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Abstract Recently, we found that the correction for the
Einstein–de Sitter (EdS) assumption on the one-loop mat-
ter power spectrum for general dark energy models using
the standard perturbation theory is not negligible (Lee et al.,
arXiv:1407.7325, 2014). Thus, we investigate the same prob-
lem by obtaining the exact displacement vector and kernels
up to the third order for the general dark energy models
in the Lagrangian perturbation theory (LPT). Using these
exact solutions, we investigate the present one-loop matter
power spectrum in the �CDM model with �m0 = 0.25(0.3)

to obtain a 0.2(0.18) % error correction compared to that
obtained from the EdS assumption for the k = 0.1 h Mpc−1

mode. If we consider the total matter power spectrum, the cor-
rection is only 0.05(0.03) % for the same mode. It means that
the EdS assumption is a good approximation for the �CDM
model in LPT theory. However, one can use this method for
general models where the EdS assumption is improper.

With the upcoming precision measurements of the large scale
structure, accurate theoretical modeling is essential to inter-
pret the observational data. It requires a huge number of mock
catalogs and N -body simulations are too numerically expen-
sive to be done. Fortunately, it seems that observable quan-
tities at the quasi-linear scales might be accurately modeled
semi-analytically. The Lagrangian perturbation theory (LPT)
has been widely used to investigate this [2–6]. Also, the ini-
tial condition for the N-body simulation are generated using
LPT [7–9].

In LPT, the fundamental object is the Lagrangian displace-
ment vector S, which displaces the particle from its initial
position q to the final Eulerian position x,

x(q, t) = q + S(q, t). (1)

The first order LPT solution is the Zel’dovich approximation
[10] and higher order solutions have been obtained [11–15].
From the mass conservation, the matter density perturbation
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δ can be described by a function of S,

δ(x, t) =
∫

d3qδD

(
x − q − S(q, t)

)
− 1. (2)

One can expand the displacement vector S according to the
Lagrangian perturbative prescription

S(q, t) ≡
∑
n=1

S(n)(q, t) =
∑
n=1

D(n)(t)S(n)(q)

=
∑
n=1

In(t)Dn(t)S(n)(q)

≡ D(t)S(1)(q) + E(t)S(2)(q)

+Fa(t)S(3a)(q) + Fb(t)S(3b)(q) + · · · . (3)

This explicit separation with respect to the spatial and tempo-
ral coordinates for each order (i.e. In is a constant) is known
to be a property of the perturbative Lagrangian description
for an Einstein–de Sitter (EdS) universe [13]. However, the
solution at each order can be a separable function of t and q
even for general dark energy models by using D(n)(t) instead
of D(n)(t). After one includes the time dependence of In in
the each kernel, one can find the exact solution for each order.
One can use I1 = 1, D1 = D where D1(t) is the linear growth
factor, and the D(n)(t) = In(t)Dn(t) are specified as

D(2)(t) ≡ E(t) = I2(t)D2(t), (4)

D(3a)(t) ≡ Fa(t) = I3a(t)D3(t), (5)

D(3b)(t) ≡ Fb(t) = I3b(t)D3(t). (6)

From (4)–(6), one can obtain the Lagrangian Poisson equa-
tion order by order (from the linear to the irrotational third
orders),

D̈ + 2H Ḋ − 4πGρm D = 0, (7)

Ë + 2H Ė − 4πGρm E = −4πGρm D2,

if μ1(S(2)) = μ2(S(1), S(1)), (8)
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F̈a + 2H Ḟa − 4πGρm Fa = −8πGρm D3,

if μ1(S(3a)) = μ3(S(1)), (9)

F̈b + 2H Ḟb − 4πGρm Fb = −8πGρm D(E − D2),

if μ1(S(3b)) = μ2(S(1), S(2)),

(10)

where dots represent the derivatives with respect to the cos-
mic time t and μ2(S(1), S(2)) = μ2(S(2), S(1)) is satisfied
for any tensor [14]. μa(S(n)) are defined as

μ1(S(n)) ≡ S(n)
i i , (11)

μ2(S(n), S(m)) ≡ 1

2

(
S(n)

i i S(m)
j j − S(n)

i j S(m)
j i

)
, (12)

μ3(S(n)) ≡ detS(n)
i j . (13)

One can rewrite Eq. (3) in Fourier space, represented by using
the linear matter density contrast, δ̃L(p),

S̃(n)(k, t) = −i D(n)(t)
∫

d3 p1

(2π)3 . . .
d3 pn

(2π)3 (2π)3δD

×(p1...n − k)F(n)(p1, . . . , pn )̃δL (p1) . . . δ̃L (pn)

= −i
Dn(t)

n!
∫

d3 p1

(2π)3 . . .
d3 pn

(2π)3 (2π)3δD

×(p1...n − k)n!In(t)F(n)(p1, . . . , pn )̃δL (p1) . . . δ̃L (pn)

≡ −i
Dn(t)

n!
∫

d3 p1

(2π)3 . . .
d3 pn

(2π)3 (2π)3δD

×(p1...n − k)Ł(n)(t, p1, . . . , pn )̃δL (p1) . . . δ̃L (pn).

