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Abstract It has been found that, for the Supernova Legacy
Survey three-year (SNLS3) data, there is strong evidence for
the redshift evolution of the color–luminosity parameter β. In
this paper, adopting the w-cold-dark-matter (wCDM) model
and considering its interacting extensions (with three kinds
of interaction between dark sectors), we explore the evolu-
tion of β and its effects on parameter estimation. In addition
to the SNLS3 data, we also use the latest Planck distance
priors data, the galaxy clustering data extracted from sloan
digital sky survey data release 7 and baryon oscillation spec-
troscopic survey, as well as the direct measurement of Hubble
constant H0 from the Hubble Space Telescope observation.
We find that, for all the interacting dark energy (IDE) models,
adding a parameter of β can reduce χ2 by ∼34, indicating
that a constant β is ruled out at 5.8σ confidence level. Fur-
thermore, it is found that varying β can significantly change
the fitting results of various cosmological parameters: for all
the dark energy models considered in this paper, varying β

yields a larger fractional CDM densities �c0 and a larger
equation of state w; on the other side, varying β yields a
smaller reduced Hubble constant h for the wCDM model, but
it has no impact on h for the three IDE models. This implies
that there is a degeneracy between h and coupling parameter
γ . Our work shows that the evolution of β is insensitive to
the interaction between dark sectors, and then highlights the
importance of considering β’s evolution in the cosmology
fits.

1 Introduction

Cosmic acceleration is one of the biggest puzzles in mod-
ern cosmology [1–17]. There are mainly two approaches to
explain this extremely counterintuitive phenomenon: dark
energy (DE) [18–88] and modified gravity (MG) [89–98].
For recent reviews, see [99–108].

a e-mail: zhangxin@mail.neu.edu.cn

Cosmological observations are of essential importance
to understanding cosmic acceleration, and one of the most
important observations is type Ia supernovae (SNe Ia) [109–
113]. In 2010, the Supernova Legacy Survey (SNLS) group
released their 3 years data, i.e. SNLS3 dataset [114]. Soon
after, using this dataset, Conley et al. [115] and Sullivan
et al. [116] presented the SN-only cosmological results and
the joint cosmological constraints, respectively. Unlike other
supernova (SN) group, the SNLS team treated two impor-
tant quantities, stretch–luminosity parameter α and color–
luminosity parameter β of SNe Ia, as free model parameters.

There are many factors that can lead to systematic uncer-
tainties of SNe Ia. One of the most important factors is the
potential SN evolution, i.e. the possibility for the redshift
evolution of α and β. The current studies show that α is con-
sistent with a constant, but the hints for the evolution of β

have been found in [117–121]. For example, in [122], using
a linear β(z) = β0 + β1z, Mohlabeng and Ralston studied
the case of Union2.1 dataset and found that β deviates from a
constant at 7σ confidence levels (CL). Wang and Wang [123]
found, for the SNLS3 data, β increases significantly with z
at the 6σ CL; moreover, they proved that this conclusion is
insensitive to the lightcurve fitter models, or the functional
form of β(z) assumed [123]. Therefore, the evolution of β is
a common phenomenon for various SN datasets, and should
be taken into account seriously.

It is very interesting to study the effects of a time-varying β

on parameter estimation. Wang et al. [124] explored this issue
by considering the �-cold-dark-matter (�CDM) model, the
wCDM model, and the Chevallier–Polarski–Linder (CPL)
model. Soon after, Wang et al. [125] studied the case of
holographic dark energy (HDE) model, which is a physically
plausible DE candidate based on the holographic principle.
It is found that, for all these DE models, adding a parameter
of β can reduce χ2

min by ∼36; in addition, considering the
evolution of β is helpful in reducing the tension between SN
and other cosmological observations. It should be mentioned
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that, in principle, there is always an important possibility that
DE directly interacts with CDM. This factor was not consid-
ered in [124,125]. To do a comprehensive analysis on the
effects of a time-varying β, it is necessary to extend the cor-
responding discussions to the case of interacting dark energy
(IDE) models.

In this paper, we explore the effects of a time-varying β on
the cosmological constraints of the IDE model. Three kinds
of interaction terms are taken into account. In addition to the
SNLS3 data, we also use the Planck distance prior data [126],
the galaxy clustering (GC) data from sloan digital sky sur-
vey (SDSS) data release 7 (DR7) [127] and baryon oscillation
spectroscopic survey (BOSS) [128], as well as the direct mea-
surement of Hubble constant H0 = 73.8 ± 2.4 km/s/Mpc
from the Hubble Space Telescope (HST) observation [17].

