ically violate momentum conservation, while preserving
energy density conservation, by introducing background
sources in the field theory which depend on the spatial coor-
dinates. (Note that spontaneous breaking of the translational
symmetry on its own is not enough to dissipate momentum.)
The introduction of such sources is rather natural: a source
for Ai with periodicity in the spatial directions represents an
ionic lattice while other lattice effects can be captured by a
periodic scalar field.

Holographically, spatially dependent sources for the con-
served current can be modelled by a dual gauge field which
is spatially modulated. The backreaction of this field onto the
metric and other fields gives rise to fields which are stationary
but inhomogeneous. In (d+1) bulk dimensions one therefore
has to solve partial differential equations in the radial coor-
dinate and the spatial coordinates which are only tractable
numerically. Numerical analysis has shown that such explicit
breaking of translational invariance indeed removes the delta
function in the conductivity at zero frequency [3,4].

There is considerable interest in the behaviour of the opti-
cal conductivity σ(ω) in holographic models at higher fre-
quencies, in the range T < ω < μ, where μ is the chemical
potential. Over such a range of frequencies certain high tem-
perature superconductors in the normal phase exhibit scaling
law behaviour of the form

σ(ω) = Kωγ−2ei π2 (2−γ ) (1.2)

with γ ≈ 1.35 ≈ 4/3 and K a constant. These systems
are considered to be strongly coupled with the scaling law
potentially a signal of underlying quantum criticality. Rather
surprisingly, the introduction of a lattice into holographic
models not only results in finite DC conductivity but also
apparently induces scaling behaviour in the optical conduc-
tivity for a range of frequencies [3,4] (see also [5,6]):

|σ | = c + Kωγ−2 (1.3)

with (c, K ) constants, γ ≈ 1.35 and the phase of the con-
ductivity approximately constant. Note that σ here refers to
the homogeneous part of the conductivity.

Clearly it would be interesting to understand the origin of
this scaling behaviour better but the scaling emerges from
the numerical analysis and does not make evident which
ingredients are crucial to obtain a scaling regime. For exam-
ple, it is known that one can obtain scaling behaviour for
the AC conductivity without explicitly breaking transla-
tional invariance; scaling with the correct exponent arises in
Einstein–Maxwell-dilaton models, although solutions with
the required value of γ appear to be thermodynamically

unstable [7]. While one expects that the scaling is associ-
ated with an underlying quantum critical state, the scaling
itself emerges at finite temperature and, from the holographic
viewpoint, is therefore not associated not only with the space-
time region immediately adjacent to the horizon but also with
regions further from the horizon. From this perspective it is
not obvious to what extent the scaling should be sensitive to
the details of the far IR or the mechanism of translational
symmetry breaking.

As explored in [8–10], simplified models of translational
symmetry breaking can be obtained by imposing symmetries
on the bulk solutions: one can tune matter field profiles such
that the metrics for the equilibrium configurations are homo-
geneous but anisotropic. The resulting equations of motion
therefore simplify, reducing to ordinary differential equations
in the radial coordinates, although these equations nonethe-
less still need to be solved numerically. In such models one
does not find scaling behaviour of the AC conductivity, which
indicates that this behaviour is non-generic. An interesting
feature of these models is that one finds transitions between
metallic and insulator behaviour as parameters are adjusted;
see also [11–13] for related discussions on metal–insulator
transitions.

In this paper we will explore the simplest possible models
of translational symmetry breaking, namely those for which
the inhomogeneous matter field profiles are chosen such that
the metrics for the equilibrium configurations remain both
homogeneous and isotropic. The equations of motion for the
equilibrium black-brane solutions can therefore be solved
explicitly analytically. The presence of inhomogeneous mat-
ter field profiles nonetheless guarantees that momentum can
be dissipated by fluctuations propagating around these equi-
librium solutions, and therefore one obtains finite DC con-
ductivities.

Massive gravity models [14–17] have been proposed as
translational symmetry breaking models of this type. How-
ever, massive gravity is a bottom up phenomenological theory
and it is not clear that it is well defined at the quantum level.
The holographic dictionary between the background metric
used in massive gravity and the dual field theory is obscure. It
is therefore preferable to work with models whose top-down
origin can be made more manifest.

As discussed above, switching on any operator source with
spatial dependence triggers momentum dissipation. More-
over, any scalar field action with shift symmetry admits solu-
tions for which the scalar field is linear in the spatial coor-
dinates and thus the scalar contributions to the stress energy
tensor are homogeneous. As shown in [18], by choosing an
action with a number of massless scalar fields equal to the
number of spatial directions one can engineer scalar field
profiles such that the bulk stress energy tensor and hence the
resulting black-brane geometry are both homogeneous and
isotropic. See also the earlier work in [19] in which homo-
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geneous and isotropic black branes supported by fluxes were
classified; it would be interesting to find AdS/CFT applica-
tions for these solutions.

In this paper we will explore general actions with shift
symmetry which admit homogeneous and isotropic black-
brane solutions and realise momentum relaxation. In partic-
ular, we will be led to consider square root terms:

L = −a1/2

∑

I

√
(∂φI )2 (1.4)

where the summation is over spatial directions, labelled by I ,
and reality of the action requires that ∂φI is not timelike. Such
Lagrangians clearly have shift symmetry and, as we explain
in Sect. 2, can be used to engineer the required homogeneous
and isotropic geometries.

Square root actions are unconventional but have arisen in
several related contexts. For example, time dependent pro-
files of scalar fields associated with the cuscuton square root
action have been proposed in the context of dark energy
[20,21]. The same action arose in the context of hologra-
phy for Ricci flat backgrounds: the holographic fluid on a
timelike hypersurface outside a Rindler horizon has prop-
erties consistent with a hydrodynamic expansion around a
φ = t background solution of the cuscuton model [22,23].

We will show in Sect. 2 that the action (1.4) is directly
related to one of the mass terms in massive gravity. Four-
dimensional massive gravity consists of the usual Einstein–
Hilbert term together with mass terms for the graviton gμν
of the following form:

L = m2
(
(α1

√
gμνhμν+α2(g

μνhμν −√
hμνhμν)+ · · ·

)

(1.5)

where hμν is a reference metric and hμν = gμρgνσ hρσ . The
terms in ellipses are higher order in the reference metric and
vanish in four dimensions when the reference metric only
has two non-vanishing eigenvalues. The coupling constants
α1 and α2 are independent.

It was shown in [18] that the α2 term of massive gravity is
related to massless scalar fields: the background brane solu-
tions are completely equivalent and certain transport proper-
ties (shear modes) agree. Note that not all transport properties
agree, since the linearised equations are only equivalent for
a subset of fluctuations, those with constrained momenta in
the spatial directions. In Sect. 2 we will show that the α1

term of massive gravity is related to the square root terms
(1.4). Again, the background brane solutions are completely
equivalent and DC conductivities also agree but as in [18] the
models are not completely equivalent; even at the linearised
level the equations of motion for fluctuations with generic
spatial momenta do not agree. The inequivalence between
the models is made manifest when one uses a Stückelburg
formalism for massive gravity.

There has been considerable debate about stability and
ghosts in massive gravity, as well as the scale at which non-
linear effects occur and effective field theory breaks down;
see for example [24–31]. Clearly all such issues are absent
in models based on massless scalar fields but related issues
occur in the square root models (1.4): perturbation theory
around the trivial background φI = 0 is ill-defined. From
the holographic perspective, it is not a priori obvious that the
bulk fields φI are dual to local operators in the conformal
field theory whose dimensions are real and above the unitary
bound and whose norms are positive.

In Sect. 3 we show that the fields φI are dual to marginal
operators in the conformal field theory. The bulk field equa-
tions admit a systematic asymptotic expansion near the con-
formal boundary for any choice of non-normalisable and nor-
malisable modes of these scalar fields, in which all terms in
the asymptotic expansion are determined in terms of this data.
The bulk action can be holographically renormalised in the
standard way. This analysis provides evidence that the action
(1.4) is physically reasonable.

We also show in Sect. 3 that correlation functions of the
operators dual to the square root scalar fields φI of (1.4) can
be computed in any holographic background in which there
are non-vanishing profiles for these fields. These operators
indeed behave as marginal operators and the norms of their
two point functions are positive for a1/2 > 0. However, the
expressions we obtain for the two point functions are not
analytic as the background profiles for the scalar fields are
switched off.

The action (1.4) is reminiscent of the volume term in a
brane action. In Sect. 3 we show that such actions can indeed
arise as tensionless limits of brane actions: the fields φI then
correspond to transverse positions of branes.

In Sects. 4 and 5 we consider phenomenological models
based on massless scalar fields and square root terms:

S =
∫

dd+1x
√−g

(
R + d(d − 1)− 1

4
F2

−
d−1∑

I=1

(
a1/2

√
(∂ψI )2 + a1(∂χI )

2
))

. (1.6)

Such actions admit charged homogeneous isotropic brane
solutions characterised by their temperature, chemical poten-
tial and two additional parameters (α̃, β̃) associated with the
two types of scalar fields (ψI , χI ), respectively.

We show that such models have a finite DC conductivity,
as expected, and analyse the temperature dependence of the
DC conductivity. The parameter α̃, which is non-zero when-
ever there are background profiles for the square root fields,
leads to a linear increase in the resistivity with temperature at
low temperature in a field theory in three spacetime dimen-
sions. In dimensions greater than three the DC conductivity
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increases with temperature for all values of the parameters
(α̃, β̃).

We explore the low frequency behaviour of the optical
conductivity at low temperature, finding that for all values
of our parameters there is a peak at zero frequency, indicat-
ing metallic behaviour. However, we show that our models
do not fit Drude behaviour even at very low temperature:
the effective relaxation constant is complex, indicating that
momentum not only dissipates but oscillates.

Perhaps unsurprisingly, we see no signs of scaling be-
haviour of the optical conductivity at intermediate frequen-
cies but our numerical analysis indicates minima can arise
in the conductivity at intermediate frequencies and low tem-
peratures (in three spacetime dimensions). The behaviour of
the optical conductivity in our models is similar to that of
heavy fermion compounds: these also have a DC conductivity
which increases linearly with temperature at low temperature
and they exhibit a transition to a decoherent phase at low tem-
perature in which the conductivity has a minimum at finite
frequency. In heavy fermions the origin of this minimum is
a hybridisation gap, caused by f-electrons hybridising with
conduction electrons, while the dip in the conductivity in our
model is a strongly coupling phenomenon, associated with
the mixing between scalar and gauge field perturbations.

The plan of this paper is as follows. In Sect. 2 we explore
models for translational symmetry breaking based on shift
invariant scalar field actions and we show how such models
are related to massive gravity and to scaling limits of branes.
In Sect. 3 we analyse square root models, demonstrating that
a well-defined holographic dictionary can be constructed.
In Sect. 4 we build phenomenological models and compute
DC and AC conductivity in these models, showing that fea-
tures reminiscent of heavy fermions are obtained. In Sect. 5
we analyse generalisations of our models. We conclude in
Sect. 6.

2 The simplest models of explicit translational
symmetry breaking

In this section we consider an Einstein–Maxwell model with
cosmological constant, coupled to matter, i.e. an action

S =
∫

dd+1x
√−g

(
R + d(d − 1)− 1

4
F2 + L(M)

)
.

(2.1)

The gravity and gauge field equations of motion can be writ-
ten as

Rμν = −dgμν + 1

2
(FμρF ρ

ν − 1

2(d − 1)
F2gμν)+ T̄μν;

∇μ(Fμν) = 0, (2.2)

where T̄μν is the trace adjusted stress energy tensor for the
matter.

When the matter vanishes, the equations of motion admit
the standard electric AdS-RN black-brane solution:

ds2 = 1

z2

(
− f (z)dt2 + dz2

f (z)
+ dx · dxd−1

)
,

A = μ(1 − zd−2)dt,

(2.3)

f =
(

1 − m0zd + μ2

γ 2 z2(d−1)
)
, (2.4)

where m0 is the mass parameter andμ is the chemical poten-
tial. It is often convenient to choose m0 such that

f (z) = (1 − zd)+ μ2

γ 2 zd(zd−2 − 1)

and the horizon is located at z = 1. The constant γ is given
by

γ 2 = 2(d − 1)

(d − 2)
. (2.5)

We will consider matter actions which are scalar functionals
of the following form:

S(M) =
∫

dd+1x
√−gL(X) (2.6)

where X = (∂φ)2, i.e. the Lagrangian has shift invariance
by construction. The equation of motion for the scalar in the
charged black-brane background is then

∇μ

(
∇μφ δL

δX

)
= 0, (2.7)

which, due to the shift symmetry of X , always admits the
solution

φ = c = ca xa, X = z2c · c, (2.8)

for any choice of functional of X and any choice of spacelike
vector c.1 The stress energy tensor associated with the scalar
matter is given by

Tμν = 1

2

(
−2(∂μφ)(∂νφ)

δL
δX

+ gμνL
)
. (2.9)

Evaluated on the solution above, this stress energy tensor is
by construction homogeneous but not spatially isotropic.

Now consider a matter action which is a multi-scalar func-
tional of the following form:

S =
∫

dd+1x
√−g

d−1∑

I=1

L(X I ) (2.10)

1 One could also choose φ to be linear in time, but such backgrounds
would violate energy conservation and will not be considered here.
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where X I = (∂φI )
2. The equations of motion in the charged

black-brane background are

∇μ

(
∇μφI

δL
δX I

)
= 0, (2.11)

which admit the solutions

φI = cI , X I = z2cI · cI, (2.12)

for any choice of functional and any choices of the spatial
vectors cI = cI a xa . The stress energy tensor is given by

Tμν = 1

2

d−1∑

I=1

(
−2(∂μφI )(∂νφI )

δL(X I )

δX I
+ gμνL(X I )

)
.

(2.13)

A special case in which spatial isotropy is restored is the
following: choose all (d − 1) scalar Lagrangians to take the
same functional form. Then by choosing cI = cxa , i.e. cI a =
c we obtain a stress energy tensor which restores rotational
symmetry in the spatial directions:

Tμν = 1

2

(
−

d−1∑

a=1

2c2δab
δL(X)
δX

+ (d − 1)gμνL(X)
)
.

(2.14)

Here we use the fact that X I evaluated on the solution is (cz)2

for all values of I . Therefore for each I , both L(X I ) and its
derivative take the same values, which we denote without the
subscripts.

Another possibility to restore rotational symmetry in the
spatial directions is the following:

S =
∫

dd+1x
√−gL

(
d−1∑

I=1

X I

)
(2.15)

where X I = (∂φI )
2. The equations of motion in the charged

black-brane background remain

∇μ

(
∇μφI

δL
δX I

)
= 0, (2.16)

which always admit the solutions

φI = cI , X I = z2cI · cI, (2.17)

for any choice of functional and any choices of the spatial
vectors cI = cI a xa . The stress energy tensor is given by

Tμν = 1

2

(
−2

∑

I

(∂μφI )(∂νφI )
δL(X)
δX

+ gμνL(X)
)
,

(2.18)

where we have defined

X =
∑

I

X I . (2.19)

The special case in which spatial isotropy is restored is the
following: choose cI = cxa , i.e. cI a = c and X = (d −
1)(cz)2. The stress energy tensor is

Tμν = 1

2

(
−

d−1∑

a=1

2c2δab
δL(X)
δX

+ gμνL(X)
)
, (2.20)

which is very similar to the previous form (2.14).
In summary, given any Lagrangian functional built out of

(d − 1) scalar fields with shift symmetry, one can construct
solutions for which the stress energy tensor preserves spatial
isotropy and homogeneity. The backreaction on the black-
brane metric therefore preserves the usual black-brane form
for the metric, with a different blackening factor. The break-
ing of translational invariance by the scalar fields ensures
that the momenta of fluctuations can be dissipated. In the
remainder of this section we will consider the physical inter-
pretations of various types of functionals.

