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Abstract We consider the gravitational collapse of a spher-
ically symmetric homogeneous matter distribution consist-
ing of a Weyssenhoff fluid in the presence of a negative cos-
mological constant. Our aim is to investigate the effects of
torsion and spin averaged terms on the final outcome of the
collapse. For a specific interior space-time setup, namely the
homogeneous and isotropic FLRW metric, we obtain two
classes of solutions to the field equations where depending
on the relation between spin source parameters, (i) the col-
lapse procedure culminates in a space-time singularity or
(ii) it is replaced by a non-singular bounce. We show that,
under certain conditions, for a specific subset of the former
solutions, the formation of trapped surfaces is prevented and
thus the resulted singularity could be naked. The curvature
singularity that forms could be gravitationally strong in the
sense of Tipler. Our numerical analysis for the latter solutions
shows that the collapsing dynamical process experiences four
phases, so that two of which occur at the pre-bounce and the
other two at post-bounce regimes. We further observe that
there can be found a minimum radius for the apparent horizon
curve, such that the main outcome of which is that there exists
an upper bound for the size of the collapsing body, below
which no horizon forms throughout the whole scenario.

1 Introduction

The final state of the gravitational collapse of a massive star is
one of the challenges in classical general relativity (GR) [1].

a e-mail: ah_ziaie@sbu.ac.ir; ah.ziaie@gmail.com
b e-mail: pmoniz@ubi.pt
c e-mail: a.ranjbar@cecs.cl
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A significant contribution has been to show that, under rea-
sonable initial conditions, the space-time describing the col-
lapse process would inevitably admit singularities [2]. These
singularities, can either be hidden behind an event horizon1

or visible to distant observers. In the former, a black hole
forms as the end product of a continual collapse process, as
hypothesized by the cosmic censorship conjecture2 (CCC)
[7–10] (see also [11–14] for reviews on the conjecture). The
latter are classified as naked singularities, whose existence
in GR has been established under a variety of specific cir-
cumstances and for different models, with matter content of
various types, e.g. scalar fields [15–18], perfect fluids [19–
24], imperfect fluids [25–28] and null strange quark fluids
[29,30]. The analysis has also been taken to wider gravita-
tional settings, such as f (R) theories [31], Lovelock gravity
[32] (see also [33–38] for some recent reviews) and hypoth-
esized quantum gravity theories [39–68]. This is an interest-
ing line of research because, the possible discovery of naked
singularities may provide us with an opportunity to extract
information from physics beyond trans-Planckian regimes
[69]; see e.g. ([70–76] for the possibility of observationally
detecting naked singularities).

1 There is a recent discussion by Hawking [3] arguing that this role
is played instead by the apparent horizon, which is formed during the
collapse process and is responsible for concealing the singularity to the
outside observers.
2 The CCC is categorized into two types, the weak cosmic censor-
ship conjecture (WCCC) and the corresponding strong version (SCCC).
WCCC states that there can be no singularity communicating with
asymptotic observers, thus forbidding the occurrence of globally naked
singularities, while SCCC asserts that timelike singularities never occur,
prohibiting the formation of locally naked singularities [4,5]. Whereas
the CCC is concerned with stability of solutions to Einstein’s field equa-
tions, there is a second class of censorship conjectures [6] which asserts
that all naked singularities are in some sense gravitationally weak.
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It is therefore well motivated to consider other realis-
tic gravitational theories whose geometrical attributes (not
present in GR) may affect the final asymptotic stages of
the collapse. More concretely, could ingredients mimick-
ing spin effects (associated with fermions) potentially influ-
ence the final fate of a collapse scenario? In fact, if spin
effects are explicitly present then GR will no longer be
the theory to describe the collapse dynamics. In GR, the
energy-momentum couples to the metric. However, when
the spin of particles is introduced into the framework, it is
expected to couple to a geometrical quantity related to the
rotational degrees of freedom in the space-time. This point
of view suggests a space-time which is non-Riemannian,
namely generalizations of GR induced from the explicit pres-
ence of matter with such spin degrees of freedom [77–79].
One such framework, which will allow non-trivial dynam-
ical consequences to be extracted is the Einstein–Cartan
(EC) theory [79,80] where the metric and torsion deter-
mine the geometrical structure of space-time.3 The torsion
can be interpreted as caused by microscopic effects, e.g., by
fermionic fields which are not taken explicitly into account
[78].

Within the context of EC theories, it has been shown
that considering the induced repulsive effects extracted from
(averaged) spin interactions, the Big-Bang singularity can be
replaced by a non-singular bounce, before which the universe
was contracting and halts at a minimum but finite radius [88–
100]. However, a curvature singularity as the final fate of a
gravitational collapse process can still occur even if explicit
spin–torsion and spin–spin repulsive interactions [101] are
taken into account. The argument that has been put forward
is that since photons neither produce nor interact with the
space-time torsion, the causal structure of an EC manifold,
determined by light signals, is the same as in GR. Hence
the singularity theorems in GR can be generalized to the EC
theory by taking into account a combined energy-momentum
tensor which would include, by means of some suitable aver-
aging procedure, spin contributions [102].

The results conveyed within this paper are twofold. We
consider a spherically symmetric configuration in the pres-
ence of a negative cosmological constant [103–114] whose
matter content is assumed to be a homogeneous Weyssen-
hoff fluid [115–119] that collapses under its own grav-
ity. On the one hand, the first class of our solutions is
shown to evolve toward a space-time singularity where the
role of the negative cosmological constant is to set up the
gravitational attraction through a positive pressure term.

3 Somewhat related to such settings, let us mention the teleparallel
theories of gravity [81,82], as well as the Lyra theory [83–85]. The
latter concerning the propagation of torsion by means of expressing it
as the gradient of a scalar field. This scalar field can be suitably regarded
as a gauge function, describing a torsion potential or as a Brans–Dicke
scalar field which couples non-minimally to the curvature [86,87].

Then, as the collapse proceeds, a repulsive pressure com-
puted from averaged spin–spin and spin–torsion interac-
tions, balances the inward pressure, preventing trapped sur-
faces from forming in the later stages. Thus, the result-
ing singularity could be at least locally naked. More-
over, it is pertinent to point out that our analysis shows
that, depending on the spin and energy density parame-
ters, trapped surfaces can either be formed or avoided. On
the other hand, second class of solutions suggest that the
spin contributions to the field equations may generate a
bounce that averts the formation of a space-time singular-
ity. Let us furthermore note that, in contrast to some alter-
native theories of gravity e.g., the Gauss–Bonnet theory
in which the Misner–Sharp energy is modified [120,121],
our approach will involve only the manipulation of the
matter content. Hence the Misner–Sharp energy which is
the key factor that determines the dynamics of the appar-
ent horizon is defined in the same manner as that in GR
[122–124].

The organization of this paper is then as follows. In Sect. 2
we present a brief review on the background field equations
of the EC theory in the presence of a Weyssenhoff fluid and
a negative cosmological constant. Section 3 provides a fam-
ily of solutions, some of which represent a collapse scenario
that leads to a space-time singularity within a finite amount
of time. In Sect. 4 we study the dynamics of apparent hori-
zon and induced spin effects on the formation of trapped
surfaces and show that trapped surface avoidance can occur
for a subset of collapse settings. We examine the curvature
strength of the naked singularity in Sect. 4.2 and show that
the singularity is gravitationally strong in the sense of Tipler
[125–127]. A second class of solutions exhibiting a bounce
is presented in Sect. 4.3 where we show how the presence
of a spin fluid could affect the dynamics of the apparent
horizon. In Sect. 5 we present a suitable solution for an exte-
rior region and discuss therein the matching between inte-
rior and exterior regions. Finally, conclusions are drawn in
Sect. 6.