We describe our method in Sect. 2, present our results in
Sect. 3, and conclude in Sect. 4. In this paper, we assume
today’s scale factor a0 = 1, thus the redshift z = a−1 − 1.
The subscript “0” always indicates the present value of the
corresponding quantity, and the natural units are used.

2 Methodology

2.1 Theoretical models

In this paper, we consider a non-flat universe. The Friedmann
equation can be written as

3M2
pl H

2 = ρc + ρde + ρr + ρb + ρk, (1)

where Mpl ≡ 1/
√

8πG is the reduced Planck mass, ρc, ρde,
ρr , ρb and ρk are the energy densities of CDM, DE, radia-
tion, baryon and curvature, respectively. The reduced Hubble
parameter E(z) ≡ H(z)/H0 satisfies

E2 = �c0
ρc

ρc0
+ �de0

ρde

ρde0
+ �r0

ρr

ρr0
+ �b0

ρb

ρb0

+�k0
ρk

ρk0
, (2)

where �c0, �de0, �r0, �b0 and �k0 are the present frac-
tional densities of CDM, DE, radiation, baryon and curvature,
respectively. Since �c0 + �de0 + �r0 + �b0 + �k0 = 1,
we do not treat �de0 as an independent parameter in this
paper. In addition, ρr = ρr0(1 + z)4, ρb = ρb0(1 + z)3,
ρk = ρk0(1 + z)2, �r0 = �m0/(1 + zeq), where �m0 =
�c0 +�b0 and zeq = 2.5 × 104�m0h2(Tcmb/2.7 K)−4 (here
we take Tcmb = 2.7255 K).

Considering the interaction between dark sectors, the
dynamical evolutions of CDM and DE become

ρ̇c + 3Hρc = Q, (3)

ρ̇de + 3H(ρde + pde) = −Q, (4)

where the over dot denotes the derivative with respect to the
cosmic time t , pde = wρde is the pressure of DE, w is the
equation of state of DE, and Q is the interaction term, which
describes the energy transfer rate between CDM and DE.
Notice that a = 1

1+z and H = ȧ
a , we have d

dt = −H(1+z) d
dz .

Then Eqs. (3) and (4) can be rewritten as

(1 + z)
dρc

dz
− 3ρc = −Q/H, (5)

(1 + z)
dρde

dz
− 3(1 + w)ρde = Q/H. (6)

The solutions of these two equations depend on the specific
forms of Q.

So far, the microscopic origin of interaction between dark
sectors is still a big puzzle to us. To study the issue of interac-
tion, one has to write down the possible forms of Q by hand.
In this paper we consider the following four cases:

Q0 = 0, (7)

Q1 = 3γ Hρc, (8)

Q2 = 3γ Hρde, (9)

Q3 = 3γ H
ρcρde

ρc + ρde
, (10)

where γ is a dimensionless coupling parameter describing
the strength of interaction. Notice that the model with Q0

denotes the case without dark sector interaction; the models
with Q1 and Q2 are very popular, and both of them have
been widely studied in the literature (see, e.g., [129–153]);
the model with Q3 is proposed in [154], and it can solve
the early-time superhorizon instability and future unphysi-
cal CDM density problems at the same time. For simplic-
ity, hereafter we call them wCDM model, IwCDM1 model,
IwCDM2 model, and IwCDM3 model, respectively.

For the wCDM model, the reduced Hubble parameter
E(z) ≡ H(z)/H0 can be written as

E(z) = (
�r0(1 + z)4 + (�c0+�b0)(1 + z)3+�k0(1 + z)2

+�de0(1 + z)3(1+w)
)1/2

. (11)

For the IwCDM1 model, Eq. (5) has a general solution

ρc = ρc0(1 + z)3(1−γ ). (12)

Substituting Eq. (12) into Eq. (6) and using the initial condi-
tion ρde(z = 0) = ρde0, we get

ρde = γρc0

γ + w

(
(1 + z)3(1+w) − (1 + z)3(1−γ )

)

+ ρde0(1 + z)3(1+w). (13)
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Then substituting Eqs. (12) and (13) into Eq. (2), we obtain