2.1 Polynomial Lagrangians

Consider first the case of (2.10). If the Lagrangian is of poly-
nomial form, i.e. L(X) = Xm , then the stress tensor takes the
particularly simple form evaluated on the scalar field profiles:

Tμν = 1

2
Xm (−2mgab + (d − 1)gμν

)
(2.21)

where gab denotes the metric in the spatial directions. The
trace adjusted stress energy tensor T̄μν is defined as

T̄μν = Tμν − 1

(d − 1)
T gμν (2.22)

and is given by

T̄μν = (cz)2m (−mgab + (m − 1)gμν
)
. (2.23)

If the Lagrangian can be expressed as a sum of such terms,
namely L(X) = −∑

m am Xm , the corresponding trace
adjusted stress energy tensor is

T̄μν =
∑

m

am(cm z)2m (mgab − (m − 1)gμν
)
. (2.24)

Note that this class includes the special case of m = 1, i.e.
massless scalar fields.

Scalar field profiles for which the stress energy tensor
preserves rotational symmetry in the spatial directions by
construction give rise to backreacted solutions which much
satisfy the homogeneous black brane metric ansatz

ds2 = 1

z2

(
−F(z)dt2 + dz2

F(z)
+ dx · dxd−1

)
,

A = μ(1 − zd−2)dt.

(2.25)

In the limit that the matter fields vanish F(z) coincides with
the f (z) given in the previous section (2.3). Using the Ricci
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tensor for the metric (2.25),

Rtt =
(

−dF + 1

2
(d + 1)zF ′ − 1

2
z2 F ′′

)
gtt ;

Rzz =
(

−dF + 1

2
(d + 1)zF ′ − 1

2
z2 F ′′

)
gzz; (2.26)

Rab = (−dF + zF ′) gab,

we note that such an ansatz is required given the form of the
matter stress energy tensor.

The solution for the blackening function F can be written
as

F(z) = f (z)+
∑

m

am

2m − d
(cm z)2m, (2.27)

with f (z) given previously in (2.25). This expression
assumes that d �= 2m; in the latter case the solution for
F involves logarithms, i.e. we obtain a term

am(cm z)d ln(z), (2.28)

which gives rise to non-analytic behaviour.
Solutions to (2.15) in the case that L is polynomial, i.e.

L = −bm(
∑
λ Xλ)m , are very similar. Evaluated on the

scalar field profiles one obtains

Tμν = −bm

2
Xm

(
− 2m

(d − 1)
gab + gμν

)
, (2.29)

with X = (d − 1)c2
m z2. Therefore the trace adjusted stress

energy tensor is

T̄μν = −bm

(
(d − 1)c2

m z2)
)m 1

(d − 1)

× (−mgab + (m − 1)gμν
)
. (2.30)

This coincides with the expression above in the case of m = 1
(massless scalar fields) as the Lagrangians are the same. The
corresponding solutions for the blackening functions are

F(z) = f (z)+ bm

2m − d
(d − 1)m−1(cm z)2m, (2.31)

with f (z) given previously in (2.25). Again the case d = 2m
will involve logarithmic terms.

2.2 Relation to massive gravity

In this section we will discuss the relation between massive
gravity and our scalar field models. Let us consider the fol-
lowing Lagrangian:

L = −a1/2

∑

I

√
(∂φI )2 − a1

∑

I

(∂χI )
2. (2.32)

The trace adjusted stress energy tensor is

T̄μν = 1

2(d − 1)
a1/2

∑

I

√
(∂φI )2gμν

+1

2
a1/2

∑

I

1√
(∂φI )2

∂μφI ∂νφI

+a1

∑

I

∂μχI ∂νχI . (2.33)

The scalar field profiles

φI = c1/2x I ; χI = c1x I (2.34)

give rise to a trace adjusted stress energy tensor which is

T̄μν = 1

2
a1/2(c1/2z)

(
gab + gμν

)+ a1(c1z)2gab. (2.35)

The backreacted blackening function is

F(z) = f (z)− 1

(d − 1)
a1/2c1/2z − 1

(d − 2)
a1(c1z)2,

(2.36)

which in d = 3 has precisely the same form as the massive
gravity solution found in [14].

One can also consider a slightly different Lagrangian

L = −a1/2

⎛

⎝
√∑

I

(∂φI )2

⎞

⎠− a1

(
∑

I

(∂χI )
2

)
, (2.37)

for which the trace adjusted stress energy tensor is

T̄μν = 1

2(d − 1)
a1/2

√∑

I

(∂φI )2gμν

+ 1

2
a1/2

1√∑
I (∂φI )2

∑

I

∂μφI ∂νφI

+ a1

∑

I

∂μχI ∂νχI . (2.38)

Evaluated on the scalar field profiles

φI = c1/2x I ; χI = c1x I (2.39)

the trace adjusted stress energy tensor becomes

T̄μν = 1

2
√

d − 1
a1/2(c1/2z)

(
gab + gμν

)+ a1(c1z)2gab.

(2.40)

The corresponding backreacted blackening function is

F(z) = f (z)− 1

(d − 1)
3
2

a1/2c1/2z − 1

(d − 2)
a1(c1z)2,

(2.41)

which in d = 3 again has precisely the same form as the
massive gravity solution found in [14] and further analysed
in [15,32].
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To understand the relation with massive gravity in four
bulk dimensions, let us first recall that the action for mas-
sive gravity consists of the Einstein–Hilbert terms plus the
following mass terms:

L = m2
∑

i

αiUi (g, h), (2.42)

where in terms of the matrix Kμ
ν ≡ √

gμρhρv

U1 = [K] ;
U2 = [K]2 −

[
K2
]
;

U3 = [K]3 − 3 [K]
[
K2
]

+ 2
[
K3
]
;

U4 = [K]4−6
[
K2
]

[K]2+8
[
K3
]

[K]−3
[
K2
]2−6

[
K4
]
;

(2.43)

The notation [Y ] denotes the matrix trace. Here hμν is a ref-
erence metric, which can be expressed via a coordinate trans-
formation in terms of scalar (Stückelburg) fieldsπa whenever
it is flat, i.e.

hμν = ηab∂μπ
a∂νπ

b. (2.44)

The unitary gauge is then defined as πa = xμδa
μ. The restric-

tion to a degenerate reference metric in which only the spatial
components are non-vanishing was obtained in [14] using
only two non-vanishing scalar fields, π1 and π2, which take
an analogous form to those given above, namely

π1 = x1; π2 = x2. (2.45)

From the first two terms in (2.43) one obtains a trace adjusted
stress energy tensor

T̄μν = 1

2
m2α1

(
Kμν + 1

2
[K] gμν

)

− m2α2

(
K2
μν − [K] Kμν

)
. (2.46)

The final two terms in (2.43) give rise to a vanishing stress
energy tensor in four dimensions, as expected, as the spa-
tial gauge only involves two non-vanishing eigenvalues for
the matrix. Higher order terms in [K] would contribute in
dimensions greater than four but massive gravity in dimen-
sions higher than four has not been explored in detail in earlier
literature.

Evaluated on the particular background given by the two
scalar fields

T̄μν = 1

2
m2α1z(gab + gμν)+ m2α2z2gab, (2.47)

where we assume that the metric ansatz g11 = g22 = z−2

remains consistent, which is then justified a posteriori. The
expressions (2.47) and (2.35) clearly match under the iden-
tifications

m2α1 = a1/2c1/2; m2α2 = a1c2
1, (2.48)

and (2.47) and (2.35) similarly can be matched.
While the black-brane solutions in our models match those

of massive gravity, it is clear that fluctuations and hence trans-
port properties of these solutions will differ between massive
gravity and the scalar field models. For the terms quadratic
in K, corresponding to the massless scalar fields in our mod-
els, this issue was discussed in [18]. Focussing on the terms
linear in K, note that

[K] =
√
(∂π1)2 + (∂π2)2, (2.49)

and therefore the second term in (2.46) seems to resemble the
first term in (2.38). However, the scalar fields in the massive
gravity model are assumed to depend only on the spatial
components as given in (2.45) whereas the scalar fields in
(2.38) are completely unrestricted. The first term in (2.46)
can be written explicitly in terms of

Kμν = gμρ

√∑
(∂ρπ)(∂νπ), (2.50)

which is not of the same form as the second term in (2.38)
unless we restrict the scalar fields to the form (2.45). In the
background brane solutions the scalar fields indeed neces-
sarily take the form (2.45) but this property cannot generi-
cally hold for fluctuations around the equilibrium solution.
We will show in Sect. 4 why the conductivities nonetheless
match those of massive gravity.

Another conceptual difference between our model and
massive gravity is the following. In our models the scalar
fields φI and χI are treated as independent fields but in mas-
sive gravity they are identified as the same field. As we dis-
cuss in Sect. 5, it is, however, straightforward to restrict to
the case in which these fields are identified.

2.3 Relation to branes

From the perspective of top-down models, the appearance of
square root terms is unconventional. In this section we will
show that similar terms can arise from tensionless limits of
branes. Consider the following action:

S = −b1/2

∫
dd+1x

√√√√− det

(
gμν +

d−1∑

I=1

∂μφI ∂νφI

)

≡ −b1/2

∫
dd+1x

√− det M . (2.51)

This action can be interpreted in terms of a brane with a
(d +1) dimensional world volume, which is probing (d −1)
flat transverse directions. To show this, recall that the DBI
term in the action for a p-brane is

SDBI = −T
∫

d p+1x
√

− det(gM N ∂μX M∂νX N + Fμν),

(2.52)
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where T is the brane tension, Fμν is the worldvolume gauge
field strength; X M are the brane positions and gM N is the
metric of the spacetime in which the brane propagates. Fixing
static gauge for the brane corresponds to choosing Xμ ≡ xμ

and the gauge fixed action is

SDBI =
−T

∫
d p+1x

√− det(gμν + gm(μ∂ν)Xm + gmn∂μXm∂νXn + Fμν),

(2.53)

where the transverse coordinates are denoted as Xn . When-
ever the background metric is diagonal gmν = 0. If there
are no Wess–Zumino terms sourcing the gauge field, then
the gauge field strength may also always be set to zero. This
results in a brane probing the transverse directions:

SDBI = −T
∫

d p+1x
√− det(gμν + gmn∂μXm∂νXn),

(2.54)

and clearly when gmn = δmn the action reduces to (2.51),
with b1/2 being identified as the brane tension.

The trace adjusted stress energy tensor following from
(2.51) is

T̄μν = −b1/2
√− det M

2
√−g

(
Mμν − 1

(d − 1)
Mρσ Mρσ gμν

)
.

(2.55)

Again the specific solutionφI = cx I preserves spatial homo-
geneity and isotropy with the trace adjusted stress energy
tensor being

T̄μν = −1

2
b1/2(1 + c2z2)

d−1
2

×
(

2

(1 − d)
gμν − c2z2gμν + c2δab

)
(2.56)

and the blackening factor taking the form

F(z) = f (z)+ b1/2zd
∫

dz

(d − 1)zd+1 (1 + c2z2)
d−1

2 .

(2.57)

Expanding the second term for small z near the AdS boundary
gives

− b1/2

(
1

d(d − 1)
+ c2z2

2(d − 2)
+ · · ·

)
, (2.58)

i.e. there is an effective shift of the AdS radius as well as
subleading terms in the expansion. When d is odd the integral
gives an analytic expression; for example, for d = 3 one
obtains

F(z) = f (z)− b1/2

(
1

6
+ 1

2
c2z2

)
(2.59)

but d even generates logarithmic terms and therefore F(z) is
not analytic, e.g. for d = 4

F(z) = f (z)−b1/2

(
1

8
+ 3

4
c2z2− 3

2
c4z4ln(z)− 1

4
c6z6.

)
.

(2.60)

Working perturbatively around AdS, this brane type Lagran-
gian leads to a shift in the cosmological constant along with
a spectrum of (d − 1) massless scalar fields, dual to (d − 1)
marginal couplings in the field theory. It therefore reproduces
analogous behaviour to the massless scalar fields discussed
in the previous sections.

Another brane model can be obtained as follows. Consider
(d − 1) branes of equal tension, each probing one transverse
flat direction only:

S = −b1/2

d−1∑

I=1

∫
dd+1x

√− det(gμν + ∂μφI ∂νφI ). (2.61)

Using Sylvester’s determinant theorem this action can be
rewritten as

S = −b1/2

d−1∑

I=1

∫
dd+1x

√− det g
√

1 + ∂μφI ∂μφI . (2.62)

The trace adjusted stress tensor is

T̄μν = −b1/2
∑

I

√− det MI

2
√−g

×
(

MIμν − 1

(d − 1)
Mρσ

I MIρσ gμν

)
(2.63)

where now

MIμν = gμν + ∂μφI ∂νφI . (2.64)

The solution with φI = cx I is homogeneous and isotropic
with the blackening factor being

F(z) = f (z)+b1/2zd
∫

dz

zd+1 (1+c2z2)
1
2

×
(

1+ 1

2
c2z2(d − 2)

)
, (2.65)

which coincides with (2.57) in d = 2.
The action (2.62) admits a scaling limit in which the brane

tension is taken to zero b1/2 → 0 with ψI = b1/2φI remain-
ing finite. This limit results in

S ≈ −
d−1∑

I=1

∫
dd+1x

√−g
√
(∂ψI )2, (2.66)

which is of the square root form.
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3 Square root models

While one can obtain solutions for any polynomial func-
tional, one would usually restrict to the case of m = 1, i.e.
massless scalar fields. In AdS/CFT the operators dual to these
scalar fields are marginal scalar operators and the bulk scalar
profiles are therefore immediately interpretable in the dual
theory as linear profiles for the associated couplings.

For integer m > 1 the action is higher derivative and for
non-integer m the action would be considered non-local. In
this section we will argue that both cases may in some limits
nonetheless be relevant in bottom up models.

Consider first the case of integer m > 1. In the previous
section, we assumed that the scalar fields appearing in poly-
nomials of different order were independent. However, in the
solutions of interest, the scalar field profiles are the same for
each order polynomial. Therefore there is no reason why we
should not identify the scalar fields, e.g. we could consider

L = −a1

∑

I

(∂φI )
2 − a2

∑

I

((∂φI )
2)2 (3.1)

or

L = −a1

∑

I

(∂φI )
2 − a2

(
∑

I

(∂φI )
2

)2

. (3.2)

The fourth order terms can be viewed as higher derivative
corrections to the leading order action; a2 should therefore
be considered as parametrically small compared to a1 (which
can always be rescaled to the canonical value by rescaling
the fields). However, it makes sense to consider how a small
a2 would affect transport and thermodynamic properties of
charged black branes, although we will not pursue this further
here.