(14)

In the second equality, we adopt the same notation as
in [2–4]. We also use p1...n = p1 + · · · + pn , F(n) =
(−1)n p1...n

p2
1...n

κ(n)(p1,...,pn)

p2
1 ...p2

n
, and the nth order kernels κ(n) are the

same as given in [13,14]. We neglect the transverse terms in
F(n), which do not appear in a one-loop correction. In(a)

should be obtained numerically from Eqs. (8)–(10) by using
the EdS initial conditions given by Eqs. (31)–(33). In the
literature, one uses the coefficients for the EdS solutions,

I2 = −3

7
, I3a = −1

3
, I3b = 10

21
. (15)

However, these values are approximate ones using the EdS
assumption and we will use the exact values of them.

From (14), one can obtain the perturbative kernels in LPT
up to the third order

L(1)(p1) = k
k2 , (16)

L(2)(a, p1, p2) = I2(a)
k
k2

[
1 −

(p1 · p2

p1 p2

)2
]
, (17)

L(3a)(a, p1, p2, p3) = I3a(a)
k
k2

[
1 − 3

(p1 · p2

p1 p2

)2

+2
(p1 · p2)(p2 · p3)(p3 · p1)

p2
1 p2

2 p2
3

]
,

(18)

L(3b)(a, p1, p2, p3) = I3b(a)
k
k2

[
1 −

(p1 · p2

p1 p2

)2
]

×
[

1 −
( (p1 + p2) · p3

|p1 + p2|p3

)2
]
. (19)

The above kernels are identical to those of EdS given in [2,14]
when I2–I3b are given by Eq. (15).

From the above consideration, one can obtain the non-
linear power spectrum with one-loop correction by using a
resummation scheme known as integrated perturbation the-
ory [2,3],

P(k) = exp

[
−ki k j

∫
d3 p

(2π)3 Ci j (p)

]

×
[

ki k j Ci j (k) + ki k j kk

∫
d3 p

(2π)3 Ci jk(k,−p, p−k)

+1

2
ki k j kkkl

∫
d3 p

(2π)3 Ci j (p)Ckl(k − p)

]
(20)

where the mixed polyspectrum of the linear density field and
the displacement field is defined as

〈̃
δL(k1) . . . δ̃L(kl)S̃i1(p1) . . . S̃im (pm)

〉
c

= (2π)3δD(k1...l + p1...m)(−ı)mCii ...im

×(k1, . . . , kl; p1, . . . , pm). (21)

Also the mixed polyspectrum of each order in perturbations
is given by

〈̃
δL(k1) . . . δ̃L(kl)S̃(n1)

i1
(p1) . . . S̃(nm )

im
(pm)

〉
c

= (2π)3δD(k1...l + p1...m)(−ı)mC (n1...nm )
ii ...im

×(k1, . . . , kl; p1, . . . , pm). (22)

From Eqs. (20) and (22), one can obtain the matter power
spectrum with one-loop correction,

P(k) = exp
[
−ki k j

∫
d3 p

(2π)3 C (11)
i j (p)

]

×
(

ki k j

[
C (11)

i j (k)+C (22)
i j (k)+C (13)

i j (k)+C (31)
i j (k)

]

+ki k j kk

∫
d3 p

(2π)3

[
C (112)

i jk (k,−p, p − k)

+C (121)
i jk (k,−p, p − k) + C (211)

i jk (k,−p, p − k)
]

+1

2
ki k j kkkl

∫
d3 p

(2π)3 C (11)
i j (p)C (11)

i j (k − p)
)
. (23)
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After the analytic angular integration of Eq. (23), one
obtains

P(k) = exp
[
− k2

6π2

∫
dpPL(p)

]

×
[

PL(k) + (2π)−2k3

2

∫ ∞

0
dr PL(kr)

×
∫ 1

−1
dx PL

(
k
√

1 + r2 − 2r x
)

×
[−I2r + x − (1 − I2)r x2

(1 + r2 − 2r x)

]2

+ (2π)−2k3

48
PL(k)

∫ ∞

0
dr PL(kr)

×
(

−6(2I2 + I3b)r
−2 + 2(10I2 + 11I3b)

+2(−10I2+11I3b)r
2+6(2I2− I3b)r

4+ 3

r3 (r2−1)3

×
(
(−2I2 + I3b)r

2 − (2I2 + I3b)
)

ln
∣∣∣1 + r

1 − r

∣∣∣
)]