E(z) =
(

�r0(1 + z)4 + �b0(1 + z)3 + �k0(1 + z)2

+ �de0(1 + z)3(1+w) + �c0
( γ

w + γ
(1 + z)3(1+w)

+ w

w + γ
(1 + z)3(1−γ )

))1/2

. (14)

For the IwCDM2 model, Eq. (6) has a general solution

ρde = ρde0(1 + z)3(1+w+γ ). (15)

Substituting Eq. (15) into Eq. (5) and using the initial condi-
tion ρc(z = 0) = ρc0, we get

ρc = ρc0(1 + z)3 + γρde0

w + γ
(1 + z)3

− γρde0

w + γ
(1 + z)3(1+w+γ ). (16)

Then substituting Eqs. (15) and (16) into Eq. (2), we have

E(z)=
(

�r0(1 + z)4+(�c0+�b0)(1 + z)3+�k0(1 + z)2

+�de0
( γ

w + γ
(1 + z)3 + w

w + γ
(1 + z)3(1+w+γ )

))1/2

.

(17)

For the IwCDM3 model, the energy densities of CDM and
DE satisfy

ρc = ρc0(1 + z)3

×
(

ρc0

ρc0 + ρde0
+ ρde0

ρc0 + ρde0
(1 + z)3(w+γ )

)− γ
w+γ

,

(18)

ρde = ρde0(1 + z)3(1+w+γ )

×
(

ρc0

ρc0 + ρde0
+ ρde0

ρc0 + ρde0
(1 + z)3(w+γ )

)− γ
w+γ

.

(19)

Substituting Eqs. (18) and (19) into Eq. (2), we get

E(z) =
(

�c0C(z)(1 + z)3 + �de0C(z)(1 + z)3(1+w+γ )

+ �r0(1 + z)4 + �b0(1 + z)3 + �k0(1 + z)2
)1/2

,

(20)

where

C(z) =
(

�c0

�c0 + �de0
+ �de0

�c0 + �de0
(1 + z)3(w+γ )

)− γ
w+γ

.

(21)

Note that in Eqs. (11), (14), (17), (20), and (21), �de0

is not an independent parameter, which is given by �de0 =
1 − �c0 − �b0 − �r0 − �k0.

2.2 Observational data

In this subsection, we introduce how to include the SNLS3
data into the χ2 analysis.

For the SNLS3 sample, the observable is m B , which is the
rest-frame peak B-band magnitude of the SN. By consider-
ing three functional forms (linear case, quadratic case, and
step function case), Wang and Wang [123] showed that the
evolutions of α and β are insensitive to functional form of α

and β assumed. So in this paper, we just adopt a constant α

and a linear β(z) = β0 +β1z. Then the predicted magnitude
of an SN becomes

mmod = 5 log10 DL(z) − α(s − 1) + β(z)C + M, (22)

where s and C are the stretch measure and the color measure
for the SN light curve. Here M is a parameter representing
some combination of SN absolute magnitude M and Hubble
constant H0. It must be emphasized that, to include host-
galaxy information in the cosmological fits, Conley et al.
[115] split the SNLS3 sample based on host-galaxy stellar
mass at 1010 M�, and made M to be different for the two sam-
ples. Therefore, unlike other SN samples, there are two values
of M, M1 and M2, for the SNLS3 data Moreover, Conley et
al. removed M1 and M2 from cosmology fits by analytically
marginalizing over them (for more details, see the appendix
C of [115], as well as the the public code which is available
at https://tspace.library.utoronto.ca/handle/1807/24512). In
this paper, we just follow the recipe of [115]. The luminosity
distance DL(z) is defined as

DL(z) ≡ H0(1 + zhel)r(z), (23)

where z and zhel are the CMB rest frame and heliocentric
redshifts of SN. In addition, the comoving distance r(z) is
given by

r(z) = H−1
0 |�k0|−1/2sinn

(|�k0|1/2 �(z)
)
, (24)

where �(z) = ∫ z
0

dz′
E(z′) , and sinn(x) = sin(x), x , sinh(x) for

�k0 < 0, �k0 = 0, and �k0 > 0, respectively.
For a set of N SNe with correlated errors, the χ2 function

is

χ2
SN = �mT · C−1 · �m, (25)
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Table 1 Fitting results for various constant β and linear β(z) cases, where the SNe+CMB+GC+H0 data are used

Parameters wCDM IwCDM1 IwCDM2 IwCDM3

Const β Linear β(z) Const β Linear β(z) Const β Linear β(z) Const β Linear β(z)