Now let us turn to non-integer m, focussing on the case of
m = 1/2, i.e. a Lagrangian of the form

L = −
√
(∂φ)2. (3.3)

Note that reality of the Lagrangian requires that (∂φ) is
not timelike. This is certainly an unconventional Lagrangian
in holography, although similar actions have arisen in sev-
eral contexts. For example, time dependent profiles of scalar
fields associated with the cuscuton action

L =
√

−(∂φ)2 (3.4)

have been proposed in the context of dark energy [20,21].
The same action arose in the context of holography for Ricci
flat backgrounds: the holographic fluid on a timelike hyper-
surface outside a Rindler horizon has properties consistent
with a hydrodynamic expansion around a φ = t background
solution of the cuscuton model [22,23].

In the remainder of this section we will explore the
behaviour of the (3.3) model. It is subtle to work at linear

order around an AdS background as the corresponding scalar
field equations remain non-linear in this limit: we obtain a
field equation of the form

∇̄μ

(
1√
(∂φ)2

∇̄μφ
)

= 0, (3.5)

where ∇̄μ is the AdS connection and here φ is implicitly
treated perturbatively, i.e. the amplitude of the scalar field is
small.

When one works perturbatively around the AdS back-
ground, we need to take into account the fact that the scalar
field perturbation is of the same order as the backreaction
of the metric. (Note that in the exact, non-linear, black-brane
solutions the backreaction on the metric is indeed of the same
order as the scalar field itself.) It is convenient to express the
coupled metric and scalar field equations using

∇μvμ = 0;
T̄μν = −1

2

√
X(gμν + 2vμvν),

(3.6)

where X = √
(∂φ)2 while the velocity field vμ is conserved

and satisfies vμvμ = 1. In terms of the scalar field one can
express the velocity field as the gradient flow

vμ = ∇μφ√
X
. (3.7)

Working perturbatively around the AdS background requires
that φ ∼ δ with δ � 1. The metric perturbation is then of the
same order as the scalar field and the non-linearity is manifest
in the fact that the velocity field is of order one.

We can now proceed to solve these equations as follows.
Working perturbatively in the amplitude δ let

vμ = v
μ
0 + v

μ
1 δ + O(δ2) gμν = ḡμν + h1μνδ + O(δ2),

(3.8)

where ḡμν is the AdS metric and v0 is any conserved globally
spacelike vector in this metric, which can then be normalised
such that vμ0 v0μ = 1. Solving the conservation equation up
to order δ gives

v1μ = −1

2
v0μh1 (3.9)

with h1 = ḡμνh1μν . Substituting into the trace adjusted stress
energy tensor we obtain at order δ

T̄1μν = −3h1μν − 1

2

√
X(ḡμν + 2v0μv0ν), (3.10)

with
√

X a function of the spacetime coordinates. There-
fore the metric perturbation h1μν is determined by the Ein-
stein equation in terms of

√
X and the conserved vector field

v0μ. Using the linearised Ricci tensor in de Donder gauge
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(∇̄μh1μν = 0) gives

1

2
�̄h1μν + 1

2
∇̄μ∇̄νh1 + h1ḡμν = 1

2

√
X(ḡμν + 2v0μv0ν).

(3.11)

Tracing this equation with ḡμν results in

�̄h1 + (d + 1)h1 = (d + 3)
√

X . (3.12)

Therefore, the leading order defining data is a scalar field sat-
isfying (3.5), which is a non-linear equation; we will discuss
its solution in Sect. 3.3. Note that an asymptotic expansion
of the field equations near the conformal boundary exists as
we will discuss in the next Sect. 3.1.

As in the cuscuton and holographic fluid models, one can
find simple solutions of the equations of motion with non-
vanishing scalar field profiles, and the equations of motion are
linear when expanded around such backgrounds. To under-
stand this, let us consider the action

L = −a1/2

∑

I

√
(∂φI )2 (3.13)

for which the coupled gravity/scalar field system admits the
homogeneous and isotropic solution

ds2 = 1

z2

(
−(1 − a1/2c1/2

(d − 1)
z)dt2

+ dz2

(1 − a1/2c1/2
(d−1) z)

+ dx · dxd−1

)
(3.14)

with φI = c1/2δI a xa . This is the μ → 0, m0 → 0 limit
of the solution given in the previous section. As discussed
above, the backreaction on the metric is linear in the scalar
field amplitude and therefore cannot be neglected even for
small c1/2.

Note that when a1/2 > 0 the geometry has a horizon, with
the entropy and temperature being

S = 1

4Gd+1
Vd−1

(
a1/2c1/2

(d − 1)

)d−1

; T = a1/2c1/2

4π(d − 1)
,

(3.15)

where Gd+1 is the Newton constant. Analogous behaviour
was noted in the massless scalar field model of [18]. If a1/2 <

0 there is a curvature singularity as z → ∞; this can most
easily be seen from the expression for the Ricci scalar

R =
(
−d(d + 1)F − zz2 F ′′ + 2dzF ′)

= (−d(d + 1)+ da1/2c1/2z
)
. (3.16)

The singularity is at infinite proper distance and would pre-
sumably therefore not affect the computation of correlation
functions. It is a good singularity, in the sense of [33], since
it is shielded in the black-brane solutions of the previous
section for which m0 > 0. We will discuss the linearised
equations of motion in such backgrounds in section (3.3).

3.1 Holographic renormalisation for square root models

In this section we explore asymptotically locally AdS solu-
tions of the action

S = 1

16πGd+1

∫
dd+1x

√−g

(
R+d(d − 1)−a1/2

d−1∑

I

√
(∂φI )2

)
.

(3.17)

Despite the subtleties discussed in the previous section, one
can solve the field equations iteratively near the conformal
boundary and systematically set up holographic renormali-
sation in the standard way [34–36].

The onshell action, including the Gibbons–Hawking
boundary term, is

Sbare = 1

16πGd+1

∫
dd+1x

√−g

(
−2d + a1/2

d−1∑

I

√
(∂φI )2

)

− 1

8πGd+1

∫
ddx

√−γ K . (3.18)

One can rewrite the bulk scalar field term as

1

16πGd+1

∫
dd+1x

√−g

(
a1/2

d−1∑

I

(∂φI )
2

√
(∂φI )2

)

= 1

16πGd+1

∫
dd+1x

√−ga1/2

×
d−1∑

I

(
∇μ

(
φI ∂

μφI√
(∂φI )2

)
− φI ∇μ

(
∂μφI√
(∂φI )2

))

= 1

16πGd+1

∫
d�μa1/2

d−1∑

I

(
φI ∂

μφI√
(∂φI )2

)
, (3.19)

where we use the scalar field equation in the final equality.
In the neighbourhood of the conformal boundary the met-

ric can be expanded as

ds2 = dρ2

4ρ2 + 1

ρ
gi j dxi dx j (3.20)

where

gi j = g(0)i j (x)+ ρ1/2g(1)i j (x)+ ρg(2)i j (x)+ · · ·
+ρ d

2
(
g(d)i j (x)+ ln(ρ)h(d)i j

)+ · · · . (3.21)

We will show that there exist scalar field solutions such that

φI = φ(0)I (x)+ ρφ(2)I (x)+ · · ·
+ρ (d+1)

2 (φ(d+1)/2I (x)+ ln(ρ)φ̃(d+1)/2I (x))+ · · ·
(3.22)

and the metric expansion takes the above form.
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In the Fefferman–Graham coordinate system the Ricci
tensor can be expressed as

Rρρ = 1

4
Tr(g−1g′)2 − 1

2
Tr(g−1g′′)− d

4ρ2 ;

Rρ j = 1

2
∇ i g′

i j − 1

2
∇ j (Tr(g−1g′)); (3.23)

Ri j = Ri j + (d − 2)g′
i j + Tr(g−1g′)gi j

−ρ(2g′′ − 2g′g−1g′ + Tr(g−1g′)g′)i j − d
gi j

ρ
,

where R is the curvature of gi j , for which the associated
connection is ∇i .

The scalar field equations can be expressed in this coor-
dinate system as

ρ1+ d
2

1√−g
∂ρ

(
4
√−g

ρ
d−1

2

∂ρφI

YI

)
+ ρ

1
2 ∇i

(
∂ iφI

YI

)
= 0,

(3.24)

where implicitly ∂ iφI = gi j∂ jφI and

YI =
√

g jk∂ jφI ∂kφI + 4ρ(∂ρφI )2. (3.25)

The trace adjusted stress energy tensor can be written as

T̄ρρ = − d

4ρ2 + a1/2

2ρ3/2

∑

I

1

YI

(
ρ∂ρφI ∂ρφI

+ 1

4(d − 1)
(gi j∂iφI ∂ jφI )+ ρ

(d − 1)
(∂ρφI )

2
)

;

T̄ρi = a1/2

2ρ1/2

∑

I

1

YI

(
∂iφI ∂ρφI

) ; (3.26)

T̄i j = −dgi j

ρ
+ a1/2

2ρ1/2

∑

I

1

YI

(
∂iφI ∂ jφI

+ 1

(d − 1)
(gkl∂kφI ∂lφI + 4ρ(∂ρφI )

2)gi j

)
.

Tracing the (i j) Einstein equations with gi j gives

R + 2(d − 1)Tr(g−1g′)− 2ρTr(g−1g′′)
+2ρTr(g−1g′)2 − ρ(Tr(g−1g′))2

= 1

2ρ1/2 a1/2

∑

I

(
∂ iφ∂iφ

YI
+ d

(d − 1)
YI

)
. (3.27)

The latter equation is not independent but is useful in the
analysis below.

The leading order term in the scalar field equation is at
order ρ1/2 and enforces

φ(2)I =
√

gkl
(0)∂kφ(0)I ∂lφ(0)I

2(d − 1)
∇(0)i

⎛

⎝ ∂ iφ(0)I√
gkl
(0)∂kφ(0)I ∂lφ(0)I

⎞

⎠ ,

(3.28)

where all indices are raised using g(0)i j and ∇(0)i j is the
connection of g(0)i j . This expression may be written more
compactly using the shorthand notation of Y(0)I for the square
root term as

φ(2)I = Y(0)I
2(d − 1)

∇(0)i
(
∂ iφ(0)I

Y(0)I

)
. (3.29)

Using the radial terms in (3.24) one can see that the normal-
isable mode of the scalar field occurs at order (d + 1)/2 in
the expansion. The coefficient of this term, φ(d+1)/2I (x), is
undetermined by the asymptotic analysis. In general one also
needs a logarithmic term at the same order to satisfy the field
equation; this term φ̃(d+1)/2I (x) is determined in terms of
φ(0)I (x), as we will see below.

From the leading ρ−3/2 component of the (ρρ) Einstein
equation one obtains

Tr(g−1
(0)g(1)) = a1/2

∑

I

1

(d − 1)
Y(0)I . (3.30)

From the leading ρ−1/2 component of the (i j)Einstein equa-
tions one finds

g(1)i j = a1/2

∑

I

1

(d − 1)Y(0)I
∂iφ(0)I ∂ jφ(0)I (3.31)

which is manifestly consistent with the trace. This equation
is also consistent with the exact solution (3.14) expressed as
a Fefferman–Graham expansion.

The expansion up to this order is sufficient to determine
the counterterms

Sct = − 1

16πGd+1

∫
dd x

√−γ

×
(

2(1 − d)+ a1/2
1

(d − 1)2

d−1∑

I

√
(∂φI )2 + · · ·

)
,

(3.32)

where the first term is the standard volume term derived in
[34,37]. Note that the second counterterm can also be written
as

1

16πGd+1

∫
dd x

√−γα1/2
1

(d − 1)2

d−1∑

I

φI ∇i

(
∂ iφI√
(∂φI )2

)
,

(3.33)

using partial integration.
Let us now restrict to d = 2 and calculate the conformal

anomaly and the renormalised mass. We need only consider
the following additional terms in the metric:

gi j = g(0)i j + ρ1/2g(1)i j + ρ(g(2)i j + ln(ρ)h(2)i j )+ · · · .
(3.34)
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The (ρρ) Einstein equation at order 1/ρ fixes Tr(g−1
(0)h(2)) =

0. From (3.27) we obtain

R+2(d − 1)Tr(g−1
(0)g2)−(d − 1)Tr(g−1

(0)g1)
2− 1

4
(Tr(g−1

(0)g1))
2

= −a1/2

∑

I

(2d − 1)

4(d − 1)Y(0)
g jk
(1)∂ jφ(0)I ∂kφ(0)I , (3.35)

where the indices of gi j
(1) have been raised with g−1

(0) . This
equation can be solved to give

Tr(g−1
(0)g(2)) = − R

2(d − 1)
+ a2

1/2

8(d − 1)3

(
∑

I

Y(0)I

)2

+ a2
1/2(2d − 3)

8(d − 1)3
∑

I,J

Xi j
(0)I X(0)J i j

Y(0)I Y(0)J
(3.36)

with

X(0)I i j = ∂iφ(0)I ∂ jφ(0)I . (3.37)

The term involving the Ricci scalar agrees with [36]. 2 In d =
2 there is only one species of scalar field and the expression
simplifies to give

Tr(g−1
(0)g(2)) = −R

2
+ 1

4
a2

1/2∂
iφ(0)∂iφ(0). (3.38)

The divergence of g(2) is determined using the order one
terms in the (ρi) Einstein equations

∇ i
(0)g(2)i j = 3a1/2

2Y(0)
∂ jφ(0)φ(3) + · · · . (3.39)

In d = 2 the rest of g(2)i j is not fixed, being related to the
expectation value of the energy momentum tensor. The loga-
rithmic term h(2)i j vanishes; one can show this using the (i j)
equations at order one. Solving the scalar field equation at
order ρ gives φ̃(3) = 0, i.e. the logarithmic term in the scalar
field expansion vanishes.

Using these expressions one can show that there is a log-
arithmic contribution to the onshell action in d = 2

Sdiv = 1

16πG3

∫
d2x

√−g(0) ln ε
(R(g(0))

)
, (3.40)

which can be removed by the logarithmic counterterm

Sct = − 1

16πG3

∫
d2x

√−γ ln ε (R(γ )) . (3.41)

Note that the metric variation of this term is zero, in agree-
ment with the fact that h(2)i j = 0.

The total action in d = 2 is therefore the sum of (3.18),
(3.32) and (3.41):

Sren = Sbare + Sct + Sfinite, (3.42)

2 Note that their curvature conventions differ from ours.

where the last term denotes finite counterterms, i.e. scheme
dependent terms. The most relevant such term, which we will
discuss further below is

Sfinite = γs

16πG3

∫
d2x

√−γ (∂φ)2, (3.43)

where γs is an arbitrary c-number.
Varying the renormalised onshell action with respect to

g(0)i j gives the renormalised stress energy tensor, defined as

〈Ti j 〉 = 2√
det(g(0))

δSEren

δgi j
(0)

= Limε→0

(
1

εd/2−1 Ti j [γ ]
)
.

(3.44)

Here we have analytically continued to Euclidean signature,
under which i S → −SE with SE the Euclidean action. From
the terms in the action involving only the metric and extrinsic
curvature we obtain

〈Ti j 〉 = 1

8πG3

(
g(2)i j − Tr(g−1

(0)g(2))g(0)i j

+1

2
Tr(g−1

(0)g(1))
2g(0)i j − 1

2
Tr(g−1

(0)g(1))g(1)i j

)
,

(3.45)

in agreement with [36] when g(1)i j = 0, and the terms involv-
ing the scalar field give

〈Ti j 〉 = a2
1/2

8πG3

(
1

4
∂kφ(0)∂

kφ(0)g(0)i j − 1

4
∂iφ(0)∂ jφ(0)

)
.