2 Equations of motion

The action for the EC theory can be written in the form [78]

S =
∫

d4x
√−g

{−1

κ2 (R̂ + 2�)+ Lm

}
=
∫

d4x
√−g

×
{−1

κ2

[
R({})+ K α

ραK ρλ
λK α

ρλK ρλ
α + 2�

]
+ Lm

}
,

(1)

where R̂ is the Ricci scalar constructed from the general
affine connection �̂αμν and can be expressed, in general, as
a function of independent background fields, i.e., the metric
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field gμν and the affine connection. The quantity Kμνα is the
contorsion tensor defined as

Kμ
αβ = 1

2

(
Tμαβ − T μ

α β − T μ
β α

)
, (2)

with the space-time torsion tensor T αμν being geometrically
defined as the antisymmetric part of the general affine con-
nection

T αμν = �̂αμν − �̂ανμ. (3)

and Lm is the matter Lagrangian; � is the cosmological
constant. We take the metric signature4 as (+,−,−,−)
and κ2 ≡ 16πG. The presence of torsion in the macro-
scopic structure of space-time can, theoretically, be attributed
to microscopic fermionic matter fields with spin angular
momentum degrees of freedom. In this paper, we take the
matter part of the action to be described by a Weyssen-
hoff fluid [115–119] which macroscopically is a continu-
ous medium but also conveys features that can be suitably
associated with the (averaged) spinor degrees of freedom of
microscopic matter fields. Moreover, it has been shown that
with the assumption of the Frenkel condition (also known
as the Weyssenhoff condition), the setup may be equiva-
lently described by means of an effective fluid in a plain
GR setting where the effective energy momentum tensor con-
tains additional (spin induced) terms [128]. More concretely,
the Lagrangian for the matter content can be subsequently
decomposed as

Lm = LSF + LAC. (4)

The Lagrangian LSF contains the induced effects of a spin-
ning fluid which can be written in terms of a perfect fluid
contribution and a characteristic spin part [129].5 LAC con-
veys a minimal coupling of a spinor axial current with torsion
[130].6 Therefore, we may write

LAC = JμSμ, (5)

where Jμ = 〈ψ̄γ 5γ μψ〉 and Sμ = εαβρμT αβρ correspond to
the (averaged) spinor axial current7 and axial torsion vector,

4 For the sake of generality, we keep κ and� throughout the equations
but in plotting the diagrams we set the units so that c = h̄ = κ = 1 and
� = −1.
5 This term can be represented by an effective four fermion interaction
which, together with a part from a Dirac Lagrangian, can be realized as
Nambu–Jona-Lasinio effective action in 4D.
6 In more detail, LAC can be associated to a chiral interaction that
corresponds to the coupling of contorsion to the massless fermion fields
due to a massless Dirac Lagrangian in a curved background.
7 The axial current has been pointed out in the literature as responsible
for the Lorentz violation. Constraints have been imposed on some of
the torsion components due to recent Lorentz violation investigations
[131].

respectively.8 Varying the action with respect to the contor-
sion together with using (2) gives [128]

Tμνα + 2gμ[νT α] = κ2τανμ, (6)

where Tμ = T ρμρ and τμνα is the spin angular momentum
tensor given by

τμνα := 1√−g

δ(
√−gLm)

δKμνα
:= τ

μνα
AC + τ

μνα
SF . (7)

Moreover, considering the decomposition of the spin angular
momentum as τμναSF = − 1

2 Sμνuα [115–119], where uα is the
fluid 4-velocity, Sμν is the antisymmetric spin density tensor
representing the effective source of torsion. In the EC theory,
in contrast to the metric, the torsion is not really a dynami-
cal field; the left hand side of (6) contains no derivatives of
the torsion tensor and indeed appears as a purely algebraic
equation. Torsion can therefore be eliminated by replacing it
with the spin density Sμν and hence implying a modification
to the Einstein field equations. Using the Frenkel condition,9

Sμνuν = 0, the torsion constraint equation (6) may be rewrit-
ten in the form

Tμνα = −κ2
(

2εμναρ Jρ − 1

2
Sναuμ

)
. (8)

At this point it is useful to show how the Weyssenhoff fluid
can fit the Frenkel condition. More precisely, this condition
results in an algebraic relationship between the spin density
tensor and torsion as

Tν = Tμνμ = κuμSνμ, (9)

which can also be retrieved directly from the formalism pro-
posed in [132]. Therefore, by virtue of the Frenkel condition,
this means that the only remaining degrees of freedom of the
torsion are the traceless components of the torsion tensor.
Furthermore, the axial torsion vector can be written, with the
assistance of (2) and (8), as

Sμ = εαβρμ
(
2K αβρ

) = 12κ2 Jμ + 1

2
κ2εαβρμSαβuρ. (10)

It is now straightforward to obtain the dynamical equations of
motion, varying the action (1) with respect to the dynamical
field gμν , which can be written as

8 γ μ is defined by
[
γ μ, γ ν

] = 2gμν , γ 5 = −i√−g
γ0γ1γ2γ3 is a chiral

Dirac matrix, ψ is a fermion field, ψ̄ = ψ†γ 0 is the conjugate fermion
field and εαβρμ is the totally antisymmetric Levi-Civita tensor.
9 This translates as saying that the intrinsic spin contribution (in the
form of the antisymmetric spin density tensor) of a matter field is space-
like in the rest frame of the fluid.
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Gμν −�gμν − K α
μαK λ

νλ − 1

2
T αρμT ρνα

−1

2
T αμλT λ

α ν − 1

4
TμρλT ρλ

ν

+1

8
gμν

(
4K α

ραK λρ
λ + 2T αρλTρλα − T αρλTαρλ

)

= κ2

2
Tμν. (11)

Substituting for the contorsion from (2) into the above equa-
tion and using (8), we subsequently get

Gμν −�gμν − κ4
[

gμν J 2 + 2Jμ Jν − 1

4
gμν Jσ ε

αρλσ Sρλuα

−1

2
Jσ ε

ρλσ

(μ uν)Sρλ + 1

32
gμνSρλSρλ − 1

8
SμλS λ

ν

+ 1

16
uμuνSρλSρλ

]
= κ2

2

(
T SF
μν + T AC

μν

)
, (12)

where J 2 = Jμ Jμ. The energy-momentum tensor contains
two contributions from the axial current, T AC

μν , and the spin
fluid, T SF

μν , which can be expressed10 after employing a suit-
able spin averaging as

〈T AC
μν 〉 = −8κ2gμν J 2 − 4κ2 Jμ Jν, (13)

〈T SF
μν 〉 = −2κ2

3
uμuνσ

2 + κ2

6
gμνσ

2

+ [
(ρSF + pSF)uμuν − pSFgμν

]
, (14)

where we have replaced the various spin-averaged quantities
with [128]

〈SμνSμν〉 = 2σ 2, (15)

〈S ρ
μ Sνρ〉 = 2

3

(
gμν − uμuν

)
σ 2, (16)

〈Sμν Jα〉 = 0. (17)

From a macroscopic point of view, the spin fluid can therefore
be considered as a contribution from a conventional perfect
fluid with the associated energy density ρSF and pressure pSF

plus the first two terms in (14), which represent characteristic
spin contributions and arise from a suitably averaged micro-
scopic treatment of the fluid. Inserting(13) and (14) into (12),

10 The spin–spin and spin–torsion interactions are only significant over
microscopic ranges, i.e., at sufficiently high matter densities. This means
that the EC theory does not directly challenge general relativity at large
scales. In order to take into account the macroscopic effects of spin
contributions within the framework of EC theory, a suitable averaging
of the spin is assumed [133]. It is worth mentioning that in the process
of taking the average of a spherically symmetric isotropic system of
randomly oriented spin particles, the average of the spin density tensor is
assumed to vanish, 〈Sμν〉=0, but for the spin squared terms 〈Sμν Sμν〉 �=
0.

together with the above spin averaging, we finally obtain the
dynamical field equations [128]:

Gμν −�gμν = κ4
[
−3gμν J 2 + 1

16
gμνσ

2 − 1

8
uμuνσ

2
]

+κ
2

2

[
(ρSF + pSF)uμuν − pSFgμν

]
. (18)

3 Solutions to the field equations

In this section, we will find a class of collapse solutions which
lead to the formation of a space-time singularity. If the space-
time is assumed to have fewer symmetries (that is, inhomo-
geneities or anisotropies), there is a paucity of physically
reasonable exact solutions available owing to the intrinsic
difficulties. We therefore restrict the discussion to a homo-
geneous and isotropic interior line element, representing the
FLRW geometry [2]

ds2 = dt2 − a2(t)dr2 − R2(t, r)d�2, (19)

where R(t, r) = ra(t) is the physical radius of the collapsing
matter, with a(t) being the scale factor and d�2 the standard
line element on the unit 2-sphere. The field equations for the
above metric read

3H2 −� = κ4
[
−3J (t)2 − σ(t)2

16

]

+κ
2

2
ρSF(t) ≡ ρeff(t), (20)

− 2Ḣ − 3H2 +� = κ4
[

3J (t)2 − σ(t)2

16

]

+κ
2

2
pSF(t) ≡ peff(t), (21)

where H = Ṙ/R = ȧ/a is the rate of collapse. Since we
are interested in a continual collapse process, Ṙ(t, r) must
be negative. Notice that we may consider the cosmological
constant term as vacuum energy density [134]. The continuity
equation for the matter fluid is therefore

ρ̇SF + 3H(ρSF + pSF) = κ2
[

12J J̇ + σ σ̇

4
+ 3H

4
σ 2
]
.