α 1.444+0.079
−0.115 1.423+0.087

−0.095 1.424+0.104
−0.094 1.398+0.110

−0.066 1.427+0.096
−0.097 1.421+0.084

−0.101 1.445+0.082
−0.115 1.393+0.121

−0.068

β0 3.251+0.113
−0.098 1.518+0.326

−0.378 3.272+0.087
−0.116 1.438+0.367

−0.372 3.275+0.084
−0.112 1.474+0.308

−0.369 3.248+0.110
−0.084 1.505+0.292

−0.402

β1 4.926+1.011
−0.869 5.102+0.988

−0.924 4.970+1.015
−0.819 4.886+1.191

−0.747

�c0 0.224+0.010
−0.010 0.231+0.011

−0.009 0.232+0.012
−0.015 0.244+0.016

−0.013 0.226+0.012
−0.013 0.238+0.020

−0.012 0.225+0.014
−0.011 0.244+0.013

−0.016

�b0 0.042+0.002
−0.002 0.044+0.002

−0.002 0.041+0.003
−0.002 0.040+0.003

−0.002 0.041+0.003
−0.002 0.041+0.003

−0.002 0.042+0.002
−0.002 0.042+0.002

−0.003

�k0 0.00046+0.004
−0.003 0.0032+0.0038

−0.0041 0.0039+0.0044
−0.0061 0.0095+0.0050

−0.0059 0.0061+0.0142
−0.0162 0.0192+0.0180

−0.0165 0.0046+0.0160
−0.0131 0.0194+0.0194

−0.0159

γ −0.0028+0.0043
−0.0031 −0.0053+0.0035

−0.0026 −0.0105+0.0310
−0.0295 −0.0322+0.0300

−0.0396 −0.0198+0.0613
−0.0752 −0.0732+0.0684

−0.0823

w −1.118+0.065
−0.071 −1.042+0.068

−0.072 −1.105+0.075
−0.069 −1.016+0.075

−0.063 −1.124+0.070
−0.062 −1.052+0.070

−0.068 −1.116+0.059
−0.072 −1.038+0.068

−0.080

h 0.725+0.014
−0.014 0.716+0.014

−0.015 0.739+0.019
−0.023 0.743+0.016

−0.024 0.734+0.018
−0.025 0.735+0.017

−0.024 0.732+0.022
−0.021 0.729+0.027

−0.018

χ2
min 422.696 388.508 422.376 387.128 422.674 387.814 422.642 387.716

where �m ≡ m B − mmod is a vector with N components,
and C is the N × N covariance matrix of the SN, given by

C = Dstat + Cstat + Csys. (26)

Dstat is the diagonal part of the statistical uncertainty, given
by [115]

Dstat,i i = σ 2
m B ,i + σ 2

int + σ 2
lensing + σ 2

host correction

+
[

5(1 + zi )

zi (1 + zi/2) ln 10

]2

σ 2
z,i

+α2σ 2
s,i + β(zi )

2σ 2
C,i + 2αCm B s,i

−2β(zi )Cm BC,i − 2αβ(zi )CsC,i , (27)

where Cm B s,i , Cm BC,i , and CsC,i are the covariances between
m B , s, and C for the i th SN, βi = β(zi ) are the values of β

for the i th SN. Notice that σ 2
z,i includes a peculiar velocity

residual of 0.0005 (i.e., 150 km/s) added in quadrature. Fol-
lowing [115], we fix the intrinsic scatter σint to ensure that
χ2/dof = 1. Varying σint could have a significant impact on
parameter estimation; see [119,155] for details.

We define V ≡ Cstat + Csys, where Cstat and Csys are the
statistical and systematic covariance matrices, respectively.
After treating β as a function of z, V is given in the form,

Vi j = V0,i j + α2Va,i j + βiβ j Vb,i j + αV0a,i j + αV0a, j i

−β j V0b,i j − βi V0b, j i − αβ j Vab,i j − αβi Vab, j i .