(3.46)

Combining these gives

〈Ti j 〉 = 1

8πG3

(
g(2)i j + R

2
g(0)i j

+ a2
1/2

(
−3

4
∂iφ(0)∂ jφ(0) + 1

2
(∂φ(0))

2g(0)i j

))
.

(3.47)

Note that the additional finite counterterm (3.43) contributes
an additional traceless scheme dependent term

〈T s
i j 〉 = γs

8πG3

(
−∂iφ(0)∂ jφ(0) + 1

2
(∂φ(0))

2g(0)i j

)
. (3.48)

The trace gives

〈T i
i 〉 = R

16πG3
, (3.49)

i.e. the scalar field drops out of the conformal anomaly, as
does the scheme dependent term.

The operators dual to the scalar fields similarly have
expectation values defined as

〈OI 〉 = 1√
detg(0)

δSren

δφ(0)I
= Limε→0

(
1

ε
√
γ

δSren

δφI

)
. (3.50)
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Again this is defined in Euclidean signature. Computing this
quantity in d = 2 gives

〈O〉 = − 3a1/2

16πG3

φ(3)

Y(0)
+ 〈Os〉. (3.51)

As anticipated, we note that the expectation value is the nor-
malisable mode, divided by Y(0). The total scaling weight
is therefore two: the dual operator is marginal, despite the
fact that the normalisable modes occur at order three in
the Fefferman–Graham expansion. The term 〈Os〉 denotes
scheme dependent contributions; for the specific countert-
erm (3.43) we obtain

〈Os〉 = γs

8πG3
�φ(0), (3.52)

where � is the d’Alembertian in the metric g(0).
Using (3.39) one can obtain the diffeomorphism Ward

identity

∇ i
(0)〈Ti j 〉 = ∂ jφ(0)〈O〉. (3.53)

Switching on a source for φ(0) which depends on the spatial
coordinates but not on the time coordinate allows momentum
to be dissipated while preserving energy conservation.

For d > 2 we would need to work out the series expan-
sion to higher order and compute additional counterterms.
However, the general structure will be analogous:

〈Ti j 〉 = d

16πGd+1
g(d)i j + · · · ,

〈OI 〉 = − d + 1

16πGd+1

a1/2φ(d+1)I

Y(0)I
+ · · · ,

(3.54)

with the ellipsis denoting terms local in g(0)i j and φ(0)I . The
leading term in the stress tensor involving the normalisable
term in the metric expansion is as in [36].

3.2 Thermodynamics of brane solutions

The analysis above allows us to evaluate the onshell action
on black brane solutions (3.14) in d = 2. In three bulk
dimensions the metric (3.14) can be rewritten in Fefferman–
Graham coordinates as

ds2 = dρ2

4ρ2 + 1

ρ

(
1+ αρ

1/2

4

)4

×
(

−dt2

(
1− αρ1/2

(1+ αρ1/2

4 )2

)
+dx2

)
, (3.55)

where we introduce the shorthand notation α = a1/2c1/2.
The general solution with parameter m0 �= 0 is

ds2 = 1

z2

(
−(1−αz−m0z2)dt2+ dz2

(1−αz−m0z2)
+ dx2

)

(3.56)

and it can be rewritten in Fefferman–Graham coordinates
using the transformation

ρ
1
2 = z

1 − 1
2αz +√

1 − αz − m0z2
. (3.57)

The horizons of the general solution are located at

z± = − α

2m0
± 1

2m0

√
α2 + 4m0. (3.58)

We noted previously that when m0 = 0 a horizon exists
only for α > 0. When we allow for m0 �= 0, horizons exist
provided that

m0 ≥ −α
2

4
; α ≥ 0. (3.59)

When m0 = −α2

4 the black brane is extremal. The entropy
and temperature of the black brane are given by

S = V1

4G3z+
T = m0(z+ − z−)

4π
. (3.60)

We can compute the free energy from the renormalised
onshell action. We need to distinguish between the case in
which the metric has a horizon and the case in which it has a
singularity as z → ∞.

No horizon: In the latter case there are no contributions to the
onshell action from the z → ∞ limit of the volume integral
and the renormalised Euclidean onshell action is

Sonshell
E = − βT V1

16πG3

(
m0 + α2

4
+ γsc2

1

)
, (3.61)

where we have included the finite counterterm (3.43). Here
βT is the (arbitrary) period of the imaginary time direction.

Computed on (3.14) the expectation value of the scalar
operator is zero, which implies that the stress energy tensor
is conserved. Using (3.55) we can read off

g(2)t t = 1

8
α2 + 1

2
m0; g(2)xx = 3

8
α2 + 1

2
m0, (3.62)

and therefore the conserved mass is

M =
∫

dx〈Ttt 〉 = V1

16πG3

(
(−3

4
α2 − γsc2

1/2 + m0

)
.

(3.63)

The thermodynamic relation

− Sonshell
E = βT F = βT M, (3.64)

where F is the free energy, is satisfied provided that the coef-
ficient of the scheme dependent term is

γs = −1

2
a2

1/2. (3.65)

Therefore the scheme dependence is fixed by imposing the
thermodynamic relation. Note that these solutions are not
however physical as the free energy is unbounded from
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below; they are analogous to negative mass Schwarzschild
and indeed when we consider the limit α = 0, m0 < 0 we
recover negative mass BTZ.

Black brane: In the black-brane case the analysis is similar,
but there are contributions to the onshell action from the
horizon limit of the volume integral, resting in an onshell
action

Sonshell
E = − βT V1

16πG3

(
m0 + α2

4
+ γsc2

1/2 +
(
α

z+
− 2

z2+

))
.

(3.66)

Here V1 is the regulated length of the spatial direction and βT

is the inverse temperature, which is no longer arbitrary. The
conserved mass is as given in (3.63). The thermodynamic
relation

F = M − T S (3.67)

is again satisfied provided that

γs = −1

2
a2

1/2. (3.68)

These solutions have a mass which is bounded from below

M ≥ − V1

32πG3
α2, (3.69)

with the bound being saturated by extremal black branes.
This is most easily shown by rewriting the mass as

M = V1

16πG3

(
−1

2
α2 + 4π2T 2

)
, (3.70)

with the first term being a Casimir term and the second term
showing the expected temperature dependence for a dual 2d
conformal field theory. To derive the first law, note that one
should vary the entropy and mass with respect to the temper-
ature T , keeping the parameter α fixed. Then

dM = πV1

2G3
T dT . (3.71)

In varying the entropy, it is useful to note that

dz+|α = −2π z2+dT (3.72)

and therefore

dS = V1

4G3

(
−dz+

z2+

)
= πV1

2G3
dT, (3.73)

which implies that the first law dM = T dS is indeed satis-
fied.

The black-brane solution in d ≥ 2 with parameter m0 �= 0
is

ds2 = 1

z2

(
− (1 − α

(d − 1)
z − m0zd)dt2

+ dz2

(1 − α
(d−1) z − m0zd)

+ dx2

)
. (3.74)

Let us denote the location of the outer horizon as z0; it is
the smallest value of z at which the blackening function has
a zero. The black brane has an extremal horizon when the
blackening function has a double zero at z0; this occurs when

z0 = d

α
; m0 = − 1

(d − 1)dd
αd (3.75)

and (at fixed α) smaller values of m0 give naked singularities.
The entropy and temperature are given by

S = Vd−1

4Gd+1zd−1
0

; T = 1

4π

(
d

z0
− α

)
. (3.76)

Using (3.54) the mass is given by

M = Vd−1

16πGd+1

(
(d − 1)m0 + λαd

)
, (3.77)

where λ is a constant which can only be determined by com-
puting the local terms in (3.54). The first law is proved as
follows: to vary M at fixed α we use

dm0 = −dz0

zd
0

(
d

z0
− α

)
= −4πT

dz0

zd
0

. (3.78)

Therefore

dM = − Vd−1

4Gd+1

(d − 1)T dz0

zd
0

= T dS. (3.79)

3.3 Two point functions

Solving (3.5) and (3.1) one can compute the two point func-
tion of the scalar operator in the conformal vacuum. The
linearised equation

∇̄μ

(
1√

(∂φI )2
∇̄μφI

)
= 0 (3.80)

admits solutions whose asymptotic expansion around the
conformal boundary is given by (3.22). The two independent
coefficients, φ(0)I (x) and φ(d+1)I (x), are related when one
solves the equation throughout the bulk, imposing regularity
everywhere. Regularity is, however, made more subtle by the
fact that the backreaction on the metric occurs at the same
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order. The two point function for the dual scalar operator is
then given by

〈OI (x)OI (y)〉

= Limφ(0)I →0

(
(d + 1)a1/2

16πGd+1

δ
(
φ(d+1)I (x)/Y(0)I (x)

)

δφ(0)I (y)
+ · · ·

)

(3.81)

where the ellipsis denotes contact terms. We also need to take
into account the fact that the backreaction on the metric is at
linear order in the amplitude of the scalar field and therefore

〈Ti j (x)OI (y)〉
= −Limφ(0)I →0

(
d

16πGd+1

δg(d)i j (x)

δφ(0)I (y)
+ · · ·

)
(3.82)

does not automatically vanish. (Again the ellipsis denotes
contact terms.)

Equation (3.80) is hard to solve. Since it is a non-linear
equation, one cannot Fourier transform along the xi direc-
tions. One can solve for a single Fourier mode, i.e. letting

φI (z, xi ) = φ̃I (z, ki )e
iki xi , (3.83)

the equation becomes

zd+1∂z

⎛

⎝ 1

zd

∂zφ̃I√
(∂zφ̃I )2 + ki ki φ̃2

I

⎞

⎠ = 0, (3.84)

where we work with the usual Poincaré coordinates for
Ad Sd+1, namely

ds2 = 1

z2 (dz2 + dxi dxi ). (3.85)

The equation can then immediately be integrated once to give

∂zφ̃I

zd
= λkd

√
(∂zφ̃I )2 + k2φ̃2

I (3.86)

where k2 = ki ki and λ is a dimensionless constant. This
equation can be integrated to give

φ̃I (z, ki ) = φ̃(ki )e
iki xi exp

(
λ

∫
kd+1zddz

(1 − λ2(kz)2d)1/2

)
.

(3.87)

One can fix the constant λ by imposing regularity and thereby
relate the non-normalisable and normalisable modes in the
asymptotic expansions. However, since one cannot linearly
superpose such Fourier modes, one cannot use these solutions
to compute the two point function.

Let us now consider perturbations about a background
solution with non-vanishing scalar fields. The linearised
problem is perfectly well defined when the square root terms
are expanded around any non-vanishing background. How-
ever, the metric and scalar field fluctuations are coupled and
the equations of motion need to be diagonalised. If the scalar

field fluctuations were decoupled from those of the metric,
a1/2 would need to be positive for the fluctuations to have the
correct sign kinetic term (and hence, correspondingly, pos-
itive norm correlation functions in the holographically dual
theory). Since the metric and scale fluctuations are coupled
one cannot immediately conclude that the sign of the coeffi-
cient a1/2 in (3.13) must be positive.

We can compute the linearised equations of motion around
(3.74) as follows. We perturb the metric as gμν → gμν+hμν
and the scalar fields as φI → φI + δφI . Then the linearised
scalar field equation is

∇μ
(

∇μδφI√
(∂φI )2

)
− 1

2

(∇μφI )√
(∂φI )2

∇μ
(
δ(∂φI )

2

(∂φI )2

)

= ∇μ
(

1√
(∂φI )2

(hμν − 1

2
hgμν)∇νφI

)
(3.88)

where we define h = gμνhμν .
The linearised Einstein equations are

δRμν = −dhμν + δT̄ (1/2)μν (3.89)

where

δRμν = −1

2
�hμν − 1

2
∇μ∇νh + 1

2
∇ρ∇μhρν + 1

2
∇ρ∇νhρμ

(3.90)

and

δT̄ (1/2)μν = a1/2

2

d−1∑

I=1

1√
(∂φI )2

[
∂μφI ∂νδφI + ∂μδφI ∂νφI

+ 1

d − 1
(δ(∂φI )

2gμν + (∂φI )
2hμν)

−1

2

δ(∂φI )
2

(∂φI )2

(
∂μφI ∂νφI + 1

d − 1
(∂φI )

2gμν

)]

(3.91)

where δ(∂φI )
2 = 2gμν∂μφI ∂νδφI − hμν∂μφI ∂νφI . These

equations are complicated, since the scalar field profiles
break relativistic invariance in the d directions (t, x I ). One
can however show that it is consistent to switch on only
ht I (t, z), hzI (t, z) and δφI (t, z) for a given value of I ; such
perturbations suffice to compute the autocorrelation func-
tion. The three non-trivial equations are then the (t I ) Ein-
stein equation, the (z I ) Einstein equation and the scalar field
equation. Furthermore, one can choose a gauge hzI = 0, and
show explicitly that the two Einstein equations are compat-
ible with each other. The resulting two equations are then
simply

δφ′′
I +

(
F ′

F
− d

z

)
δφ′

I − 1

F2 ∂
2
t δφI = c1/2

F2 ∂t Ht I ;
1

2F
∂t H ′

t I − a1/2

2z
δφ′

I = 0,

(3.92)
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where we have defined Ht I = ht I z2. One can eliminate Ht I

by taking the z derivative of the first equation and using the
second equation. Defining

ζI = z−d Fδφ′
I , (3.93)

the resulting equation is

z−d
(

zd Fζ ′
I

)′ − 1

F
∂2

t ζI = 1

z
a1/2c1/2ζI . (3.94)

Note that the term on the right hand side should not be inter-
preted as a mass term in the usual sense, as it does not con-
trol the powers in the asymptotic expansion of the field ζI as
z → 0. Indeed ζI admits two independent solutions

ζI = ζI (1−d)(t)z
1−d + · · · + ζ(0)I (t)

+ 1

d
c1/2a1/2ζ(0)I (t)z + · · · , (3.95)

which in turn correspond to an expansion

δφI = δφ(0)I (t)+ · · · + δφ(d+1)I (t)z
d+1 + · · · , (3.96)

in agreement with the full non-linear expression given in
(3.22). We can give insight into the powers arising in this
expansion as follows. For a massive scalar field the onshell
action can be expressed as

−
∫

dd+1x
√−g

(
∇μφ∇μφ + m2φ2

)

= −
∫

d�μφ∇μφ ≈ −
∫

dd x
1

zd−1φ∂zφ (3.97)

where we use the fact that the metric is asymptotically anti-
de Sitter. Scale invariance requires that the non-normalisable
mode of φ scales as zd−� and acts as the source for an oper-
ator of dimension �, and the field equation determines that
�(�−d) = m2; the normalisable mode of φ is related to the
expectation value of this operator and scales as z� [38,39].

Now let us turn to the square root model. Although the
scalar field fluctuation is coupled to the metric fluctuation,
the latter only affects subleading terms in the scalar field
expansion near the conformal boundary: the leading asymp-
totics are controlled by the first two terms of the first equation
in (3.92). Therefore we can consider only the scalar field part
of the action, i.e.