(22)

As we mentioned in Sect. 2, the geometry and matter con-
tent effectively induce a macroscopic perfect fluid contri-
bution with the barotropic equation of state pSF = wρSF,
together with intrinsic spin contributions that are present
in the form of averaged quadratic terms which may admit
a possible microscopic representation as, e.g., unpolarized
fermions.11 It is plausible to assume that the fermions par-
ticipating in the collapse process behave as ultra-relativistic

11 In a collapse setting whose matter content is explicitly fermion
dominated it is conceivable that the effective spinning fluid might be
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particles. Thus the number density (nf ) of a fermionic gas,
satisfying the Fermi–Dirac distribution, can be approximated
by nf ∝ a−3; see [144] for more details. So the squares of
the spin density and the axial current, which are proportional
to n2

f [128,129,133], depend on the scale factor as12

J 2 = J 2
0 a−6, σ 2 = σ 2

0 a−6. (23)

However, we proceed with a general setup [145,146] where
J 2 = J 2

0 an and σ 2 = σ 2
0 an (n ∈ R

−). Therefore, from (22)
it is easy to obtain13 the energy density

ρSF(a) = C0a−3(1+w) + α

n + 3(1 + w)
an, (24)

where

C0 =
(
ρiSF − αan

i

n + 3(1 + w)

)
a3(1+w)

i ,

α = κ2

8

[
(n + 6)σ 2

0 + 48n J 2
0

]
, (25)

and we take n + 3(1 +w) �= 0, w �= −1. Solving equations
(20) and (21) with the use of (24) leads to

(
ȧ

a

)2

= �an + κ2

6
C0a−3(1+w) + �

3
, (26)

2
ä

a
= �(n + 2)an − κ2

6
C0(1 + 3w)a−3(1+w) + 2�

3
,

(27)

where ρiSF and ai are the initial values of the energy density
and scale factor, respectively, and

� = κ4

[
σ 2

0 (1 − w)− 48J 2
0 (1 + w)

16(n + 3(1 + w))

]
. (28)

From (26), in order to calculate the singularity time we need
to evaluate the following integral:

Footnote 11 continued
polarized. Thus, a spin alignment due to the presence of strong magnetic
fields (cf. [135–138]) may potentially affect the collapse dynamics and
therefore, quite possibly, its final outcome. Moreover, from a macro-
scopic viewpoint, each particle in the cluster undergoing gravitational
collapse may also have orbital angular momentum, so that the net effect
of all the particles is to introduce a nonzero tangential pressure in the
energy-momentum tensor. Such rotational effects on the collapse pro-
cess (e.g., gravitational collapse of a system of counter-rotating particles
- the“ Einstein cluster”[139,140]) have been studied in [141–143]. It is
shown there that trapped surface formation can be avoided, and so the
singularity can be visible, if the angular momentum is strong enough.
12 In general, σ 2

0 and J 2
0 are the source parameters for the squared spin

density and axial current, respectively, and should not be confused with
their initial values defined as σ 2

i = σ 2
0 an

i and J 2
i = J 2

0 an
i .

13 The choice w = −1 is discussed separately at the end of Sect. 4.3,
because it corresponds to a non-singular case.

ti− t =
∫ a(t)

ai

da

a
[
�an + κ2

6 C0a−3(1+w) + �
3

] 1
2

=
∫ a(t)

ai

da√
�

[
1 + κ2C0

6�
a−(n+3(1+w)) + �

3�
a−n

]− 1
2

a− n+2
2 .

(29)

The initial physical radius of the collapsing volume, R0 =
air , can be chosen so that the scale factor starts at ai and as the
collapse proceeds the scale factor decreases (ȧ < 0). There-
fore, following Theorem 3.1 in [15], if we take the interval
(0, ai ) to be sufficiently small we can use the binomial expan-
sion to evaluate the term under the square root. We can then
write the integrand in the region n < 0 and |n| > 3(1 + w)

as

[
1 + κ2C0

6�
a−(n+3(1+w)) + �

3�
a−n

]− 1
2

= 1 +
∞∑

k=1

(− 1
2

k

)[
κ2C0

6�
a−(n+3(1+w)) + �

3�
a−n

]k

, (30)

leading to

√
�(ti − t) = −2

n

[
a(t)−

n
2 − a

− n
2

i

]
+

∞∑
k=1

(− 1
2

k

)

×
∫ a(t)

ai

da a− n+2
2 F(a), (31)

where

F(a) =
[
κ2C0

6�
a−(n+3(1+w)) + �

3�
a−n

]k

. (32)

Next we proceed to expand F(a) which reads

F(a) =
k∑

j=0

(
k

j

)(
κ2C0

6

) j
�k− j

3k− j�k
a−(nk+3 j (1+w)). (33)

Substituting (33) into (31) and performing the integration we
finally get

√
�(ti − t) = −2

n

[
a(t)−

n
2 − a

− n
2

i

]

−
∞∑

k=1

k∑
j=0

(− 1
2

k

)(
k

j

)(
κ2C0

6

) j
�k− j

3k− j�k

×

⎧⎪⎨
⎪⎩

a(t)
−
(

n
(

k+ 1
2

)
+3 j (1+w)

)
− a

−
(

n
(

k+ 1
2

)
+3 j (1+w)

)
i

n
(
k + 1

2

)+ 3 j (1 + w)

⎫⎪⎬
⎪⎭ .

(34)
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Now, if we retain only the terms with k = 1 in the double
summation in (34) we find

1

A

{
α1

[
a(t)−

3
2 (n+2(1+w)) − a

− 3
2 (n+2(1+w))

i

]

+α2

[
a(t)−

n
2 − a

− n
2

i

]
+ α3

[
a(t)−

3n
2 − a

− 3n
2

i

]}

= −(t − ti ), (35)

where

A = 18�
3
2 n(n + 2(1 + w)), α1 = nC0κ

2,

α2 = −36�(n + 2(1 + w)), α3 = 2�(n + 2(1 + w)).

(36)

As the time of the singularity is approached (t → ts) the
scale factor must vanish, which is guaranteed if n < 0 and
|n| > 2(1 + w). The latter condition, |n| > 3(1 + w), is
sufficient to ensure that |n| > 2(1 + w). The time at which
the singularity forms is therefore

ts ≈ ti + a
− 3

2 (n+2(1+w))
i

18�
3
2 n(n + 2(1 + w))

×
[
nC0κ

2 − 2a3(1+w)
i (n + 2(1 + w))(18�an

i −�)
]
.

(37)

4 Spin effects on the collapse dynamics

4.1 Singular solutions

We are now in a position to examine whether the singularity
occurring in the collapse setting presented in the previous
section is hidden behind a horizon or is visible to external
observers. The singularity is covered within an event hori-
zon if trapped surfaces emerge early enough before the singu-
larity formation and may be visible if the apparent horizon,
which is the outermost boundary of trapped surfaces, fails
to form or is delayed during the collapse process. The key
factor that determines the dynamics of the apparent horizon
is the Misner–Sharp energy [147] which describes the mass
enclosed within the shell labeled by r at the time t , and is
defined as [122–124]

M(t, r) = R(t, r)

2

[
1 + gμν∂μR(t, r)∂νR(t, r)

]

= R(t, r)Ṙ(t, r)2

2
. (38)

It is worth mentioning that in our study the effect of the
torsion is to add extra spin-dependent terms to the energy-
momentum tensor, which in turn react on the space-time
geometry. It thus affects the dynamics of the apparent hori-
zon. The space-time is said to be trapped, untrapped, and

marginally trapped if, respectively,

2M(t, r)

R(t, r)
> 1,

2M(t, r)

R(t, r)
< 1,

2M(t, r)

R(t, r)
= 1. (39)

The field equations (20) and (21) can then be rewritten as
[148,149]

2M ′(t, r)
R2 R′ = ρeff(t)+ ρ� ≡ ρtotal(t),

−2Ṁ(t, r)

R2 Ṙ
= peff(t)+ p� ≡ ptotal(t), (40)

From (38) and (26) we readily get

2M(t, r)

R(t, r)
= r2

3

[
3�a(t)n+2 + κ2

2
C0a(t)−(1+3w) +�a(t)2

]
.

(41)

So provided that the solution lies in the allowed region, that
is, |n| > 3(1 + w), −2 < n < 0 and w < − 1

3 , then if
(2M/R) < 1 initially, or equivalently

r2

3

[
3�an+2

i + κ2

2
C0a−(1+3w)

i +�a2
i

]
< 1 (42)

(as required by regularity [1]), the ratio will remain less than
1 until the singularity occurs, and a trapped surface will
not form. Otherwise (if n < −2 or w > −1/3), the ratio
2M/R eventually exceeds 1 as the collapse proceeds, so that
a trapped surface forms before the singularity and therefore
covers it. From the second part of (40), the total pressure can
be obtained as

ptotal = κ2

2
C0wa(t)−3(1+w) − �(n + 3)an −�. (43)

The initial data of the collapsing configuration can be chosen
so that the effective pressure is positive at initial epoch, the
moment at which the matter distribution begins to collapse
at rest, ȧ(ti ) = 0. This can be achieved if

κ2

2
C0(1 + w) > �nan+3(1+w)

i > 0. (44)

Having the above condition satisfied, we see that the first and
second terms in the right hand side of (43) dominate the third
one (for � < 0) and the total pressure becomes negative for
−1 < w < −1/3 and −2 < n < 0. We require � > 0 so that
the singularity time is real. Therefore, we can deduce that
at later stages of the collapse the failure of trapped surfaces
to form is accompanied by a negative pressure [150], which
is indeed produced due to the fermion condensation. On the
other hand, if n < −2 and w > − 1

3 , which satisfies the
condition for trapped surface formation, the pressure can be
initially set to be positive and remains positive up to the final
stages of the collapse.