(28)

It must be stressed that, while V0, Va , Vb, and V0a are the same
as the “normal” covariance matrices given by the SNLS data
archive, V0b, and Vab are not the same as the ones given there.
This is because the original matrices of SNLS3 are produced
by assuming β is constant. We have used the V0b and Vab
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IwCDM1
IwCDM2
IwCDM3

SNe+CMB+GC+H0 data, 1σ regions of β(z)

Fig. 1 1σ confidence constraints for the evolution of β(z), given by the
SNe+CMB+GC+H0 data, for the wCDM model, the IwCDM1 model,
the IwCDM2 model, and the IwCDM3 model. The solid black lines
denote the wCDM model, the dashed red lines denote the IwCDM1
model, the dotted blue lines denote the IwCDM2 model, and the dashed-
dotted pink lines denote the IwCDM3 model. To make a comparison,
for the wCDM model, the best-fit result of the constant β case is also
plotted, shown as the horizontal dashed black line

matrices for the “Combined” set that are applicable when
varying β(z) (A. Conley, private communication, 2013).

To improve the cosmological constraints, we also use
some other cosmological observations, including the Planck
distance prior data [126], the GC data extracted from SDSS
DR7 [127] and BOSS [128], as well as the direct measure-
ment of Hubble constant H0 = 73.8 ± 2.4 km/s/Mpc from
the HST observations [17]. For the details of including Planck
and GC data into the χ2 analysis, see [124]. Now the total
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Fig. 2 The 1D marginalized probability distributions of �c0, given by the SNe+CMB+GC+H0 data, for the wCDM model and the three IDE
models. Both the results of the constant β (dashed black lines) and the linear β(z) (solid red lines) cases are presented

χ2 function is

χ2 = χ2
SN + χ2

CMB + χ2
GC + χ2

H0
. (29)

In addition, assuming the measurement errors are Gaussian,
the likelihood function satisfies

L ∝ e−χ2/2, Likelihood ≡ L/Lmax = L/L(χ2
min). (30)

It should be mentioned that in this paper we just use the
purely geometric measurements, and do not consider the cos-
mological perturbations in the DE models. As analyzed in
detail in [156], adopting a new framework for calculating the
perturbations, the cosmological perturbations will always be
stable in all IDE models (for a related discussion concern-
ing the stability, see [154]). Therefore, the use of the Planck
distance prior is sufficient for our purpose.

Finally, we perform an MCMC likelihood analysis [157]
to obtain O(106) samples for each model considered in this
paper.

3 Results

3.1 Evolution of β

In this subsection, we explore the evolution of β in the frame
of IDE.

In Table 1, we list the fitting results for various constant
β and linear β(z) cases, where the SNe+CMB+GC+H0 data
are used. An obvious feature of this table is that varying β can
significantly improve the fitting results: for all the models,
adding a parameter of β can reduce the best-fit values of χ2

by ∼34. Based on the Wilk theorem, 34 units of χ2 is equiv-
alent to a Gaussian fluctuation of 5.8σ . This means that the
result of β1 = 0 is ruled out at 5.8σ confidence level (CL).
As shown in [124,125], for the cases of various DE models
(such as �CDM, wCDM, CPL, and HDE model) without
interaction, β deviates from a constant at 6σ CL. Therefore,
we further confirm the redshift evolution of β for the SNLS3
data.

In Fig. 1, using the SNe+CMB+GC+H0 data, we plot the
1σ confidence constraints of β(z), for the wCDM model,
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Fig. 3 The 1D marginalized probability distributions of w, given by the SNe+CMB+GC+H0 data, for the wCDM model and the three IDE models.
Both the results of the constant β (dashed black lines) and the linear β(z) (solid red lines) cases are presented

the IwCDM1 model, the IwCDM2 model, and the IwCDM3
model. For comparison, we also plot the best-fit result of
the constant β case for the wCDM model. From this figure
one can see that the 1σ regions of β(z) of all these models
are almost overlapping. This shows that the evolution of β

is independent of the IDE models. In addition, for all the
models,β(z) rapidly increases with z. This result is consistent
with the results of [124,125], showing that the evolution of
β is insensitive to dark energy models including those with
interaction between dark sectors.

It should be pointed out that the evolutionary behaviors
of β(z) depends on the SN samples used. Mohlabeng and
Ralston [122] found that, for the Union 2.1 SN data, β(z)
decreases with z. This is similar to the case of the Pan-
STARRS1 SN data [121].