− a1/2

∫
dd+1x

√−g
√
(∂φI + ∂δφI )2. (3.98)

Since this action is expanded around a solution of the equa-
tions of motion, the linear term in δφI automatically vanishes
onshell. The onshell action can be expressed as a boundary
term

− a1/2

∫
d�μ

(
δφI ∂μδφ1

2
√
(∂φI )2

)
, (3.99)

which gives

− a1/2

∫
dd x

1

c1/2zd
δφI ∂zδφI . (3.100)

Suppose the non-normalisable mode of δφI scales as z0 and
the normalisable mode scales as z�. The boundary term gives
a contribution of order z0 when � = d + 1, in agreement
with (3.96).

The two point autocorrelation function can now be com-
puted by solving (3.94) for an arbitrary boundary source
ζI (1−d)(t) subject to regularity; this will determine the sub-
leading coefficients in (3.96) and then

〈OI (t)OI (t
′)〉 = (d + 1)a1/2

16πc1/2Gd+1

δφ(d+1)I (t)

δφ(0)I (t ′)
. (3.101)

It is straightforward to solve (3.92) in the limit m0 = 0
with c1/2 → 0, as the fields decouple and therefore one
can immediately solve for the scalar field. In the frequency
domain we obtain

δφI (ω) = δφ(0)I (ω)(ωz)(d+1)/2 K(d+1)/2(ωz), (3.102)

where the Bessel function is normalised so that the asymp-
totic expansion takes the form (3.96) and implicitly we are
now working in Euclidean signature. Working in d = 2,
where the complete expression for the one point function
was calculated in (3.51), we obtain

〈OI (ω, 0)OI (−ω, 0)〉 = a1/2

16πG3

ω3

c1/2
+ O(c0

1/2), (3.103)

where we work in a mixed representation, i.e. frequency
space and position space for the spatial coordinate. This
expression is not analytic as c1/2 → 0, i.e. as the background
profile for the scalar field is switched off. Recall that the gen-
eral expression for the Fourier transform of a polynomial in
d dimensions is
∫

dd xe−ik·x(|x |2)−λ

= πd/22d−2λ �(d/2 − λ)

�(λ)
(|k|2)λ−d/2, (3.104)

which is valid when λ �= (d/2 + n), where n is zero or a
positive integer. Transforming back to the (Euclidean) time
domain gives

〈OI (t)OI (t
′)〉 = 3a1/2

64π2G3

1

c1/2|t |4 + O(c0
1/2). (3.105)

This condition is consistent with a positive norm provided
that a1/2c1/2 > 0. The off-diagonal correlation function
(3.82) is of order c1/2 or smaller.
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4 Phenomenological models

In this section we will explore the properties of the following
model:

S = 1

16πGd+1

∫
dd+1x

√−g

(
R + d(d − 1)− 1

4
F2

−
d−1∑

I=1

(a1/2

√
(∂ψI )2 + a1(∂χI )

2)

)
(4.1)

where for clarity we now label the two families of scalar
fields as ψI and χI . The Einstein equation is

Rμν = −dgμν + T̄μν

= −dgμν + 1

2

(
FμρFν

ρ − 1

2(d − 1)
F2gμν

)

+
d−1∑

I=1

a1∂μχI ∂νχI +
d−1∑

I=1

a1/2

2
√
(∂ψI )2

×
(
∂μψI ∂νψI + 1

d − 1
(∂ψI )

2gμν

)
(4.2)

and the other equations of motion are

∇μ

(
1√

(∂ψI )2
∇μψI

)
= 0; (4.3)

∇μ∇μχI = 0; ∇μFμν = 0.

The homogeneous and isotropic black-brane solutions are
given by

ds2 = 1

z2

(
−F(z)dt2 + dz2

F(z)
+ dx · dx

)
, (4.4)

with

F(z) = 1 − m0zd + μ2

γ 2z2(d−2)
0

z2(d−1)

− 1

d − 1
a1/2c1/2z − 1

d − 2
a1(c1z)2 (4.5)

where γ 2 = 2(d − 1)/(d − 2) and m0 is fixed by demanding
that F(z0) = 0. The Maxwell potential is

A = μ

(
1 − zd−2

zd−2
0

)
dt (4.6)

and the scalar fields are given by

χI = c1x I ; ψI = c1/2x I . (4.7)

The temperature is given by

T = − F ′(z0)

4π

= 1

4π

(
d

z0
− (d − 2)2μ2z0

2(d − 1)
− a1c2

1z0 − a1/2c1/2

)
.

(4.8)

The entropy is

S = Vd−1

4Gd+1zd−1
0

(4.9)

and the potential � and charge Q are, respectively,

� = μ; Q = (d − 2)Vd−1μ

16πGd+1zd−2
0

. (4.10)

The charge density q is given by Q = qVd−1. The mass is
given by

M = (d − 1)

16πGd+1
(m0 + · · · ) (4.11)

where the ellipsis denotes terms involving the non-normal-
isable modes, i.e. α ≡ a1/2c1/2 and β ≡ a1c2

1. This form
for the mass is consistent with the mass for the standard
Einstein–Maxwell system; one can show that the first law
dM = T dS + �d Q is satisfied using analogous steps to
those in Sect. 3.2.

Systematic holographic renormalisation would be re-
quired to determine the terms in ellipses in the (4.11) and
the free energy. The scalar field profiles (4.7) are non-
normalisable modes, associated with deformations of the
dual field theory, and therefore the thermodynamically pre-
ferred state is that with lowest free energy at fixed (c1/2, c1).
It is possible that the homogeneous black branes (4.4) are
not the thermodynamically preferred state, particularly at
low temperatures, but we will not investigate phase tran-
sitions here. Note that the near-horizon geometry remains
Ad S2 × Rd−1, as in Reissner–Nordström, and the entropy
does not vanish at zero temperature.

4.1 Linearised perturbations

We now consider linearised perturbations of the fields around
the black-brane backgrounds, such that

gμ → g(0)μν + hμν;
Aμ → Aμ + δAμ;
ψI → ψI + δψI ;
χI → χI + δχI .

(4.12)

In the following, all indices will be raised and lowered using
the background metric g(0)μν and its inverse unless otherwise
stated, and all covariant derivatives ∇μ will be taken with

respect to the background metric g(0)μν . Note that g(0)μν in this
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section refers to the background black-brane metric, and
should not be confused with the leading term in the asymp-
totic Fefferman–Graham metric expansion, g(0)i j .

We consider homogeneous fluctuations of the following
form:

hμν = e−iωt 1

z2 Hμν(z); δAμ = e−iωt aμ(z);
δψI = e−iωt�I (z); δχI = e−iωtXI (z).

(4.13)

It is straightforward to show that the perturbations (hzI , ht I ,

δAI , δχI , δψI ) decouple. One can choose a gauge in which
hzI = 0, resulting in the following equations of motion. The
scalar field equations are

X ′′
I +

[
F ′

F
− d − 1

z

]
X ′

I + ω2

F2 XI − iωc1

F2 Ht I = 0, (4.14)

� ′′
I +

[
F ′

F
− d

z

]
� ′

I + ω2

F2�I − iωc1/2

F2 Ht I = 0. (4.15)

The I component of the Maxwell equations and the (z I )
Einstein equations are

a′′
I +

[
F ′

F
− d − 3

z

]
a′

I + ω2

F2 aI − μ(d − 2)zd−3

zd−2
0 F

H ′
t I = 0,

(4.16)

iω

2F
H ′

t I − a1/2

2z
� ′

I − a1c1X ′
I − iωμ(d − 2)zd−1

2Fzd−2
0

aI = 0.

(4.17)

For each value of I , i.e. each spatial direction, we have four
equations of motion. A homogeneous Maxwell field in the
I th direction is coupled to both the metric perturbation ht I

and perturbations of the scalar fields associated with this
direction.

It is convenient to eliminate Ht I by taking the z-derivative
of Equations (4.14) and (4.15), and using Eq. (4.17) to elimi-
nate H ′

t I from the resulting equations. In the process of doing
so it is also useful to introduce the following:

ξI = ω−1z−(d−1)FX ′
I , ζI = ω−1z−d F� ′

I ; (4.18)

we can rewrite the remaining three field equations as

zd−3(z−(d−3)Fa′
I )

′ + ω2

F
aI

= (d − 2)2μ2 z2(d−2)

z2(d−2)
0

aI − i(d − 2)μa1/2
z2(d−2)

zd−2
0

ζI

−2i(d − 2)μa1c1
z2(d−2)

zd−2
0

ξI , (4.19)

z−d(zd Fζ ′
I )

′ + ω2

F
ζI

= 1

z

i(d − 2)μc1/2

zd−2
0

aI + 1

z
a1/2c1/2ζI + 2

z
a1c1c1/2ξI ,

(4.20)

z−(d−1)(zd−1 Fξ ′
I )

′ + ω2

F
ξI

= i(d − 2)μc1

zd−2
0

aI + a1/2c1ζI + 2a1c2
1ξI . (4.21)

To analyse these equations further it is convenient to
rewrite the perturbation field equations in a dimensionless
form by making the coordinate change r = μz, and rescal-
ing the sets of perturbations āI = μd−2aI , ζ̄I = ζI /c1/2,
ξ̄I = μξI /c1. After making these changes the field equa-
tions are simply

¨̄aI +
[

Ḟ

F
− d − 3

r

]
˙̄aI + ω̄2

F2 āI

= 1

F

[
(d − 2)2

(
r

r0

)2(d−2)

āI − i(d − 2)
r2(d−2)

rd−2
0

α̃ζ̄I

−i(d − 2)
r2(d−2)

rd−2
0

β̃ξ̄I

]
,

¨̄ζI +
[

Ḟ

F
+ d

r

]
˙̄ζI + ω̄2

F2 ζ̄I

= 1

r F

[
i(d − 2)

rd−2
0

āI + α̃ζ̄I + β̃ξ̄I

]
,

¨̄ξI +
[

Ḟ

F
+ d − 1

r

]
˙̄ξI + ω̄2

F2 ξ̄I

= 1

F

[
i(d − 2)

rd−2
0

āI + α̃ζ̄I + β̃ξ̄I

]
(4.22)

where ω̄ = ω/μ and r0 = μz0. We have also introduced the
shorthand α̃ = a1/2c1/2/μ and β̃ = 2a1c2

1/μ
2.

It is immediately clear that these equations imply

r−d(rd F ˙̄ζI − rd−1 F ˙̄ξI )+ ω̄2

F

(
ζ̄I − 1

r
ξ̄I

)
= 0 (4.23)

and hence there exists a quantity

κ̄I = rd F

(
ζ̄I − 1

r
ξ̄I

)
, (4.24)

which is radially conserved in the ω̄ → 0 limit. One can
easily show that, in the near-boundary limit, κ̄I = O(rd+1)

and hence vanishes on the conformal boundary for all ω̄. We
know that κ̄I is also radially conserved in the ω̄ → 0 limit
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and hence it must vanish everywhere in this limit. Conse-
quentially we find that

˙̄ζI = 1

r
˙̄ξI (4.25)

in the ω̄ → 0 limit.
The equations can be diagonalised to make manifest the

existence of two massless modes, and hence two conserved
quantities in the zero frequency limit. The eigenvectors are

λ̄1I = β̃

B̄

[
āI − i α̃rd−2

0

d − 2

(
ζ̄I − 1

r
ξ̄I

)
− i(d − 2)r2(d−2)

rd−2
0

ξ̄I

]
;

λ̄2I = α̃

B̄

[
1

r
āI + i β̃rd−2

0

d − 2

(
ζ̄I − 1

r
ξ̄I

)
+ i(d − 2)r2(d−2)

rd−2
0

ζ̄I

]
,

λ̄3I = 1

α̃β̃ B̄

[
(d − 2)2

r2(d−2)
0

āI − i(d − 2)

rd−2
0

(
α̃ζ̄I + β̃ξ̄I

)]
,

(4.26)

where the quantity B̄ is defined as

B̄(r) = α̃

r
+ β̃ + (d − 2)2

(
r

r0

)2(d−2)

. (4.27)

It is clear that λ̄1I and λ̄2I are massless modes as their equa-
tions of motion are

β̃rd−3 ˙̄�1I + ω̄2 B̄

F
λ̄1I = i α̃β̃rd−2

0

d − 2
r−d ˙̄κI , (4.28)

α̃rd−4 ˙̄�1/2I + ω̄2 B̄

F
λ̄2I = − i α̃β̃rd−2

0

d − 2
r−d ˙̄κI (4.29)

where the two momenta are given by

�̄1I = r−(d−3)F

[
˙̄aI + i(d − 2)r2(d−2)

rd−2
0

˙̄ξI

]
, (4.30)

�̄1/2I = r−(d−3)F

[
˙̄aI + i(d − 2)r2d−3

rd−2
0

˙̄ζI

]
(4.31)

and are radially conserved in the ω̄ → 0 limit. It is clear that
�̄1/2I − �̄1I = i(d−2)

rd−2
0

κ̄I and hence not only are they con-

served in the ω̄ → 0 limit but they are also equal throughout
the bulk in this limit.

To progress further we need to work out the asymp-
totic expansions near the conformal boundary for the var-
ious fluctuations fields under consideration. The three sets
of fields aI , ζI , ξI have both homogeneous and inhomo-
geneous contributions. Since the field equations (4.19)–
(4.21) are second order linear ODEs we expect each field
to have two homogeneous contributions: one correspond-
ing to a normalisable mode, and one non-normalisable.

Since we are primarily interested in computing the con-
ductivity we will turn off the non-normalisable modes
for the scalar fields, which correspond to perturbing the
sources for the dual operators in the field theory. (Note
that the background solution still has sources for these
operators.)

We make the following ansatz for the asymptotic expan-
sions of the solutions to the full inhomogeneous equations:

aI =
∞∑

k=0

zkaI (k) + ãI (d−2)z
d−2 log z + · · · ,

ζI =
∞∑

k=0

zkζI (k) + ζ̃I (d−1)z
d−1 log z + · · ·

× ξI =
∞∑

k=0

zkξI (k) + ξ̃I (d−2)z
d−2 + · · · , (4.32)

where the logarithmic terms are included at the orders at
which normalisable modes appear. The ellipses denote fur-
ther logarithmic terms which we will not need here. Anal-
ysis of the field equations results in the following. From
the Maxwell field equation we find that as usual aI (1) =
· · · = aI (d−3) = 0 and hence the leading order terms in aI

are

aI = aI (0) + aI (d−2)z
d−2 + O(zd−1) (4.33)

where we can identify the coefficients aI (0) as the dual
first order perturbation to the gauge potential and aI (d−2)

is related to the expectation value of the dual current.
For the scalar fields the leading order terms in the expan-

sions are

ζI = ζI (0) + 1

d
c1/2

(
i(d − 2)μaI (0)

+ a1/2ζI (0) + 2a1c1ξI (0)
)

z + · · · ,
ξI = ξI (0) + 1

2d
c1
(
i(d − 2)μaI (0)

+ a1/2ζI (0) + 2a1c1ξI (0)
)

z2 + · · · .

(4.34)

The dimensionless fields therefore have the following asymp-
totic behaviours:

āI = āI (0) + āI (d−2)r
d−2+O(rd−1) ζ̄I = ζ̄I (0) + O(r),

ξ̄I = ξ̄I (0) + O(r2)
1

B̄
= r

α̃
− β̃r2

α̃2 + O(r3), (4.35)

λ̄1I = āI (0) + · · · �̄I = (d − 2)āI (d−2) + O(r).