Although the pressure is allowed to take on negative val-
ues, the collapse process will be physically reasonable if the
weak energy condition is preserved throughout the collapse.
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The weak energy condition (WEC) states that the energy
density as measured by any local observer is non-negative.
Thus, along any non-spacelike vector, the following condi-
tions have to be satisfied:

ρtotal ≥ 0, ρtotal + ptotal ≥ 0. (45)

We thus have

ρtotal = �+ κ2

2
C0a(t)−3(1+w) + 3�a(t)n ≥ 0,

ρtotal + ptotal = κ2

2
C0(1 + w)a(t)−3(1+w) − n�a(t)n ≥ 0.

(46)

The initial data can be suitably chosen so as to make the sec-
ond and third terms in the first inequality dominate initially
over the first negative term so that the inequality holds ini-
tially. Then as these terms diverge at later times the whole
inequality remains valid. Therefore it is enough to satisfy

�+ κ2

2
C0a−3(1+w)

i + 3�an
i ≥ 0. (47)

The second inequality is automatically satisfied since w >

−1, � > 0 and n < 0. Therefore, the initial setup which
subsequently guarantees the validity of the weak energy con-
dition has to satisfy (47). We note that the second inequality
in (45) implies the validity of the null energy condition.

The quantities related to spin source parameters, σ 2
0 and

J 2
0 , together with those related to initial values of energy

density and scale factor, the barotropic index, w and the
exponent of divergence of spin densities, n, all feature in
a six-dimensional space of free parameters. In view of equa-
tion (41), the quantities n and w determine the formation of
trapped surfaces in the dynamical evolution of the collapse.
Therefore, any point chosen from the four-dimensional sub-
space (σ 2

0 , J 2
0 , ρiSF , ai ) constructed by fixing values of n and

w represents a collapse scenario that may either end in a
black hole or a naked singularity. However, not all the points
in this subspace are suitable. For the sake of physical reason-
ableness the initial configuration should satisfy the regular-
ity condition, (42), the weak energy condition (47) and the
positivity of total initial pressure (44). That is, the collapse
solution starting from the four-dimensional space mentioned
above should respect these conditions. Recall that we demand
� > 0 and we choose the initial data so that C0 > 0 (the case
with C0 > 0 and � < 0 shall be presented as the bouncing
solutions). To ensure the physical reasonability of the col-
lapse scenario we require ts > ti . Figure 1 presents numeri-
cally the two-dimensional subspace of the allowed region of
n and w parameters for fixed values of σ 2

0 , J 2
0 , ρiSF and ai .

We note that the regions of the two-dimensional parameter
space for the formation or otherwise of trapped surfaces, as
simply given by (41), get more restricted due to the physical
reasonableness of the collapse setting.

6 5 4 3 2 1
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

n

w
Fig. 1 The allowed region for n and w for trapped (brown zone) and
untrapped regions (yellow zone) for ρiSF = 0.01, ai = 0.1, σ 2

0 =
0.00035 and J 2

0 = 0.00275, r = 0.1 and ti = 0

Finally, referring back to (24), the only case which we
have already excluded14 is the case for which w = 0 and
n = −3. One can treat this situation by solving (20)–(22) for
these values to find

ρSF(a) = ρiSF

(ai

a

)3 + 3κ2

8a3

(
σ 2

0 − 48J 2
0

)
log

(
a

ai

)
, (48)

H2 = C2

a3 + κ4

16a3

(
σ 2

0 − 48J 2
0

)
log(a)+ �

3
, (49)

where

C2 = −κ
4

48

(
σ 2

0 + 48J 2
0

)
− κ4

16

(
σ 2

0 − 48J 2
0

)
log(ai )+ κ2

6
a3

i ρi .

(50)

Looking at the form of (49), it obviously results in the forma-
tion of trapped surfaces as the scale factor approaches zero.
Taking all discussions as regards the physical reasonableness
and energy conditions in this section as granted, demanding a
physical solution will impose the conditionσ 2

0 ≤ 48J 2
0 on the

spin properties of the matter. In other words, this solution cor-
responds to a four-dimensional subspace (w = 0, n = −3),
of the six-dimensional parameter space of the problem which
is also constrained by the condition σ 2

0 ≤ 48J 2
0 . More inter-

estingly, for the case where σ 2
0 = 48J 2

0 corresponding to
a macroscopic dust fluid, the collapse ends in a black hole
with the exterior solution, after a suitable space-time match-
ing, as that of the Schwarzschild–anti-de Sitter space-time;
see Sect. 5 for more details.

14 Through the whole paper, we are excluding this case unless it is
explicitly mentioned.
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4.2 Strength of the naked singularity

In order to make our discussion in the previous subsection
more concrete we need to investigate the curvature strength of
the naked singularity which is an important aspect of its phys-
ical nature and geometrical importance. The main underlying
idea is to examine the rate of curvature growth along non-
spacelike geodesics ending at the singularity, in the limit of an
observer approaching it. The singularity is said to be grav-
itationally strong in the sense of Tipler [125–127] if every
collapsing volume element is crushed to zero size at the sin-
gularity, otherwise it is known as weak. It is widely believed
that when there is a strong curvature singularity forming, the
space-time cannot be extended through it and is geodesically
incomplete. While if the singularity is gravitationally weak
it may be possible to extend the space-time through it clas-
sically. In order that the singularity be gravitationally strong
there must exist at least one non-spacelike geodesic with tan-
gent vector ξμ, along which the following condition holds in
the limit mentioned above:

� = lim
λ→0

λ2 Rμνξ
μξν > 0, (51)

where Rμν is the Ricci tensor and λ is an affine parameter
which vanishes at the singularity.

Let us now consider a radial null geodesic with tangent
vector ξμ = dxμ/dλ = (ξ t , ξ r , 0, 0) that terminates at the
singularity at λ = 0. We note that since ξμ is an affinely
parametrized null geodesic, we have

ξμξμ = 0, ξμ∇μξν = 0. (52)

From the null condition for ξμ, with the help of the space-
time metric (19), we obtain

dt

dr
= ξ t

ξ r
= a(t), (53)

while the geodesic equation results in the following differ-
ential equations:

ξ t ξ̇ t + aȧ(ξ r )2 = 0,

ξ t ξ̇ r + 2
ȧ

a
ξ tξ r = 0, (54)

which give the vector field tangent to the null geodesics as

ξμ = (a−1, a−2, 0, 0). (55)

Next we proceed to check the quantity given by (51) which,
with the use of field equation (18), reads

� ∝ lim
λ→0

λ2Tμνξ
μξν = lim

λ→0
λ2
[
Ttt (ξ

t )2 + Trr (ξ
r )2
]

= lim
λ→0

λ2
[
κ2C0(1 + w)

2a(5+3w)
− n�

a2−n

]
, (56)

where use has been made of (53) and (55) and the null energy
condition (46). Next, we proceed by noting that

d

dλ
aδ = δHaδ−1,

d2

dλ2 aδ = δaδ−2
[

Ḣ + (δ − 1)H2
]
.

(57)

Consequently, we find that

� ∝ lim
λ→0

{
κ2C0(1 + w)

(5 + 3w)a3(1+w) [Ḣ + (4 + 3w)H2
]

− 2n�

(2 − n)a−n
[
Ḣ + (1 − n)H2

]
}
. (58)

Substituting for the rate of collapse from (26) and noting that
the terms a−n and a−(n+3(1+w)) go to zero when the scale
factor vanishes if n < 0, −1 < w ≤ 1 and |n| > 3(1 + w),
we finally get in the limit of approach to the singularity

� ∝ 2|n|
(2 + |n|)

(
1 + |n|

2

) > 0. (59)

Therefore, the strong curvature condition is fulfilled along
the singular null geodesics and the naked singularity is grav-
itationally strong in the sense of [125–127].