It is interesting to study how different segments of the
SNLS3 dataset give rise to different behavior of β. To do this,
we perform the following test: (1) Per [115], we evenly divide
the redshift range [0, 1] into 9 bins and assume that both α

and β are constant within each bin. (2) For each redshift
bin, we make a small covariance matrix corresponding to
only SNe in that bin. (3) Since we have already proved that
the evolution of β is insensitive to dark energy models, per

[115], we just adopt a fixed cosmological background (a flat
�CDM model with �m0 = 0.26) to do this test. (4) We fit α

and β separately for the 9 redshift bins. Based on the best-fit
analysis, it is found that β is relatively flat till the seventh
bin, and then it rapidly increases along with redshift z. In
other words, the rapid increase of β(z) is mainly due to the
contributions from high-redshift (z > 0.7) SN samples of the
SNLS3 dataset. It should be mentioned that, to keep this paper
focused on its main purpose, here we just briefly present the
conclusion, instead of describing all the detailed results of the
test. To understand why high-redshift SNLS3 samples will
yield this kind of evolutionary behavior of β, some numerical
simulation studies may be needed. We will study this issue
in future works.

3.2 Effects of time-varying β

In this subsection, we discuss the effects of varying β on
parameter estimation of IDE models.

In Fig. 2, using SNe+CMB+GC+H0 data, we plot the 1D
marginalized probability distributions of �c0, for all the mod-
els considered in this paper. We find that varying β yields a
larger �c0: for the constant β case, the best-fit results are
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Fig. 4 The 1D marginalized probability distributions of h, given by the SNe+CMB+GC+H0 data, for the wCDM model and the three IDE models.
Both the results of the constant β (dashed black lines) and the linear β(z) (solid red lines) cases are presented

�c0 = 0.224, 0.232, 0.226, and 0.225, for the wCDM, the
IwCDM1, the IwCDM2, and the IwCDM3 model, respec-
tively; while for the linear β(z) case, the best-fit results are
�c0 = 0.231, 0.244, 0.238, and 0.244, for the wCDM, the
IwCDM1, the IwCDM2, and the IwCDM3 model, respec-
tively. In addition, as shown in [124,125], for various DE
models without interaction term, a time-varying β also yields
a larger fractional matter density �m0 ≡ �c0 + �b0. There-
fore, we can conclude that the effects of varying β on the
present fractional matter density are insensitive to the inter-
action between dark sectors.

For all the models considered in this paper, the 1D
marginalized probability distributions of w are plotted in Fig.
3. It is found that varying β yields a larger w: for the constant
β case, w = −1.118+0.065

−0.071,−1.105+0.075
−0.069,−1.124+0.070

−0.062,

and −1.116+0.059
−0.072, for the wCDM model, the IwCDM1

model, the IwCDM2 model, and the IwCDM3 model, respec-
tively; while for the linear β(z) case, w = −1.042+0.068

−0.072,

−1.016+0.075
−0.063,−1.052+0.070

−0.068, and −1.038+0.068
−0.080, for the

wCDM model, the IwCDM1 model, the IwCDM2 model,

and the IwCDM3 model, respectively. In other words,
w <−1 is preferred at more than 1σ CL for the constant
β case, while w is consistent with −1 at 1σ CL for the linear
β(z) case. This means that, compared to the constant β case,
the results from the varying β case are in better agreement
with a cosmological constant. This conclusion is consistent
with the noninteracting cases [124,125], showing that the
effects of varying β on w are insensitive to the interaction
between dark sectors.

In Fig. 4, we plot the 1D marginalized probability dis-
tributions of h, for all the models considered in this paper.
It can be seen that, for the wCDM model, varying β yields
a smaller h; this result is consistent with the noninteracting
cases [124,125]. However, for all the IDE models, the 1D
distribution results of h of the linear β case are almost same
with those of the constant β case. In other words, once con-
sidering the interaction between dark sectors, varying β will
not change the fitting results of h. This result is quite differ-
ent from the results of Figs. 2 and 3, showing that there is a
degeneracy between h and γ .
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Fig. 5 The 1σ and 2σ confidence contours for {γ, h}, for the three IDE models. Both the results of the constant β (red regions) and the linear β(z)
(dark cyan regions) cases are presented

Next, we turn to the constraints on interaction parameter
γ . In Fig. 5, we plot 1σ and 2σ confidence contours for
{γ, h}, for all the IDE models. Again, one can see that varying
β has no impact on h. To the contrary, varying β yields a
smaller γ : for the constant β case, the best-fit results are γ =
−0.0028,−0.0105, and −0.0198, for the IwCDM1 model,
the IwCDM2 model, and the IwCDM3 model, respectively;
while for the linear β(z) case, the best-fit results are γ =
−0.0053,−0.0322, and −0.0732, for the IwCDM1 model,
the IwCDM2 model, and the IwCDM3 model, respectively.
In other words, γ < 0 is slightly more favored in the linear
β(z) case. This means that energy will transfer from dark
matter to dark energy. In addition, we find that γ and h are
anti-correlated, showing that there is a degeneracy between
h and γ .