Note that the near-horizon expansions of the fields are

aI = (z − z0)
iω/F ′(z0)[aH

I + O((z − z0))],
ζI = (z − z0)

iω/F ′(z0)[ζ H
I + O((z − z0))], (4.36)

ξI = (z − z0)
iω/F ′(z0)[ξ H

I + O((z − z0))],

123



3176 Page 20 of 32 Eur. Phys. J. C (2014) 74 :3176

with (aH
I , ζ

H
I , ξ

H
I ) constants, or in terms of the dimension-

less fields

āI = (r − r0)
iω/Ḟ(r0)

[
āH

I + O((r − r0))
]
,

ζ̄I = (r − r0)
iω/Ḟ(r0)

[
ζ̄ H

I + O((r − r0))
]
, (4.37)

ξ̄I = (r − r0)
iω/Ḟ(r0)

[
ξ̄ H

I + O((r − r0))
]
.

In the zero frequency limit, κ̄I is zero, as it must vanish at the
conformal boundary and is conserved. This in turn implies
that ζ̄ H

I = ξ̄ H
I /r0 in the zero frequency limit.

Putting this information together, one can show that a
combination of the two massless modes is asymptotic to the
source for the gauge field, i.e.

λ̄I = λ̄1I + λ̄2I = aI (0) + O(z2). (4.38)

The equation of motion for this mode is given by

r−(d−3)
[
β̃ ˙̄�1I + α̃

r
˙̄�1/2I

]
+ ω̄2 B̄

F
λ̄I = 0. (4.39)

It is also clear that �̄1I and �̄1/2I have equivalent near-
boundary behaviour:

�̄1I = (d − 2)āI (d−2) + O(z) = �̄1/2I , (4.40)

which is not surprising as they only differ by a multiple of
κ̄I which vanishes in the z → 0 limit.

It is clear from equation (4.39) that ˙̄�1I /λ̄I ∼ O(ω̄2)

and ˙̄�1/2I /λ̄I ∼ O(ω̄2). Similarly we know that �̄1I /λ̄I ∼
O(ω̄) and �̄1/2I /λ̄I ∼ O(ω̄): these conditions are satisfied
at the horizon due to in-going boundary conditions and are
conserved throughout the bulk by the field equations. We will
use these properties in deriving the DC conductivity below.

Finally we note that the λ̄3I field equation is given by

0 = B̄ ¨̄λ3I + r−2d
0 r−5

[
((d − 2)2(3d − 5)r4

0 r2d

+r2d
0 r3(α̃(d − 2)+ β̃r(d − 1)))F + r2d

0 r5 Ḟ B̄
] ˙̄λ3I

+ r−6
(
−α̃r3 + 2(d − 2)3r2dr−2(d−2)

0

)

×(r Ḟ + (d − 2)F)λ̄3I + ω̄2 B̄

F
λ̄3I − B̄2λ̄3I

+ r−2d
0 r−7 Frd

B̄
(r2d

0 α̃β̃r4 + (d − 2)2r2dr4
0 ((2d − 3)2α̃

+ (2d − 4)2β̃r))λ̄3I + r−2d
0 r−(d+5)

α̃β̃ B̄

×
(

r2d
0 r4α̃β̃(�̄1I − �̄1/2I )− (d − 2)2r2dr4

0

× ((2d − 3)α̃�̄1/2I + (2d − 4)β̃r�̄1I )
)

(4.41)

and, in terms of the eigenmodes, �̄1I and �̄1/2I are given by

�̄1I = r−(d−3)F

[
˙̄λ1I + ˙̄λ2I + α̃β̃(2d − 4)r2d−5λ̄3I

+ (d − 2)2

β̃

(
r

r0

)2(d−2) ˙̄λ1I

]
, (4.42)

�̄1/2I = r−(d−3)F

[
˙̄λ1I + ˙̄λ2I + α̃β̃(2d − 3)r2d−5λ̄3I

+ (d − 2)2

α̃

(
r

r0

)2(d−2)

r ˙̄λ2I

]
. (4.43)

We will use the structure of these equations to derive the DC
conductivity below.

The equations of motion of the massive modes λ̄3I are
schematically given by

L3λ̄3I + p3(r)λ̄3I + ω̄2q3(r)λ̄3I ∼ �̄1I (4.44)

where L3 is a linear differential operator, and p3(r), q3(r)
are functions of the radial coordinate r with no frequency
dependence. The massless modes only couple to λ̄3I via �̄1I

and the λ̄3I equations of motion hence yield λ̄3I ∼ �̄I . The
conjugate momentum takes the form

�̄1I = P(r) ˙̄λI + Q(r)λ̄3I (4.45)

where again P(r) and Q(r) are functions with no frequency
dependence. From this we deduce that �̄1I ∼ ˙̄λI and hence,
recalling that �̄1I /λ̄I ∼ O(ω̄), we know that ˙̄λI /λ̄I ∼ O(ω̄)
as ω̄ → 0. We will use this property below in deriving the
DC conductivity.

4.2 DC conductivity

In this section we will compute the DC limit of the optical
conductivity. Since the equations in different spatial direc-
tions decouple and are identical, we now restrict to pertur-
bations in one of the boundary spatial directions which we
will label by x . The optical conductivity in this direction is
defined as

σx (ω) = 〈Jx 〉
iωAx(0)

(4.46)

where Ax(0) is the source for the x component of the boundary
current and 〈Jx 〉 is its expectation value. The DC conductivity
is defined by

σDC = lim
ω→0

σx (ω), (4.47)
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and due to the symmetry of the background and of the equa-
tions of motion takes the same value along all spatial direc-
tions. Note that the source is given by

Ax(0) = ax(0)e
−iωt (4.48)

and the expectation value of the current is given by

〈Jx 〉 = (d − 2)ax(d−2)e
−iωt + · · · (4.49)

where for notational simplicity we set 16πGd+1 = 1 for the
remainder of this section.

The holographic optical conductivity can be expressed in
terms of the dimensionless fields as

σx (ω̄)

μd−3 = (d − 2)
āx(d−2)

iω̄āx(0)
(4.50)

with the DC conductivity being the ω̄ → 0 limit of
this expression. Using our knowledge of the asymptotic
behaviour of the massless modes and conserved quantities
we now define the auxiliary quantity

σDC(r) = μd−3 lim
ω̄→0

�̄1x

iω̄λ̄x
. (4.51)

From (4.38) and (4.40) it is clear that this quantity coincides
with the DC conductivity at the conformal boundary. How-
ever, we will now show that this function is conserved to
leading order in ω and it can thus be evaluated at any value
of the radius.

Our equations of motion have a similar structure to those
in [18,32] and therefore the proof that (4.51) is a conserved
quantity closely follows their proofs. Radial conservation of
(4.51) at leading order in the frequency requires that

d

dr

(
�̄1x

λ̄x

)
=
( ˙̄�1x

λ̄x
− �̄1x

λ̄x

˙̄λx

λ̄x

)
= O(ω̄2). (4.52)

This result follows if the following three results hold:
˙̄�1x/λ̄x ∼ O(ω̄2); �̄1x/λ̄x ∼ O(ω̄) and ˙̄λx/λ̄x ∼ O(ω̄)
as ω̄ → 0. However, we already showed that all three condi-
tions hold in the previous section.

Since (4.51) is radially conserved we can calculate its
value on the horizon giving

σDC

μd−3 = r−(d−3)
0

(
1 + (d − 2)2

β̃ + α̃r−1
0

)
. (4.53)

Reinstating all parameters explicitly we obtain

σDC = z−(d−3)
0

(
1 + (d − 2)2μ2

2a1c2
1 + z−1

0 a1/2c1/2

)
(4.54)

and consistency with [18] can easily be verified. Consistency
between this result in d = 3 and the massive gravity results of

[32] can also be seen simply by identifying e = L = rh = 1,
κ2 = 1/2, and β = −a1c2

1, α = −a1/2c1/2. Note that the DC
conductivity is not temperature independent in three dimen-
sions, whenever the square root terms are non-vanishing; we
will analyse the temperature dependence below.

The background brane solutions coincide between our
model and massive gravity. The DC conductivities agree
since the fluctuation equations also coincide for homoge-
neous fluctuations carrying no spatial momenta. We show in
Appendix B that the fluctuation equations in our model and in
massive gravity are completely equivalent at zero frequency.

4.3 Parameter space restrictions

At this point in our analysis we need to place restrictions on
the parameter space to obtain a physical model. Any phase
of our system can be fully described by three dimensionless
parameters: τ = T/μ, β̃ = 2a1c2

1/μ
2, and α̃ = a1/2c1/2/μ

where we have used the chemical potentialμ to fix the scaling
symmetry. Given these values we may use (4.8) to fix the
horizon location μz0:

μz0 =
{

4πτ+α̃±
√
(4πτ+α̃)2+2d P2

P2 P2 �= 0,
d

4πτ+α̃ P2 = 0
(4.55)

where P2 = β̃ + (d−2)2

d−1 .
Positivity of the norms of the two point functions of the

scalar operator dual to the massless scalar field (or, equiva-
lently, absence of ghosts) requires that a1 ≥ 0. Since c1 and
μ are real, β̃ ≥ 0 and hence P2 ≥ 0. The sign of α̃ is more
subtle, as it depends on a1/2, c1/2 and μ. The non-linearity
of the square root terms however prevents us from placing
restrictions on the sign of a1/2. Previously we showed that
a1/2c1/2 should be positive when μ = 0 = a1. This suggests
α̃ should be positive, for positiveμ, and negative for negative
μ.

The β̃ ≥ 0 constraint is the only one that we can apply
without direct knowledge of the sign of μ. We now consider
the cases of positive and negative μ separately, imposing the
following constraints:

• T ≥ 0: The system has a non-negative temperature.
• z0 > 0: The black-brane horizon location is at a real and

positive position in the holographic bulk direction.
• σDC ≥ 0: The system has a non-negative conductivity.
• f (z) > 0 for z ∈ (0, z0): The point z = z0 is indeed the

true horizon location, no other horizons exist between
this and the boundary.

We do not consider the μ = 0 case here.
For positive chemical potential, the temperature constraint

T ≥ 0 translates simply into τ > 0. Imposing z0 > 0
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requires the root μz+
0 to be the horizon location. Positive

DC conductivity requires

(d − 2)2

β̃ + α̃(μz0)−1
≥ −1 (4.56)

since we know that z0 > 0 for all μ by construction. The
constraint is automatically satisfied for α̃ > 0, i.e. a1/2c1/2 >

0. The constraint can be satisfied for negative α̃, but only for
a finite range of temperatures. Since we wish to consider
only systems which exist for arbitrary temperatures we must
therefore restrict to α̃ > 0.

Recall that our blackening function F(z) is given by

F(z) = 1 − m0

μd
(μz)d + (d − 2)(μz)2(d−1)

2(d − 1)(μz0)2(d−2)

− α̃(μz)

d − 1
− β̃(μz)2

2(d − 2)
(4.57)

where the mass parameter m0 is given by

m0

μd
= 1

(μz0)d

[
1 − α̃μz0

d − 1

+ (μz0)
2

(
− β̃

2(d − 2)
+ d − 2

2(d − 1)

)]
. (4.58)

We must place the constraint that F(z) > 0 for all 0 ≤ z < z0

to ensure that z0 is in fact the true horizon of interest. This
condition is equivalent to the statement that F(z) has no real
roots in the open interval z ∈ (0, z0) which we prove in the
appendix.

For negative chemical potential, τ < 0 and the correct
choice of the horizon location is μz−

0 . Positive DC conduc-
tivity requires that α̃ < 0, so a1/2c1/2 > 0. In the table
below we summarise the restrictions necessary for a realistic
model:

μ > 0 μ < 0

a1 > 0 a1 > 0
a1/2c1/2 > 0 a1/2c1/2 > 0
β̃ > 0 β̃ > 0
α̃ ≥ 0 α̃ ≤ 0
μz0 = μz−

0 > 0 μz0 = μz+
0 < 0

Note that the restrictions discussed in this section do not
ensure complete thermodynamic stability as other possible
phases have not been investigated here.

4.4 DC conductivity temperature dependence

The DC conductivity of our model in terms of the dimen-
sionless parameters is given by

σDC/μ
d−3 = (μz0)

−(d−3)
(

1 + (d − 2)2

β̃ + (μz0)−1α̃

)
. (4.59)

The model presented in [18] found that σDC was independent
of temperature in d = 3 at fixed β̃. This can indeed be seen
from the above. Due to the presence of this additional α̃ term
and the accompanying factor of (μz0)

−1 our model is not
independent of temperature even in d = 3.

Using (4.8) one can show that

d(μz0)

dτ
= −8π(μz0)

2(d − 1)

P2(μz0)2 + 2d
(4.60)

and thusμz0 decreases monotonically with τ . In the bulk this
corresponds to the location of the horizon moving towards
the boundary as we go to higher temperatures.

One can also show that

d

dτ

(
σDC

μd−3

)
= −d(μz0)

dτ

[
(d − 3)

σDC

μd−3 (μz0)
−1

− (d − 2)2(μz0)
−(d−1)α̃

(β̃+(μz0)−1α̃)2

]
(4.61)

and hence we can see that, in d = 3, σDC will increase
(decrease) with τ if α̃ is negative (positive). For d > 3, the
DC conductivity always increases with temperature.

Figure 1 shows a plot of σDC/μ
d−3 as a function of τ for

various choices of α̃ and β̃ in d = 3. The DC conductivity
decreases linearly with temperature for T/μ � 0.5 and the
slope decreases at higher temperatures.

Fig. 1 Plots of σDC/μ
d−3 against T/μ in d = 3 for the given values

of α̃ and β̃. Solid lines denote results for theμ > 0 branch, dashed lines
denote results for the μ < 0 branch. Note that σDC decreases with T
for α̃ non-zero
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Fig. 2 Plots of σDC/μ
d−3 against T/μ in d = 4 for the given values

of α̃ and β̃. Note that σDC is strictly increasing in T

Recall that for the μ < 0 plots decreasing τ corresponds
to increasing T . The symmetry between the μ > 0 and the
μ < 0 branches is easily understood because α̃(μz0)

−1 is
invariant under μ → −μ, α̃ → −α̃, τ → −τ .

Shown in Fig. 2 is a plot of σDC/μ
d−3 against τ for the

same choices of α̃ and β̃ in d = 4. Note that the reflection
symmetry between the μ > 0 and μ < 0 branches is broken
due to σDC/μ

d−3 gaining a minus sign due to the odd power
ofμ in theμ < 0 branch. We note that for d > 3 σDC always
increases with T , even in the α̃ = 0 case, whereas in d = 3
it is constant or decreases with T .

4.5 Finite frequency behaviour at low temperature

The low frequency behaviour of the AC conductivity at low
temperature can be obtained by rewriting the fluctuation
equations as Schrödinger equations and matching asymp-
totics between the IR and UV regions. This technique has
been applied to a number of AdS/CMT models; see for exam-
ple [7,12,40–43].

Following this framework we work in the near extremal
limit and apply a matching argument to relate the IR Green
functions to the UV current-current Green function via

Im[G R
J xJ x (ω, T )] =

∑

M

d M Im[G R
OMOM

(ω, T )] (4.62)

where M runs over all the IR irrelevant operators OM cou-
pling to the current J x , and d M are certain numerical con-
stants whose values are unimportant for our discussion. The
operators involved are the current itself and the two scalar
operators dual to the scalar fields associated with the x direc-
tion, corresponding to the perturbations ax ,Xx , �x .