4.3 Non-singular solutions

In Sect. 4.1 we studied the solutions to the field equations that
exhibit the formation of space-time singularity. However, it is
expected that the spin effects, which become more important
in the very late stages of the collapse procedure, oppose the
pull of gravity to balance it. In such a scenario, the collapse
changes to expansion at a turn-around point of the scale factor
leading to the singularity removal. Such a class of solutions
can be found by setting � < 0 in (26). Let us consider the
process of collapse that begins at an initial epoch ti with
the initial value of the scale factor ai . As the collapse enters
the small scale factor regime at a time, say, tcr > ti with
acr < ai , the third term in (26) is negligible and we can write
(we consider here the dust case with n = −6)

ȧ2 � �a(t)−4 + κ2C0

6
a(t)−1, (60)

for which the solution reads

a(t) =
[

a3
cr + 3

8
C0κ

2(t − tcr)
2 − B(t − tcr)

] 1
3

, (61)

where

B =
[

9�+ 3

2
κ2C0a3

cr

] 1
2

. (62)

The above solution exhibits a bounce occurring at the finite
time tb where the collapse halts (ȧ(tb) = 0) at a minimum
value of the scale factor given by
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Fig. 2 Left panel Time behavior of the scale factor for ai = 0.986,
n = −6, w = 0 and σ 2

0 = 0.89, J 2
0 = 0.01, ρiSF = 2.034 (solid

curve), σ 2
0 = J 2

0 = 0, ρiSF = 2 (dashed curve) and σ 2
0 = 0.35

and J 2
0 = 0.011 (dotted curve). The first and second inflection

points occur at the times t1inf = 1.513 and t2inf = 2.113, respec-

tively. The scale factor at this point takes the value ainf = 0.445.
The bounce occurs at the time tb = 1.813 for which the scale
factor takes the value amin = 0.299. Right panel Time behavior of
the scale factor for different values of spin density divergence parameter

amin =
(

6|�|
κ2C0

) 1
3 =

[
κ2|σ 2

0 − 48J 2
0 |

8a3
i (ρiSF − 12κ2 J 2

0 a−6
i )

] 1
3

. (63)

It is worth noting that the bouncing solutions obtained here
stand for � < 0 and C0 > 0 or equivalently σ 2

0 > 48J 2
0 and

ρiSF > 12κ2 J 2
0 a−6

i , in contrast to the singular ones. Next,
we proceed with investigating the dynamics of the apparent
horizon: its radius at each instance of time is given by the
condition 2M(t, rah(t)) = R(t, rah(t)) or, correspondingly,

rah(t) =
[

�

a(t)4
+ κ2C0

6a(t)
+ �

3
a(t)2

]− 1
2

. (64)

It can now easily be checked that the apparent horizon curve
has a minimum for

a� = 1

2

[
C0κ

2

�

(
1 −

√
1 − 8�|σ 2

0 − 48J 2
0 |

C2
0

)] 1
3

, (65)

whence we can find the minimum radius rmin = rah(a�)
so that if the boundary of the collapsing volume is chosen as
r� < rmin, then no horizon would form during the collapsing
and expanding regimes. Correspondingly, from the first part
of (40) we can define a threshold mass, setting m(t, r) =
2M(t, r)

m� = m(a�, rmin) = r3
min

3

[
3�a−3

� + κ2

2
C0 +�a3

�

]
, (66)

in such a way that if m < m� then the formation of apparent
horizon is avoided.

In Fig. 2, we present numerically the trajectory of the
scale factor featuring the occurrence of a bounce, for differ-
ent values of the space parameters. As it is shown in the left
panel of Fig. 2 for � = 0, the collapse progresses till the
singularity formation (dashed curve) while for � < 0 (solid
curve) the collapsing matter bounces back at a finite value

of the scale factor. The dotted curve represents a case, with
� > 0 case in which the singularity happens sooner than
the case where the effects are totally excluded (� = 0). The
right panel emphasizes the role of spin contributions in the
time behavior of the scale factor. For larger values of n, it
takes longer for spin effects to become strong enough to pre-
vent the collapse, which consequently happens at smaller
radii. It is also seen, from equation (63) that for a fixed
value of n the larger the initial energy density the smaller
the minimum value of the scale factor at which the bounce
occurs.

The left panel in Fig. 3 further illustrates that the dynam-
ical evolution can be divided to four regimes, two of which
during the contracting and the rest during the expanding
phases. The matter volume begins to collapse from rest
(ȧ(ti ) = 0 and ä(ti ) < 0), immediately entering an accel-
erated contracting phase, called “fast reacting” regime, until
the small scale factor regime is reached where a deceler-
ated contracting phase starts as a result of spin domination,
that is, a “slow reacting” regime. The point at which transi-
tion between these two phases occurs corresponds to the first
inflection point where ä(t1inf) = 0 and the collapse velocity
reaches its maximum value |ȧ|max = |ȧ(tinf)|. The collapse
then ceases to proceed at the bounce where ȧ(tb) = 0 and
the scale factor approaches its minimum value amin = a(tb).
At this moment, the acceleration reaches its absolute maxi-
mum value ä(tb) > 0. The early stages of the post-bounce
evolution are controlled by an inflationary expanding phase
(or a “fast reacting” regime (of expansion)) until the small
scale factor regime ends where the acceleration curve reaches
its second inflection point (ä(t2inf) = 0) and the velocity
reaches its maximum with the same absolute value as in the
contracting phase (but actually positive). Afterward a decel-
erated expanding phase governs the scenario (an expansion-
ary “slow reacting” regime).
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Fig. 3 Left panel Time behavior of the collapse velocity (solid curve) and acceleration (dashed curve) for ai = 0.986, ρiSF = 2.034, n = −6,
w = 0, σ 2
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0 = 0.01. Right panel The Hamiltonian constraint during the whole evolution of the system
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Fig. 4 Left panel Time behavior of the total energy density for ai = 0.986, ρiSF = 2.034, n = −6, w = 0 and σ 2
0 = 0.89, J 2

0 = 0.01 (solid
curve), σ 2

0 = J 2
0 = 0 (dashed curve) and σ 2

0 = 0.35 and J 2
0 = 0.011 (dotted curve). Right panel Time behavior of the Kretschmann scalar for the

same parameters as above

In the right panel of Fig. 3, we plot the Hamiltonian con-
straint (26) throughout the dynamical evolution of the col-
lapsing object as governed by (27). We see that this constraint
is numerically satisfied with the accuracy of the order of 10−6

or less.
The left panel in Fig. 4 shows the behavior of total energy

density as a function of time. At the beginning of the collapse,
the spin contribution is insignificant, while as the collapse
advances, the gravitational attraction succumbs to the spin
density correction term which comes into play and behaves
as a negative energy density. The solid curve shows that the
total energy density increases up to its first maximum, then it
decreases suddenly, owing to the dominating negative energy
density coming from spin correction term, and tends to zero
at the bounce time at which ρ̇tot(tb) = 0. This tells us that the
matter content within the collapsing volume becomes incom-
pressible. At the post-bounce regime the spin density term
becomes diluted as a consequence of the inflationary expand-
ing phase causing the total energy density to increase up to its
second maximum and then falls off to finite values. Thus, the
total energy density is finite for � < 0 during the dynamical
evolution of the collapse scenario while the dashed (� = 0)
and dotted (� > 0) curves signal the occurrence of a space-
time singularity where the Kretschmann scalar (right panel)
and energy density diverge.

The left panel in Fig. 5 shows the behavior of total pres-
sure during the whole dynamical evolution of the collapse.
The solid curve (� < 0) shows that the total pressure is
positive in the early stages of the collapse where the spin
contribution is weak. As the collapse proceeds the pres-
sure becomes negative and reaches a maximum value in
negative direction, where the contracting phase turns to an
expanding one. It is the appearance of such a negative pres-
sure, as produced by a spin correction term, which causes
the bounce. Whereas the dashed curve (� > 0) shows that
the pressure begins from a positive value and remains pos-
itive up to the singularity formation. The right panel shows
that the weak energy condition is satisfied in the absence of
spin effects (dashed curve) and also for the case in which
� > 0. For � < 0, WEC holds in the weak field regime
while it is violated in the spin dominated regime. Such
a violation of WEC can be compared to the models in
which the effects of quantum gravity are taken into account
[52,53].

We also need to check if a dynamical horizon is formed
during the whole contracting and expanding phases. Firstly,
as we stated in Sect. 4.1, the regularity condition has to be
respected at the time at which the collapse commences. Let
us define the maximum radius r�max in such a way that if
r� = r�max , then the regularity condition would be violated.
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Fig. 5 Left panel Time behavior of the total pressure for ai = 0.986, ρiSF = 2.034, n = −6, w = 0 and σ 2
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0 = 0.011 (dashed curve). Right panel The weak energy condition for the same parameters as above
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Fig. 6 Left panel The behavior of the apparent horizon curve for
ai = 0.986, ρiSF = 2.034, n = −6, w = 0 and σ 2