In Fig. 6, to make a visual comparison among three
interaction forms, we plot the 2σ confidence contours for
{�c0, γ }, based on the linear β(z) case, for all the IDE mod-
els. From this figure one can see that γ is tightly constrained
in the IwCDM1 model; to the contrary, γ cannot be well con-
strained in the IwCDM2 and IwCDM3 models. This result is
consistent with the result of [158], in which only the constant
β case was considered.

0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

γ

Ωc0

IwCDM1 model
IwCDM2 model
IwCDM3 model

Fig. 6 The 2σ confidence contours for {�c0, γ }, based on the linear
β(z) case, for the IwCDM1 model (solid black line), the IwCDM2
model (dashed red line), and the IwCDM3 model (dotted blue line)

4 Discussion and summary

In recent years, more and more SNe Ia have been discov-
ered, and the systematic errors of SNe Ia have drawn more
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and more attentions. One of the most important systematic
uncertainties for SNe Ia is the potential SN evolution. The
hints for the evolution of β have been found [117–121]. For
example, Mohlabeng and Ralston [122] studied the case of
Union2.1 and found that β deviates from a constant at 7σ

CL. Wang and Wang [123] found that, for the SNLS3 data,
β increases significantly with z at the 6σ CL; moreover, they
proved that this conclusion is insensitive to the lightcurve
fitter models, or the functional form of β(z) assumed [123].

It is clear that a time-varying β will have significant impact
on parameter estimation. Adopting a constant α and a linear
β(z) = β0 + β1z, Wang et al. [124] explored this issue by
considering the �CDM model, the wCDM model, and the
CPL model. Soon after, Wang et al. [125] studied this issue
in the frame of HDE model, which is a physically plausi-
ble DE candidate based on the holographic principle. It is
found that, for all these DE models, β deviates from a con-
stant at 6σ CL; in addition, considering the evolution of β is
helpful in reducing the tension between SN and other cosmo-
logical observations. It should be pointed out that, in princi-
ple, there is always an important possibility that DE directly
interacts with CDM. This factor was not considered in
[124,125].

In this paper, we extend the corresponding discussions to
the case of IDE model. To perform the cosmology fits, the
wCDM model is adopted. Moreover, three kinds of interac-
tion forms are considered: Q1 = 3γ Hρc, Q2 = 3γ Hρde,
and Q3 = 3γ H ρcρde

ρc+ρde
. In addition to the SNLS3 SN data,

we also use the Planck distance priors data, the GC data
extracted from SDSS DR7 and BOSS, as well as the direct
measurement of Hubble constant from the HST observation.

We further confirm the redshift evolution of β for the
SNLS3 data: for all the IDE models, adding a parameter
of β can reduce χ2 by ∼34, indicating that β1 = 0 is ruled
out at 5.8σ CL. In addition, we find that the 1σ regions of
β(z) of all these models are almost overlapping, showing that
the evolution of β is insensitive to the interaction between
dark sectors. These results further verify the importance of
considering the evolution of β in the cosmology fits.

Furthermore, we find that a time-varying β has significant
effects on the results of parameter estimation: for all the mod-
els considered in this paper, varying β yields a larger �c0 and
a larger w; on the other side, varying β yields a smaller h for
the wCDM model, while varying β has no influence on h for
the three IDE models. Moreover, we find that γ and h are
anti-correlated, showing that there is a degeneracy between
h and γ . In addition, we find that γ is tightly constrained in
the IwCDM1 model, but it cannot be well constrained in the
IwCDM2 and IwCDM3 models.

In all, these results show that the evolution of β is insensi-
tive to the interaction between dark sectors, and they highlight
the importance of considering β’s evolution in the cosmology
fits.

So far, only the effects of varying β on DE models are
considered. It is of great interest to study the effects of varying
β on parameter estimation in MG models. In addition, some
other factors, such as the evolution of σint [155], may also
cause the systematic uncertainties of SNe Ia. These issues
will be studied in future works.
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