The strategy is as follows. The fluctuation equations, after
decoupling, can be brought into Schrödinger form:

¨̄H + ω2 H̄ − V (ρ)H̄ = 0, V (ρ) = cH

ρ2 + · · · , (4.63)

where dots denote derivatives with respect to a suitably
defined radial coordinate ρ. Expressed in this form one can
immediately extract the scaling behaviour for the imaginary
part of the Green function of the field HI with dual operator
OH [12,43]:

Im[G R
OH OH

(ω � μ, T = 0)] ∼ ω
√

4cH +1. (4.64)

The scaling behaviour of the real part of the optical conduc-
tivity is then given by

Re[σ(ω � μ, T = 0)] = 1

ω
Im[G R

J xJ x (ω � μ, T = 0)],
(4.65)

where we have used the Kramers–Kronig relation, and is
therefore controlled at low frequency by the lowest (IR)
dimension operator. From the analysis in the previous sec-
tions we know that our system has two massless modes, i.e.
two marginal operators, and we will now show that the third
mode corresponds to an irrelevant operator in the IR.

All three field equations for the linearised fluctuations
involve terms of the form

(z−δF H ′)′ + ω2

F
H z−δ. (4.66)

For generic δ and H(z) we can bring (4.66) into a form
more easily related to the Schrödinger form by making
the change of coordinate z → ρ and change of variables
H(z) = zδ/2 H̄(ρ) where we define the radial coordinate as

dρ

dz
= F−1. (4.67)

Carrying out these substitutions yields

(z−δF H ′)′ + ω2

F
z−δH = z−δ/2

F

[ ¨̄H + ωH̄ − Vδ(ρ)H̄
]

(4.68)

where the potential term Vδ(ρ) is given by

Vδ(ρ) = δ

4z2 ((δ + 2)F2 − 2z Ḟ). (4.69)

The blackening function in the near-horizon (IR) limit, in the
extremal case, is given by

F(z) = 1

2
(z − z0)

2 F ′′(z0)+ O((z − z0)
3). (4.70)
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Since the extremal limit of the black-brane solution occurs
when F(z0) = F ′(z0) = 0 the parameters are related as
follows:

m0 = z−d
0 + μ2

γ 2zd−2
0

− a1/2c1/2

(d − 1)zd−1
0

− a1c2
1

(d − 2)zd−2
0

,

(4.71)

(d − 2)μ2z2
0

γ 2 = d − a1/2c1/2z0 − a1c2
1z2

0. (4.72)

The near-horizon geometry remains Ad S2 × Rd−1 in the
presence of the scalar field profiles.

Recalling the definition (4.67) of ρ, the Schrödinger coor-
dinate, it must have the following relation to z in the extremal
IR limit:

ρ = − 2

F ′′(z0)(z − z0)
+ O((z − z0)

−2) (4.73)

so the z → z0 limit corresponds to the ρ → ∞ limit. In this
limit,

F(ρ) = 2

F ′′(z0)ρ2 + O(ρ−3), Ḟ(ρ) = − 4

F ′′(z0)ρ3 +O(ρ−4)

(4.74)

and thus

Vα(ρ) = 2α

F ′′(z0)ρ3z0
+ O(ρ4) (4.75)

where

F ′′(z0) = 2d(d − 1)

z2
0

− 2d − 3

z0
a1/2c1/2 − 2(d − 2)a1c2

1

(4.76)

where we have used the conditions F(z0) = 0 and F ′(z0) =
0 to eliminate m0 and μ2/γ 2, respectively, in terms of the
other parameters. Clearly Vα ∼ ρ−3 in the IR limit.

After performing the change of coordinate z → ρ as
discussed above, and introducing the new variables aI =
az(d−3)/2, ζI = ζ z−d/2, ξI = ξ z−(d−1)/2 the three field
equations read, in the IR limit

ä + ω2a = 2

F ′′(z0)ρ2

[
(d − 2)2μ2a − i(d − 2)μa1/2z−1/2

0 ζ

− 2i(d − 2)μa1c1ξ
]

+ O(ρ−3),

ζ̈ + ω2ζ = 2

F ′′(z0)ρ2

[
i(d−2)μc1/2z−1/2

0 a + a1/2c1/2z−1
0 ζ

+ 2a1c1c1/2ξ
]

+ O(ρ−3),

ξ̈ + ω2ξ = 2

F ′′(z0)ρ2

[
i(d − 2)μc1a + a1/2c1z−1/2

0 ζ

+ 2a1c2
1ξ
]

+ O(ρ−3). (4.77)

This system can be decoupled with the following linear com-
binations of fields:

λ1 = a − ia1/2

μz1/2
0 (d − 2)

ζ + i

(
(d − 2)μ

c1
+ a1/2c1/2

μz0(d − 2)

)
ξ,

λ2 = a + i z1/2
0

(
(d − 2)μ

c1/2
+ 2a1c2

1

μc1/2(d − 2)

)
ζ − 2ia1c1

μ(d − 2)
ξ,

λ3 = a − ia1/2

μz1/2
0 (d − 2)

ζ − 2ia1c1

μ(d − 2)
ξ, (4.78)

which have field equations:

λ̈1 + ω2λ1 = O(ρ−3);
λ̈2 + ω2λ2 = O(ρ−3); (4.79)

λ̈3 + ω2λ3 = 2

F ′′(z0)ρ2

(
(d − 2)2μ2 + 2a1c2

1

+ a1/2c1/2z−1
0

)
λ3 + O(ρ−3).

From these we can read off the various coefficients of interest
to be

cλ1 = 0, cλ2 = 0, cλ3 = 2ν

F ′′(z0)
,

ν = (d − 2)2μ2 + a1/2c1/2z−1
0 + 2a1c2

1 (4.80)

and so the IR Green functions have the following scaling
behaviour:

Im[G R
λ1λ1

(ω � μ, T = 0)] ∼ ω,

Im[G R
λ2λ2

(ω � μ, T = 0)] ∼ ω, (4.81)

Im[G R
λ3λ3

(ω � μ, T = 0)] ∼ ω

√
8νF ′′(z0)−1+1.

Hence the dominant behaviour of the optical conductivity is

Re[σ(ω � μ, T = 0)]

∼
{
ω

√
8νF ′′(z0)−1+1−1 −F ′′(z0) ≤ 8ν < 0,

1 ν > 0.
(4.82)

In the previous section we derived restrictions on our param-
eter space and with these restrictions ν ≥ 0 and thus the
third operator (dual to λ3) is irrelevant. Hence the dominant
behaviour of the optical conductivity is controlled by the
marginal operators,

Re[σ(ω � μ, T = 0)] ∼ 1, (4.83)

which is consistent with metallic behaviour. In the next sec-
tions we will however show that our models do not behave as
ordinary metals with sharp Drude peaks but instead display
features more reminiscent of heavy fermion systems.
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4.6 Relation to Drude behaviour

As discussed in [15], in Drude metals momentum is dissi-
pated since

∂i 〈T i I 〉 = 〈Ji 〉Fi I − (ε + p)τr
−1uI . (4.84)

Here I denotes a spatial direction; i denotes all d spacetime
directions; J i is the current; Fi I is the gauge field strength;
τr is the relaxation constant; uI the spatial velocity; ε the
energy density and p the pressure. This equation reflects a
loss of momentum density at a rate proportional to the veloc-
ity. Noting that in equilibrium the momentum density P I is
T 0I = (ε + p)uI , the quantity τr can be interpreted as the
momentum relaxation timescale; the equation above is the
covariant generalisation of

dP I

dt
= qeI − P I

τr
(4.85)

with q the charge density and eI the electric field. In such a
model the optical conductivity takes the Drude form, namely

σ(ω) = σDC

(1 − iωτr )
(4.86)

where τr is the relaxation time given above and the DC con-
ductivity is σDC.

In the models analysed here, momentum relaxation is gov-
erned by the Ward identity

∇ i 〈Ti j 〉 = 〈J i 〉Fi j +
d−1∑

I=1

(
∂ jψ(0)I 〈OψI 〉 + ∂ jχ(0)I 〈OχI 〉

)
.

(4.87)

In the equilibrium black-brane configurations the gauge field
strength of the source Fi j is zero and the expectation values
of the scalar operators vanish. Working to linearised order in
the perturbations

∂ i 〈δTi j 〉 = qδFt j +
d−1∑

I=1

δ j I
(
c1/2〈δOψI 〉 + c1〈δOχI 〉

)
,

(4.88)

where q is the background charge density, defined below
(4.10). The time component of this identity reduces to

∂i 〈δT i0〉 = 0, (4.89)

so energy is conserved, but momentum is dissipated since

∂ i 〈δTi I 〉 = qδEI + (
c1/2〈δOψI 〉 + c1〈δOχI 〉

)
. (4.90)

The operator expectation values can be expressed in terms
of terms in the asymptotic expansions near the conformal

boundary as follows:

〈δTt I 〉 = d(δg(d)t I ) = de−iωt H(d)t I ;
δEI = ∂tδA(0)I = −iωe−iωt a(0)I ;
〈δOψI 〉 = a1/2

(d + 1)

c1/2
δψ(d+1)I

= a1/2
(d + 1)

c1/2
e−iωt�(d+1)I ;

〈δOχI 〉 = 2a1dδχ(d)I = 2a1de−iωtX(d)I .

(4.91)

The expressions for the stress energy tensor and the oper-
ators dual to the square root fields follow from linearising
the expressions given in (3.54) (with 16πGd+1 = 1). The
metric and scalar field perturbations are expressed in fre-
quency modes in (4.13); H(n)t I refers to the coefficient of
the zn term in the asymptotic expansion as z → 0. The
expressions for the expectation values of the operators dual
to the massless scalar fields follow from those given in [44],
taking into account the non-canonical normalisations of the
fields.

The Ward identity (4.90) can therefore be expressed in
terms of the following algebraic relation between terms in
the asymptotic expansions of the fields:

idωH(d)t I = iωqa(0)I + (d + 1)a1/2�(d+1)I

+ 2da1c1X(d)I . (4.92)

This identity is the leading order component of the equation
(4.17) as z → 0; recall that the diffeomorphism Ward identity
follows from the (z I ) Einstein equation, which is equivalent
to the (t I ) Einstein equation (4.17). This equation is only of
the form (4.85) if the last two terms are proportional to the
momentum density, i.e. H(d)t I , with a real coefficient of pro-
portionality. In the linearised limit, all normalisable modes
are proportional to a(0)I but the constants of proportional-
ity depend on the frequency and are complex. There is no
guarantee that in the ω → 0 limit the expression above can
be written in the form (4.85) with a real relaxation constant.
As we discuss in the next section, fitting the conductivity in
our model to the Drude form requires a complex relaxation
constant, i.e. momentum oscillations as well as dissipation.

4.7 AC conductivity numerics

In this section we explore the behaviour of the AC conductiv-
ity by numerically solving the linearised perturbations equa-
tions. To find the values of σ(ω)/μd−3 numerically we use
a Mathematica code to solve the shooting problem of solv-
ing these ODEs with the desired near-boundary asymptotics
and in-going boundary conditions at the horizon. The code
calculates the r series expansions of the dimensionless per-
turbations near the horizon and the boundary with some ran-
domly chosen initial data. This initial data is then used in
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Fig. 3 AC conductivity in
d = 3 for α̃ = 0, β̃ = 2

Fig. 4 AC conductivity in
d = 3 for α̃ = 1, β̃ = 2

Mathematica’s NDSolve function to integrate the ODEs to
some pre-determined point in the bulk. At that point the dif-
ference between the perturbations and their first derivatives
coming from the two ends is computed. The process is then
repeated for some initial data that is close to the randomly
chosen data to construct an approximation to the Jacobian.
We then proceed via the multivariate secant method of root

finding to find initial data that is a better approximation to
the true data that causes the difference function to vanish.
We analysed the case of d = 3 but a qualitatively similar
behaviour is likely to occur in other dimensions.

Included in Figs. 3, 4, and 5 are plots of our numerical
results for the temperatures τ = 0.1, 0.2, 0.3, 0.4, and τ =
0.5 with various model parameters, in all cases in d = 3.

123



Eur. Phys. J. C (2014) 74 :3176 Page 27 of 32 3176

Fig. 5 AC conductivity in
d = 3 for α̃ = 1, β̃ = 0

The numerical values of σ(0) show good agreement with
our analytic expression for σDC, with no difference above
the scale of accuracy set by our integration.

Using the numerical results one can also investigate the
fit to a Drude peak at low frequency. The numerics show that
one can only fit to a Drude formula using a relaxation time
τr which is complex; therefore our system does not behave
as a Drude metal even at very low temperature.

Unlike [3,4], we see no clear signs of scaling behaviour
of the optical conductivity at intermediate frequencies,
T < ω < μ. The AC conductivity displays several
features similar to that of heavy fermion compounds.
Heavy fermion materials also have a DC resistivity which
increases with temperature, with a transition from normal
metal behaviour to hybridised behaviour occurring below
the decoherence temperature. In the hybridised phase f-
electrons hybridise with conduction electrons, leading to
an enhanced effective mass and a hybridisation gap. Fig-
ure 5 shows that the peak in the conductivity sharp-
ens at low temperatures, and a minimum in the con-
ductivity develops for τ � 0.2 at intermediate frequen-
cies ω/μ ∼ 0.5. The minimum is enhanced by increas-
ing α̃ and decreasing β̃ (i.e. increasing the amplitudes
of the square root scalar fields and decreasing the ampli-
tudes of the massless scalar fields). In our models the
minima in the conductivity are strong coupling phenom-
ena, with the reduced conductivity being associated with
increased amplitudes of the scalar field fluctuations at these
frequencies.

5 Generalised phenomenological models

In this section we consider other phenomenological models
based on actions with massless scalar fields and square root
terms.

5.1 Scalar fields identified

As we noted earlier, our results for the DC conductivity repli-
cate the massive gravity results and indeed extend them to
d ≥ 3. To compare further with massive gravity we should
identify our two sets of scalar fields: ψI = χI . At the level
of the action this is just a simple substitution:

S =
∫

M
dd+1√−g

(
R + d(d − 1)− 1

4
F2

−
d−1∑

I=1

(a1/2

√
(∂ψI )2 + a1(∂ψI )

2)

)
, (5.1)

and similarly for the Einstein equations:

Rμν = −dgμν + 1

2

(
FμλFν

λ − 1

2(d − 1)
F2gμν

)

+
d−1∑

I=1

[
a1/2

2
√
(ψI )2

(
∂μψI ∂νψI + 1

d − 1
(ψI )

2gμν

)

+ a1∂μψI ∂νψI

]
(5.2)
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with the Maxwell equations being unchanged. The field equa-
tions for the scalar fields become

∇μ
[(

2a1 + a1/2√
(∂ψI )2

)
∇μψI

]
= 0, (5.3)

which clearly reduce to the field equations for the indepen-
dent fields case when either one of a1/2 or a1 vanishes. We
shall make the same ansatz for the black brane as earlier, with
the blackening function being

F(z) = 1 − m0zd + (d − 2)

2(d − 1)
(μz0)

2
(

z

z0

)2(d−1)

− α̃(μz)

d − 1
− β̃(μz)2

2(d − 2)
(5.4)

where now β̃ = 2a1c2/μ2 and α̃ = a1/2c/μ, and ψI = cx I .
This F(z)was to be expected as at the level of the background
spacetime imposingψI = χI is equivalent to imposing c1 =
c1/2 = c.