0 = 0.89, J 2
0 = 0.01

(solid curve) and σ 2
0 = J 2

0 = 0, ρiSF = 2 (dashed curve). The
horizontal dotted lines show the times at which four horizons form (C)
two horizons form (B) and no horizon forms (A). The times at which
the horizons form at the four phases of evolution are t1ahc ≈ 0.904,
t2ahc ≈ 1.713, t1ahe ≈ 1.919 and t2ahe ≈ 2.698, respectively. There
can be found a minimum value for the size of the collapsing object so
that the formation of the apparent horizon is prevented (solid curve).
This situation cannot be happened when the apparent horizon radius
vanishes at a finite amount of time (dashed curve). The blue arrows
lying on the solid curve display the direction of collapse process

and the red arrows show the direction of expansion process. Right
panel The absolute value of the collapse velocity against the scale
factor for the same parameters as above. The horizontal dotted lines
intersecting the solid curve show that in case in which the collapse
velocity is bounded, four horizons (C), two horizons (B) and no horizon
(A) can be formed during the dynamical evolution of the collapse
process. The absolute maximum value of the collapse velocity at
the inflection points has the value |ȧ|max ≈ 0.673. The blue arrows
lying on the solid curve show the direction of collapse regime and the
red ones show the direction of expanding regime. The formation of
an apparent horizon is always guaranteed as the dashed curve shows

Therefore, if the boundary is chosen so that rmin < r� <

r�max , four horizons can form.
The left panel in Fig. 6 shows the behavior of apparent

horizon curve (64) as compared to the case in which spin
effects are absent. As the solid curve shows (� < 0), the
apparent horizon curve decreases for a while in the contract-
ing phase, and increases just before the bounce occurs. The
first horizon appears in the accelerated contracting phase and,
after passing through the first inflection point, the second one
forms in the decelerated contracting phase. As the collapse
process turns to an expanding regime, the apparent horizon
decreases again, in the accelerated expanding phase, to meet
the boundary for the third time but at the same radius. After
the second inflection point is reached, the scenario is enter-

ing a decelerated expanding phase where the fourth horizon
intersects the boundary (see the horizontal dotted line labeled
as C). The next possibility for the horizon formation happens
if we take r� = rmin. In this case two horizons could form.
The first one appears at the moment of transition between
accelerated and decelerated contracting regimes, i.e., the first
inflection point. The second one appears at the same radius
but at the time at which the accelerated expanding regime
transits to the decelerated expanding one, i.e., the second
inflection point (see the horizontal dotted line labeled as B).
Finally, if we take r� < rmin no horizon would form indi-
cating the existence of a minimum value for the size of the
collapsing object so that the formation of the apparent hori-
zon is prevented (see the horizontal dotted line labeled as
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A). However, the apparent horizon in the absence of spin
effects (dashed curve) propagates inward to finally cover the
singularity. There can be found no minimum for the sur-
face boundary of the collapsing matter in order to avoid the
formation of the apparent horizon and the collapse scenario
inevitably results in black hole formation.

The existence of a minimum value for the size of the col-
lapsing object can be translated as saying that the speed of
collapse has to be limited. As the solid curve in the right panel
in figure 6 shows, in the early stages of the collapse, the tra-
jectory of the system in (|ȧ|, a) plane follows the dashed
curve in which the spin effects are neglected. At later times,
it deviates from this curve to reach the maximum value for the
speed of collapse, i.e., at the first inflection point. After this
time, the collapse progresses with a decreasing speed reach-
ing the minimum value of the scale factor, after which the
collapsing cloud turns into an expansion. The absolute value
of the collapse velocity is bounded throughout the contract-
ing and expanding phases. In this sense, there can be found
a maximum value for the collapse velocity (as related to a
minimum value for the surface boundary or a threshold mass)
so that for |ȧ| > |ȧ|max the horizon equation is never satis-
fied (see the horizontal dotted line labeled as A). However,
if |ȧ| = |ȧ|max, two horizons could still appear, first one at
the contracting and the second one at the expanding regimes.
Both of these horizons form at the same value of the scale fac-
tor at inflection points (see the horizontal dotted line labeled
as B). The third possibility is |ȧ| < |ȧ|max, for which four
horizons could appear at the four phases of dynamical evolu-
tion of the scenario (see the horizontal dotted line labeled as
C). On the other hand, in contrast to these cases, the collapse
velocity diverges when the spin effects are absent and the
horizon equation is always satisfied, the dashed curve.

Finally, regarding the case w = −1, (22) leads to the
following expression for the energy density:

ρSF = ρiSF + α

n
(an − an

i ), (67)

whereby from (20) and (21) we can solve for the collapse
rate as

H = ±
[

H2
i + κ4 σ

2
0

8n
(an − an

i )

] 1
2

. (68)

From the above equation we see that the collapse begins
with a contraction phase (choosing the minus sign) which
proceeds until the scale factor reaches a critical value, ac,

ac =
[

an
i − 8n

κ4σ 2
0

H2
i

] 1
n

, (69)

for which H(ac) = 0. This occurs at the time

tc = ti − 2

n
√

H2
i − κ4

8nσ
2
0 an

i

arctanh

⎡
⎣
√√√√ H2

i

H2
i − κ4

8nσ
2
0 an

i

⎤
⎦ ,

(70)

and the Kretschmann invariant and the energy density behave
regularly, thus no singularity forms.15 To our knowledge this
unprecedented situation is a specific feature of the present
model. It can be interpreted as a stationary state. Also there
is a chance that this unorthodox behavior of the fluid will be
followed by a transition to an expansion phase corresponding
to the situation16 where H jumps from a − to a + branch
[152].

5 Exterior solution

The gravitational collapse setting studied so far deals with
the interior of the collapsing object. We found two classes
of solutions, where for the singular ones, depending on the
spin source parameters and initial energy density the appar-
ent horizon can be avoided. However, the absence of apparent
horizon in the dynamical process of collapse does not neces-
sarily imply that the singularity is naked [154]. In fact, the sin-
gularity is naked if there exist future pointing null geodesics
terminating in the past at the singularity. These geodesics
have to satisfy dt/dr = a(t) in the interior space-time so that
the area radius must increase along these geodesics. As dis-
cussed in [15], this situation cannot happen since the singu-
larity occurs at the same time for all collapsing shells. How-
ever, this process, to be completely discussed, may require
a suitable matching to an exterior region whose boundary
r = r� is the surface of the collapsing matter that becomes
singular at t = ts , into which null geodesics can escape.
Employing the junction conditions [155,156], our aim here
is to complete the full space-time geometry presented for the
spherically symmetric gravitational collapse via matching
the homogeneous interior space-time to a suitable exterior
space-time.

15 It should be noted that big-rip, sudden or even type III singularities do
not happen here since ρ and p are finite at t = tc. A type IV singularity
does not occur either since the higher derivatives of H do not diverge
at t = tc [153].
16 It should be noticed that if no bounce occurs and the collapse goes
beyond ac , the effective energy density of the collapsing object would be
negative and, as a result, the weak energy condition will be violated. The
gravitational collapse of regions with negative energy density has been
discussed in the literature, mainly in the context of topological black
holes [151]. It has been claimed that topology changing processes, due
to quantum fluctuations of space-time, would be a possible mechanism
for such behavior. However, this discussion is beyond the scope of this
paper.
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Let us therefore consider a timelike three-dimensional
hypersurface � resulting from the isometric pasting of two
hypersurfaces �+ and �−, which, respectively, bound the
four-dimensional exterior (V+) and interior (V−) space-
times. For the interior region we take the line element (19)
in the FRW form as

ds2− = dt2 − a2(t)dr2 − a2(t)(r2dθ2 + r2 sin2 θdφ2),

(71)

where the interior coordinates are labeled as
{

Xμ−
} ≡

{t, r, θ, φ}. The line element for the exterior region in
retarded (exploding) null coordinates is taken as

ds2+ = f (v,R)dv2 + 2dvdR − R2(dθ2 + sin2 θdφ2),

(72)

where f (v,R) = 1 − 2M(R, v)/R with M(R, v) being
the exterior mass function and the exterior coordinates are
labeled as

{
Xμ+
} ≡ {v,R, θ, φ}. We assume that � is

endowed with an intrinsic line element given by

ds2
� = dτ 2 − Y 2(τ )(dθ2 + sin2 θdφ2). (73)

Here ya = {τ, θ, φ}, (a = 0, 2, 3) are the coordinates of �
with τ being the time coordinate defined on it and we have
chosen the angular coordinates θ and φ to be continuous. The
governing equations of hypersurface� in the coordinates Xμ±
are given by

r − r� = 0 in V+, R − R� = 0 in V−. (74)

Using the above two equations, the interior and exterior
induced metrics on �− and �+, respectively, take the form

ds2
�− = dt2 − a2(t)r2

�(dθ
2 + sin2 θdφ2), (75)

and

ds2
�+ =

[
f
(
v(t),R(t))v̇2 + 2Ṙv̇

]
dt2

−R2(t)(dθ2 + sin2 θdφ2). (76)

We assume that there is no surface stress-energy or surface
tension at the boundary (see e.g. [157–159] for the study of
junction conditions for boundary surfaces and surface lay-
ers). Then the junction conditions require

ds2
� = ds2

�− = ds2
�+ , (77)

which gives

f
(
v(t),R(t))v̇2 + 2Ṙv̇ = 1, R(t) = r�a(t) = Y (τ ),

(78)

where an overdot denotes d/dt . Next, we need to compute the
components of the extrinsic curvature of the interior and exte-
rior hypersurfaces. The unit spacelike normal vector fields to

these hypersurfaces are given by

n−
μ = [0, a(t), 0, 0] , n+

μ = 1[
f (v,R)v̇2 + 2Ṙv̇] 1

2

× [−Ṙ, v̇, 0, 0
]
. (79)

Let us take Xμ = Xμ(ya) as the parametric equations of �.
The extrinsic curvature or second fundamental form of the
hypersurface � is a three-tensor defined as [160]

Kab ≡ eνaeμb ∇μnν, (80)

where eνa = ∂Xν/∂ya are the basis vectors tangent to the
hypersurface � and the covariant derivative is taken with
respect to the Christoffel symbols

{ γ
νμ

}
. The above expres-

sion can be rewritten in the following form:

Kab ≡
[
∂nν
∂Xμ

− { γ
νμ

}
nγ

]
eνaeμb = ∂nν

∂Xμ
eνaeμb − { γ

νμ

}
eνaeμb nγ

= ∂

∂Xμ
(
nνeνa

)
eμb − ∂

∂Xμ

(
∂Xν

∂ya

)
∂Xμ

∂yb
nν

−{ γ
νμ

}∂Xν

∂ya

∂Xμ

∂yb
nγ

= − ∂2 Xν

∂ya∂yc

∂yc

∂Xμ
∂Xμ

∂yb
nν − { γ

νμ

}∂Xν

∂ya

∂Xμ

∂yb
nγ

= −nν

[
∂2 Xν

∂ya∂yb
− { ν

αμ

}∂Xα

∂ya

∂Xμ

∂yb

]
. (81)

Now, if we take Xμ+(ya) and Xμ−(ya) as parametric relations
for the hypersurfaces�+ and�− on the exterior and interior
regions, we get, respectively,

K ±
ab = −n±

μ

[
∂2 Xμ±
∂ya∂yb

+ �̂μ±
νσ

∂Xν±
∂ya

∂Xσ±
∂yb

]
. (82)

Here we should pay attention to the second term containing
the asymmetric affine connection defined in (3). Since in EC
theory torsion cannot propagate outside the spin matter distri-
bution (it is non-vanishing only inside the matter) [161], the
connection for the exterior region is precisely the Christoffel
symbol whose non-vanishing components are

{ v
vv

}+ = − f,R
2
,
{R
vv

}+ = 1

2

(
f,v + f f,R

)
,

{R
vR
}+ = f,R

2
, (83)

where “,R ≡ ∂/∂R”, “,v ≡ ∂/∂v” and f = f (v,R). In
order to calculate the nonzero components of (82) we proceed
by noting that
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∂2 Xv+
∂τ 2 = 1

2
(

f v̇2 + 2Ṙv̇)2
[

2v̈
(

f v̇2 + 2Ṙv̇
)

−v̇
(
Ṙ f,Rv̇2 + 2 f v̇v̈ + 2R̈v̇ + 2Ṙv̈

) ]
,

∂2 XR+
∂τ 2 = 1

2
(

f v̇2 + 2Ṙv̇)2
[

2R̈
(

f v̇2 + 2Ṙv̇
)

−Ṙ
(
Ṙ f,Rv̇2 + 2 f v̇v̈ + 2R̈v̇ + 2Ṙv̈

) ]
. (84)

Substituting the above expressions into (82) and noting that
∂θ/∂τ = ∂φ/∂τ = 0, we finally get

K +
t t = − v̇

2
[

f f,Rv̇ + f,vv̇ + 3 f,RṘ]+ 2
(
v̇R̈ − Ṙv̈)

2
(

f v̇2 + 2Ṙv̇) 3
2

,

K +θ
θ = K +φ

φ = f v̇ + Ṙ
R
√

f v̇2 + 2Ṙv̇
. (85)

In the process of obtaining the extrinsic curvature of�, pro-
ceeding from the interior region, we should note that the
connection through which the extrinsic curvature tensor is
calculated is no longer symmetric owing to the presence of
the spin matter. Therefore, we need to begin with

�̂μ−
να = �̂

μ−
(να) + �̂

μ−
[να] = {μ

να

}− + Kμ
να = {μ

να

}−

+ 1

2

(
Tμνα − T μ

ν α − T μ
α ν

)
. (86)

Substituting for the torsion tensor from equation (8) and rear-
ranging the terms we find

�̂μ−
να = {μ

να

}− + κ2

2

[
2
(
ε μ ρν α + ε μ ρα ν − εμ ρ

να

)
Jρ

+ 1

2

(
Sναuμ − Sμαuν − Sμνuα

)]
. (87)

A subsequently suitable space-time averaging reveals that the
second term in square brackets vanishes since the connection
is linear with respect to the spin density tensor. However,
the first term may not generally become zero since the axial
current is a timelike vector field. Substituting the averaged
affine connection in the minus sign of (82) we have

K −
ab = −n−

μ

[
∂2 Xμ−
∂ya∂yb

+ {μ
να

}− ∂Xν−
∂ya

∂Xα−
∂yb

+ κ2(ε μ ρν α + ε μ ρα ν − εμ ρ
να

)∂Xν−
∂ya

∂Xα−
∂yb

〈Jρ〉
]
, (88)

from which we readily find that the third term in parentheses
vanishes due to the antisymmetrization property of the Levi-
Civita tensor and partial derivatives. After a straightforward
calculation we find

K −
t t = 0, K −θ

θ = K −φ
φ = 1

r�a(t)
. (89)

However, due to the presence of the third term in (88) there
may remain other components of the extrinsic curvature ten-
sor though the space-time is spherically symmetric. Let us
calculate them to show that these terms vanish too. The (t, θ)
component reads

K −
tθ = −a(t)

{
∂2r

∂t∂θ
+ { r

να

}− ∂Xν−
∂t

∂Xα−
∂θ

+κ2(ε r ρ
ν α + ε r ρ

α ν

)∂Xν−
∂t

∂Xα−
∂θ

〈Jρ〉
}
. (90)

Since 〈Jρ〉 has only a time component, the Levi-Civita tensor
vanishes and we get

K −
tθ = K −

tφ = 0. (91)

The remaining components can be calculated in the same
way as

K −
θφ = K −

φθ = −κ2a(t)
(
ε r t
θ φ + ε r t

φ θ

)〈Jt 〉 = 0, (92)

since the two Levi-Civita tensors are equal but have opposite
signs. Using (78), the continuity of the extrinsic curvatures
across � implies the following relations:

f v̇ + Ṙ = 1, (93)

v̇2 [( f f,R + f,v)v̇ + 3 f,RṘ]+ 2
(
v̇R̈ − Ṙv̈) = 0.

(94)

Taking derivatives of (93) and the first part of (78) we have

2Ṙv̈ = ḟ v̇2, 2ṘR̈ = − ḟ v̇
(
2Ṙ + f v̇

)
, (95)

hence we can construct the following relation:

R̈v̇ = −v̈ (2Ṙ + f v̇
)
. (96)

Substituting (96) and the first part of (95) into (94), we finally
find

K +
t t = − f,vv̇2

2Ṙ = 0, (97)

which clearly shows that f (v,R) must be a function of R
only. Solving (93) and the first part of (78) we get the four-
velocity of the boundary, as seen from an exterior observer

V α = (
v̇, Ṙ, 0, 0

) =
[

1 + √
1 − f

f
,−√1 − f , 0, 0

]
,

(98)

where a minus sign for Ṙ has been chosen since we are
dealing with a collapse setting. From the second component
of the above vector field and the interior solution (26), we
find for a smooth matching of the interior and exterior space-
times that M(R, v) = m(t, r�). We thus have

2M(R, v) = �

3
R3 + 2M0R−3w + 2S0R3+n, (99)
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where M0 = (1/12)κ2C0r3(1+w)
� and S0 = (1/2)�r−n

� .
Here the new term S0 is treated as a correction introduced
by the spin contribution. Therefore, the line element for the
exterior space-time reads

ds2+ =
[

1 − �

3
R2 − 2M0R−(1+3w) − 2S0Rn+2

]
dv2

+2dvdR − R2(dθ2 + sin2 θdφ2). (100)

The location of the apparent horizon is marked by requiring
that 2M = R, which lies on the boundary surface r = r� if
m = R, or simply from (41), r2

� ȧ2 = 1. Thus, we find that
once the collapse velocity satisfies the following equation:

|ȧ| = 1

r�
, (101)

a dynamical horizon forms intersecting the boundary. Then,
if the collapse velocity is bounded the boundary surface can
be chosen so that no horizon forms [162].