Now consider homogeneous finite frequency perturba-
tions around this background as before. The perturbation
analysis for the metric and Maxwell fields is effectively
unchanged whereas the scalar field perturbations ψI =
cx I + e−iωt�I (z) now yield

0 =
(

a1/2

cz
+ 2a1

)

×
[
� ′′

I +
(

F ′

F
− d − 1

z

)
� ′

I + ω2

F2�I − iωc

F2 Ht I

− c

{
H ′

z I +
(

F ′

F
− d − 1

z

)
HzI

}]

−a1/2

cz2 (�
′
I − cHzI ), (5.5)

which reduces to either of the previous two perturbed scalar
field equations in the appropriate limits. We shall once again
work in the gauge HzI = 0. The other two perturbation
equations are simply:

iω

F
H ′

t I − c

(
a1/2

cz
+ 2a1

)
� ′

I − i(d − 2)μωzd−1

Fzd−2
0

aI = 0;

a′′
I +

[
F ′

F
− d − 3

z

]
a′

I + ω2

F2 aI − (d − 2)μzd−3

Fzd−2
0

Ht I = 0.

(5.6)

We can again eliminate Ht I from the scalar perturbation
equations by defining a new variable

ξ̄I = ω−1z−(d−1)
(

a1/2

cz
+ 2a1

)
F� ′

I , (5.7)

which yields the following pair of field equations:

zd−3(z−(d−3)Fa′
I )

′ + ω2

F
aI

= (d − 2)2μ2

z2(d−2)
0

z2(d−2)aI + i(d − 2)μc

zd−2
0

z2(d−2)ξ̄I ;
(

2a1cz + a1/2

czd

)(
czd

2a1cz + a1/2
F ξ̄ ′

I

)′
+ ω2

F
ξ̄I

= −2a1cz + a1/2

cz

[
i(d − 2)μc

zd−2
0

aI − c2ξ̄I

]
, (5.8)

which reduce to the equations found earlier and in previous
works [12,18] in the appropriate limits.

The mass matrix has vanishing determinant and as such
one massless mode can be found. Consider the following
combination of fields:

λ1I = 1

B(z)

[
aI − i(d − 2)μz2d−3

zd−2
0 (2a1cz + a1/2)

ξ̄I

]
;

λ2I = 1

B(z)

[
(d − 2)2μ2z2d−3

z2(d−2)
0 (2a1c2z + a1/2c)

aI

+ i(d − 2)μz2d−3

zd−2
0 (2a1cz + a1/2)

ξ̄I

]
, (5.9)

where the coefficient function B(z) is given by

B(z) = 1 + (d − 2)2μ2z2d−3

z2(d−2)
0 (2a1c2z + a1/2c)

. (5.10)

The field equations for λ1I read

(
z−(d−3)Fa′

I − i(d − 2)μzd

(2a1cz + a1/2)z
d−2
0

F ξ̄ ′
I

)′

+ z3−dω2

F

(
aI − i(d − 2)μz2d−3

zd−2
0 (2a1cz + a1/2)

ξ̄I

)
= 0 (5.11)

or, equivalently,

zd−3�′
I + ω2 B

F
λ1I = 0 (5.12)

where �I is given by

�I = z−(d−3)Fa′
I − i(d − 2)μzd

(2a1cz + a1/2)z
d−2
0

F ξ̄ ′
I (5.13)

and is radially conserved in the limit ω → 0.
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For convenience we can rewrite�I in terms of the modes
λ1I and λ2I using the following relations:

aI = λ1I + λ2I ;

ξ̄I = i(d − 2)μ

zd−2
0 c

λ1 − i zd−2
0 (2a1cz + a1/2)

μ(d − 2)z2d−3 λ2
(5.14)

With these relations one can show that � is given by

�I = z−(d−3)F Bλ1I + (2d − 3)z−(d−2)λ2I

+ 2a1cz

2a1cz + a1/2
z−(d−2)λ2I . (5.15)

Notice that, in the case a1/2 = 0, this reduces to the previ-
ously known conserved quantity of [18].

The asymptotic and near-horizon analysis performed ear-
lier is largely unchanged. We already know the asymptotic
behaviour of the Maxwell perturbation aI :

aI = a(0)I + 〈JI 〉eiωt

d − 2
zd−2 + · · · (5.16)

from our earlier analysis. It is also clear that, as long as
a1/2 �= 0, ξ̄I has one normalisable mode z0, and one non-
normalisable mode z−(d−1). In the case a1/2 = 0 this non-
normalisable mode becomes z−(d−2) and the analysis reduces
to that in the previous work of [18]. Again we wish to turn
off boundary sources for these perturbations, so we turn off
non-normalisable modes. The asymptotic behaviour is thus
given by

ξ̄I = ξ̄
(0)
I + O(z). (5.17)

The coefficient 1/B(z) has asymptotic behaviour given by

1

B(z)
= 1 − (d − 2)2μ2

ca1/2z2(d−2)
0

z2d−3 + · · · (5.18)

and hence the massless mode λ1I , and conserved quantity
�I have the following asymptotic forms:

λ1I = a(0)I + · · · �I = 〈JI 〉eiωt + · · · . (5.19)

The near-horizon behaviour of the Maxwell field is unchanged:

aI = (z − z0)
iω/F ′(z0)[aH

I + O((z − z0))]. (5.20)

Making a similar ansatz to the earlier case one can deduce
that, to leading order, we have

ξ̄I = (z − z0)
iω/F ′(z0)[ξ̄ H

I + O((z − z0))]. (5.21)

Recalling that the optical conductivity is defined by (4.46)
and that the DC conductivity is the ω → 0 limit of this we
define the following auxiliary quantity:

σDC(z) = lim
ω→0

�I

iωλ1I
. (5.22)

Following the same steps as earlier we can show that this
quantity is radially conserved and thus we may evaluate it on
the horizon to find its value. Clearly σDC = limz→0 σDC(z)
from the above analysis. Hence the DC conductivity for this
model is given by

σDC = σDC(z0) = z−(d−3)
0 B(z0)

= z−(d−3)
0

(
1 + (d − 2)2μ2

2a1c2 + z−1
0 a1/2c

)
. (5.23)

This is consistent with our earlier result where the two sets
of scalars were treated as independent fields and it is also
consistent with [18,32].

To understand the behaviour of the optical conductivity we
first consider the low temperature, low frequency behaviour.
In the extremal limit one can express the fluctuation equations
near the horizon as

äI + ω2aI = 2

F ′′(z0)ρ2

[
(d − 2)2μ2aI

−i(d − 2)μczd−2
0 ξ̄I

]
+ O(ρ−3),

¨̄ξI + ω2ξ̄I = −2(2a1 + a1/2
cz0
)

F ′′(z0)ρ2

[
i(d − 2)μcz2−d

0 aI

−c2ξ̄I

]
+ O(ρ−3). (5.24)

These equations are diagonalised by the combinations

λ1I = aI − (d − 2)μzd−2
0

(2a1c + a1/2z−1
0 )

ξ̄I ;

λ2I = aI + i zd−2
0

μ(d − 2)
ξ̄I ,

(5.25)

resulting in

λ̈1I + ω2λ1I = O(ρ−3),

λ̈2I + ω2λ2I = 2

F ′′(z0)ρ2 (5.26)

×
(
(d − 2)2μ2 + 2a1c2 + a1/2cz−1

0

)
λ2I + O(ρ−3).

Therefore one obtains one massless mode and one (IR) irrel-
evant mode, whose dimension is as before, with the identifi-
cation c1 = c1/2 = c. The massless mode controls the con-
ductivity, which therefore has a peak at zero frequency. Since
the fluctuation equations are similar to those in the previous
section, we would expect a qualitatively similar behaviour in
this model.
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5.2 Other square root models

The final model we will consider is

S =
∫

M
dd+1x

√−g

⎛

⎝R + d(d − 1)− 1

4
F2

−a1

d−1∑

I=1

(∂χI )
2 − a1/2

√√√√
d−1∑

I=1

(∂ψI )2

⎞

⎠ . (5.27)

In general the scalar fields can no longer be considered inde-
pendently of each other, unlike the previous case. The black-
ening function in this model is

F(z) = 1−m0zd + (d − 2)2μ2

2(d−1)

z2(d−1)

z2(d−2)
0

− a1c2
1z2

d−2
− a1/2c1/2z

(d−1)3/2
,

(5.28)

which is consistent with that of massive gravity in d = 3.
Now let us consider perturbing the background solutions:

ψI → ψI + δψI , (5.29)

with corresponding perturbations of the gauge field and met-
ric. At the level of perturbation analysis and of the back-
ground metric, the change

∑
I

√
(∂ψI )2 → √∑

I (∂ψI )2 is
equivalent to the rescaling a1/2 → a1/2/(d − 1)1/2. We can
show this as follows. The two Lagrangians are

L1 = a1/2

d−1∑

I=1

√
(∂ψI )2, L2 = a′

1/2

√√√√
d−1∑

I=1

(∂ψI )2.

(5.30)

When one evaluates these Lagrangians onshell with the val-
ues ψI = cx I + δψI (t, z) to leading quadratic order in the
perturbations δψI one finds:

L1 = a1/2

(
(d − 1)cz + 1

2cz

d−1∑

I=1

(∂δψI )
2

)
,

L2 = a′
1/2

(d − 1)1/2

(
(d − 1)cz + 1

2cz

d−1∑

I=1

(∂δψI )
2

)
,

(5.31)

which are clearly equivalent under the identification a1/2 =
a′

1/2/(d −1)1/2. Any result we found earlier for the model of
Sect. 5 can therefore be applied to this model with a rescaling
of a1/2.

6 Conclusions

In this paper we have focussed on simple models of explicit
translational symmetry breaking. The main advantage of
these models is that the brane backgrounds are isotropic and
homogeneous and can therefore be constructed analytically.
The holographic duals to the bulk symmetry breaking can
also be explicitly identified, unlike in massive gravity models,
and correspond to switching on spatial profiles for marginal
couplings in the field theory.

Couplings growing linearly with spatial directions repre-
sent a qualitatively different mechanism for momentum dis-
sipation than lattice and phonon effects in an ordinary metal.
It is therefore perhaps unsurprising that our models do not
exhibit ordinary metal behaviour. Nonetheless these models
do show a peak in the optical conductivity at zero frequency;
the DC resistivity increases linearly in temperature at low
temperature in three boundary dimensions and by tuning the
parameters one obtain minima in the optical conductivity at
finite frequency. These features are reminiscent of strange
metals and heavy fermion systems and suggest that it may be
interesting to explore such models further.

The novel phenomenology is associated with the square
root actions (1.4): when this term is switched off one does
not find linear growth of the DC resistivity with tempera-
ture, for example. Despite the apparent non-locality of this
action, we showed in Sect. 3 that the holographic dictio-
nary is well defined and one can work perturbatively about
any background solution for this action. Moreover, we can
view (1.4) as a scaling limit of a brane action (2.61). Brane
actions exhibit no non-analytic behaviours when the back-
ground field profiles vanish and should give a qualitatively
similar phenomenological behaviour to (1.4). It would there-
fore be interesting to develop top-down phenomenological
models based on branes, which capture the desirable features
of (1.4).

One issue with our black-brane backgrounds is that they
have finite entropy at zero temperature, indicating that they
may not be the preferred phase at very low temperatures.
Generic Einstein–Maxwell-dilaton models admit Lifshitz
and hyperscaling violating solutions whose entropy scales to
zero at zero temperature; see [8,41,42,45–53], and it would
be straightforward to extend our discussion of translational
symmetry breaking using massless and square root scalar
fields to such models.
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Appendix A: Blackening function roots

Theorem Let F(z) be the smooth polynomial obeying the
Einstein equation and the constraints F(0) = 1, F(z0) = 0,
F ′(z0) = −4πT ≤ 0, with β̃ > 0 and α̃/(μz0) > 0. If zc is
a root of F(z) in the open interval (0, z0) then F ′(zc) < 0.

Proof Using the Einstein equation one can prove that at any
root zc of F(z):

zc F ′(zc) = −d + (d − 2)

2(d − 1)
(μz0)

2
(

zc

z0

)2(d−1)

+ α̃μzc

d − 1
+ β̃(μzc)

2

2(d − 2)
(A.1)

and hence one can show that

zc F ′(zc)− z0 F ′(z0)

= (d − 2)

2(d − 1)
(μz0)

2

[(
zc

z0

)2(d−1)

−1

]
+ α̃μz0

d−1

[
zc

z0
−1

]

+ β̃(μz0)
2

2(d − 2)

[(
zc

z0

)2

− 1

]
. (A.2)

Consider a root F(zc) = 0 where zc ∈ (0, z0). Clearly
(zc/z0)

n < 1 for any positive integer n ≥ 1. We know
by assumption that β̃ > 0, (μz0)

2, α̃μz0 > 0, hence
zc F ′(zc) < z0 F ′(z0) = −4πT ≤ 0. Therefore F ′(zc) < 0.

��
Lemma If T > 0 or F ′′(z0) > 0, T = 0 then F(z) has
no roots in the open interval (0, z0). (Note that F ′′(z0) is
automatically positive at T = 0 given the constraints of the
previous theorem.)

Proof of lemma We know that, since F ′(z0) ≤ 0 and
F ′′(z0) > 0, F(z) must be positive before the root. Since
we also know that F(0) = 1 is positive, there must be an
even number of odd multiplicity roots and there can be any
number of even multiplicity roots in the open interval (0, z0)

to ensure that we can continue from a positive value at 0 to a
positive value just before z0.

We know that if zc is a root, then F ′(zc) < 0. Thus there
can be no even multiplicity roots or odd multiplicity roots of
multiplicity larger than 1. This is because of the fact that if
p(x) = 0 is a polynomial with a root at x = xc of multiplicity
n, then p′(x) has a root at x = xc of multiplicity n − 1.

We also know that if zc is a simple root of F(z) then it
must have F ′(zc) < 0. There is no way to reconcile having
a non-zero number of such roots with the requirement that
F(z) must be positive just before the root z = z0. ��

Appendix B: DC conductivity and massive gravity

One can also obtain the DC conductivity by switching on zero
frequency perturbations, i.e. working strictly in the ω = 0
limit. In this case the Maxwell equation and the (t I ) com-
ponents of the Einstein equation immediately decouple. The
Maxwell equation is

a′′
I +

[
F ′

F
− d − 3

z

]
a′

I − μ(d − 2)zd−3

F
H ′

t I = 0, (B.1)

which can be rewritten as

(Fz3−da′
I − μ(d − 2)Ht I )

′ = 0. (B.2)

The Einstein equation is

− 1

2
F H ′′

t I + F

2z
(d − 1)H ′

t I +
(

F ′

z
− dF

z2

)
Ht I

= 1

2
(d − 2)μzd−1

(
−Fa′

I + d − 2

d − 1
μzd−1 Ht I

)

+ 1

2
a1/2c1/2zHt I . (B.3)

In the Einstein equation, the term in the second line is the
contribution from the scalar field parts of the action.

Now let us compare these equations to those arising in
massive gravity. The Maxwell equation is identical and the
first line in the Einstein (t I ) equation is the same. The contri-
bution in the second line is replaced by the contribution from
(2.46). Linearizing the latter around the background solution
gives

δT̄t I = 1

2
m2α1zHt I , (B.4)

which using (2.48) implies that these perturbation equations
match between massive gravity and the scalar model and
therefore the DC conductivities must match.
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