Now, from the first part of (26), we see that for specific
values of n and w, taken from the brown region of Fig. 1,
the collapse velocity tends to infinity. Thus, there is no min-
imum value for r� (or correspondingly a minimum mass for
the collapsing volume) so that the horizon can be avoided.
In contrast, for n and w taken from the yellow region of
Fig. 1, the speed of collapse stays bounded until the singu-
larity time at which the scale factor vanishes. This means that
to satisfy the horizon condition in the limit of approach to
the singularity, the boundary of the volume must be taken at
infinity which is physically irrelevant. Thus we can always
take the surface boundary so that the apparent horizon is
avoided. Therefore, if the collapse velocity is bounded we
can take the boundary surface to be sufficiently small so that
the formation of horizon is avoided during the entire phase
of contraction. Furthermore, the null geodesic that has just
escaped from the outermost layer of the mass distribution
of the cloud (r�, ts) can be extended to the exterior region
exposing the singularity to external observers. For bouncing
solutions, as the right panel of Fig. 6 shows, |ȧ| remains finite
throughout the collapsing and expanding phases, thus by a
suitable choice of the boundary surface, the apparent horizon
is failed to cover the bounce.

For n = −3, w = 0 and σ 2
0 = 48J 2

0 the exterior space-
time metric is written as

ds2+ =
[

1 − �

3
R2 − 2M′

0

R − 2S ′
0

R
]

dv2 + 2dvdR

−R2(dθ2 + sin2 θdφ2), (102)

where M′
0 = (1/12)κ2ρi a3

i r3
� and S ′

0 = (−1/48)κ4σ 2
0 r3
� ,

clearly exhibiting a Schwarzschild–anti-de Sitter metric in
retarded null coordinates [163–165] with a constant mass
M0 = M′

0 + S ′
0 with corrections due to spin contributions.

6 Concluding remarks

The study of the end-state of matter gravitationally collaps-
ing becomes quite interesting when averaged spin degrees of
freedom and torsion are taken into account. To our knowl-
edge, the literature concerning this line of research is some-
what scarce,17 see e.g., [101]. Torsion is perhaps one of the
important consequences of coupling gravity to fermions. In
general, this leads to non-Riemannian space-times where
departures from the dynamics of GR would be expected and
should be explored. The well known and established CSK
[78] theories can also be a starting point.18 Nevertheless, the
explicit presence of fermionic fields may not provide a sim-
ple enough setup to investigate the final outcome of a grav-
itational collapse. There are, however, other, perhaps more
manageable scenarios. They employ torsion just to mimic
the effects of matter with spin degrees of freedom on gravi-
tational systems.

It was in that precise context that we have therefore con-
sidered the approach presented in this paper. More precisely,
we studied the gravitational collapse of a cloud whose matter
content was taken as a Weyssenhoff fluid [115–119] in the
context of the EC theory [102], i.e., with torsion. A negative
� was included to provide an initially positive pressure, so
that a collapse process could initially be set up. The torsion is
not, however, a dynamical field, allowing it to be eliminated
in favor of algebraic expressions.

In addition, we have restricted ourselves to a special but
manageable space-time model where the interior region line
element is a FLRW metric, allowing a particularly manage-
able framework to investigate. The corresponding effective
energy-momentum from a macroscopic perspective has a per-
fect fluid contribution plus those induced from averaged spin
interactions. A relevant feature is that this effective matter
can, within specific conditions, convey a negative pressure
effect. As a consequence, this may induce the avoidance of
the formation of trapped surfaces, from one hand, and the
possibility of singularity removal from the other hand.

In a compact manner, our main results are as follows:

• For singular solutions (� > 0), the formation or otherwise
of trapped surfaces not only depend on the equation of state
parameter but also on the spin density divergence term
(n). Therefore, from determining the initial setting subject

17 With respect to the initial cosmological singularity, there seems to
have been made more efforts in analyzing it when fermionic terms
impose modifications to the classical equations (explicitly by means of
fermionic degrees of freedom being present or induced by means of
some averaged quantities); see e.g., ([88–100,128–130,132,133,166–
169]).
18 A collapse setting was introduced in [170] where the non-minimal
coupling of classical gravity to fermions results in the singularity avoid-
ance.
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to (i) the regularity condition on the absence of trapped
surfaces at an initial epoch, (ii) the validity of the energy
conditions and (iii) the positivity of the effective pressure
at an initial time, trapped surfaces can either develop (for
n < −2, w > −1/3) or be avoided (−2 < n < 0, w <

−1/3) throughout the collapse.
• A special case in which the equation of state of spin fluid is

pSF = −ρSF was considered separately and it was found
that no singularity occurs. This very unorthodox case can
be thought of as a stationary state.

• The set of collapse solutions can be categorized through
the six-dimensional space of the parameters (J 2

i , σ
2
i , n, w,

ai , ρiSF ) so that the first two are related to initial values
for spin source parameters (note that J 2

i = J 2
0 an

i and
σ 2

i = σ 2
0 an

i ). The next two parameters are the rate of diver-
gence of spin density and barotropic index and the last two
are the initial values of the scale factor and energy density.
Each point from this space represents a collapse process
that can be either led to a space-time singularity or a non-
singular bounce. Determining the suitable ranges for this
set of initial data is not straightforward and so, for the
sake of clarity, we have to deal with the two-dimensional
subspaces by fixing four of the above parameters. How-
ever, we could infer that among the allowed sets of the
initial data we can always pick up those for which trapped
surfaces are prevented (in singular solutions) during the
collapse scenario (see the regions in Fig. 1), where we
have fixed the same initial values for energy density and
scale factor.

• Depending on the initial value of energy density and the
source parameters related to spin–spin contact interaction
and axial current, singular (� > 0 and C0 > 0) and non-
singular (� < 0 and C0 > 0) solutions can be found. In
the former the singularity occurs sooner than the case in
which the spin correction term is neglected (see the left
panel in Fig. 2). For the non-singular scenario, the collapse
process halts at a finite value of the scale factor and then
turns to expansion.

It is worth mentioning that, besides the model presented
here, non-singular scenarios have been reported within mod-
els of f (R) theories of gravity in Palatini [171] and metric
[172] formalisms, generalized teleparallel theories of gravity
[173–176], bouncing in brane models [177–181] and mod-
ified Gauss–Bonnet gravity [182] (see also [183] for recent
review). In [184], it is shown that a quantized neutral scalar
field minimally coupled to classical gravitational field may
avoid the singularity.

It is also interesting to note that, beside the Frenkel condi-
tion we employed here, we could consider the possibility of
relaxing it, therefore allowing to take a more general matter
content. If such a modification is employed, then the number

of degrees of freedom of the torsion tensor would increase,
seemingly bringing a more complicated setting to deal with.

Finally, we would like to present a few possible additional
subsequent lines of exploration.

Although being a wider setup with respect to GR, it could
be fruitful to generalize action (1). More concretely, replacing
the cosmological constant by some scalar matter. This would
allow for the establishment of limits for the dominance of any
matter component (and associated intrinsic effects) toward a
concrete gravitational collapse outcome where, for example,
bosonic and fermionic matter would be competing. Perhaps
more challenging would be to employ a Weyssenhoff fluid
description that could have different features whether we use
s = 1

2 fermion or a Rarita–Schwinger field with s = 3
2 spin

angular momentum. The gravitational theory of such latter
particles in the presence of torsion has been discussed in
[185].
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Appendix: On the Einstein–Cartan action

The Riemann tensor in EC theory reads

R̂λμνρ = ∂ν�̂
λ
μρ − ∂ρ�̂

λ
μν + �̂σμρ�̂

λ
σν − �̂σμν�̂

λ
σρ.

(103)

The general affine connection can be written in terms of
Christoffel symbols and contorsion (we note that in EC the-
ory ∇̂αgμν = 0)

�̂αβγ = {α
βγ

}+ K α
βγ . (104)

Substituting the above expression into (103) we get

R̂λμνρ = Rλμνρ({})+ ∂νK λ
μρ − ∂ρK λ

μν

+{σ
μρ

}
K λ

σν + {λ
σν

}
K σ

μρ + K σ
μρK λ

σν

−{σ
μν

}
K λ

σρ − {λ
σρ

}
K σ

μν − K σ
μνK λ

σρ,

(105)

whereby contracting twice gives the Ricci scalar as

R̂ = R({})+ gμρ∂νK ν
μρ − gμρ∂ρK ν

μν + gμρ
{σ
μρ

}
K ν

σν

+{λ
σλ

}
K σμ

μ + K σμ
μK λ

σλ − gμρ
{σ
μν

}
K ν

σρ

−gμρ
{ν
σρ

}
K σ

μν − gμρK σ
μνK ν

σρ. (106)
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The metricity condition (∇αgμν = 0) leaves us with the
following expressions:

∂νgμρ = −gαρ
{μ
να

}− gμα
{ρ
να

}
,

∂ρgμρ = −gαρ
{μ
ρα

}− gμα
{ρ
ρα

}
, (107)

by the virtue of which we can simplify (106) to finally get

R̂ = R({})+ ∇λKλρρ − ∇ρKλρλ + K σμμKλσλ − K σρνK νσρ.

(108)

Performing the integration and neglecting the total deriva-
tives we arrive at the integrand given in the expression (1).
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