≡ exp
[
− k2

6π2

∫
dpPL(p)

][
PL(k)+P22(k)+P13(k)

]

≡ exp
[
− k2

6π2

∫
dpPL(p)

][
PNL(k)

]
, (24)

where r = p
k and x = p·k

pk . The above equations are identical
to Eqs. (36) of [2] when one replaces I2 and I3b with those of
the EdS case given by Eq. (15). Thus, the terms with I2 and
I3b represent the dark energy effect on the power spectrum.
Also, both I2 and I3b depend on the time and their values are
changed depending on the measuring epoch. One interesting
feature is that I3a does not contribute the one-loop correction
in the matter power spectrum. When we generalize the power
spectrum in the SPT without using the EdS assumption, we
obtain a similar matter power spectrum to [1]:

PSPT(k) = PL(k) + (2π)−2k3

2

∫ ∞

0
dr PL(kr)

×
∫ 1

−1
dx PL

(
k
√

1 + r2 − 2r x
)

×
[

(c21 + 2c22)r + (c21 − 2c22)x − 2c21r x2

(1 + r2 − 2r x)

]2

+(2π)−2k3 PL(k)

∫ ∞

0
dr PL(kr)

×
[
2c35r−2− 1

3

(
4c31−8c32+3c33+24c35−16c36

)

−1

3

(
4c31 − 8c32 + 12c33 − 8c34 + 6c35

)
r2

+c33r4+
(r2−1

r

)3
ln

∣∣∣1 + r

1 − r

∣∣∣
(

c35− 1

2
c33r2

)]
,

(25)

where c21–c36 are also given in the above reference. If we
adopt the EdS assumption both for the LPT matter power
spectrum and the SPT one, then P22 is the same for both
approaches. However, the exact solutions will not be matched
exactly for both cases. Also compared to SPT case where the
magnitude of P13 is comparable to that to P13, the magnitude
of P13 is much smaller than that of P22 in LPT. This shows
that the EdS approximation in LPT is quite accurate.

Now we obtain the one-loop power spectrum for �CDM
model. We run the camb to obtain the linear power spec-
trum [16] using �b0 = 0.044, �m0 = 0.26, h = 0.72,
ns = 0.96, and the numerical integration range for p in
Eq. (24) is 10−6 ≤ p ≤ 102. In the left panel of Fig. 1,
we show the linear power spectrum PL (solid), the one-loop
power spectrum P22 (dotted), |P13| (dashed), and the non-
linear power spectrum PNL = PL + P1-loop (dot-dashed).
Absolute magnitude of P13 is smaller than that of SPT. Thus,
the one-loop correction is larger than that of SPT. The one-
loop correction is mainly contributed from the P22 and the
coefficient I2 is not much deviant from that of EdS (− 3

7 ) as
shown in the appendix. That is why the EdS approximation is
a good one for LPT. Also, there exists an additional exponen-
tial prefactor to get the total power spectrum. This is shown
in the right panel of Fig. 1. The dot-dashed line represents
PNL and the dotted line indicates P(k).

Now we investigate the effect of dark energy on the one-
loop power spectrum compared to the one with EdS assump-
tion. The difference in P22 + P13 between them is shown
in the left panel of Fig. 2. There exists only 0.2 % error in
the k = 0.1 h Mpc−1 mode at the present epoch. When we
investigate them at the different zs, then the error is about the
same. The error can be about 2 % at large scales but the one-
loop power spectrum is much smaller than the linear power
spectrum at these scales. When we consider the total PNL,
the difference is even smaller. The error is less than 0.05 %
for the same mode. This is shown in the right panel of Fig.
2 with the notation �PNL = PNL − P(EdS)

NL . This proves the
goodness of the EdS assumption in LPT claimed in [17].
However, we need to pay attention to this EdS assumption
when we consider more general models.

We show that the EdS assumption is a good approxima-
tion to calculate the �CDM one-loop power spectrum in
Lagrangian perturbation theory. However, when we consider
general dark energy models we need to consider the fully con-
sistent method by using the fact In depends on time. This also
makes it possible to separate the temporal and spatial parts
of the solutions. We might be able to extend this method to
the early dark energy or the modified gravity theories. The
upcoming redshift surveys will provide observational data of
the large scale structure of the universe in a larger volume
with a higher density. We obtain the accurate Lagrangian
perturbation theory without using any assumption and this
matches the requirement from future surveys. The obtained
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(a) (b)

Fig. 1 PNL(k) and P(k). a Solid, dotted, dashed, and dot-dashed line represent PL , P22, |P13|, and PNL , respectively. b PNL and P(k) are indicated
as dot-dahed and dotted lines, respectively
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Fig. 2 Errors in P1-loop and PNL. a The percentage difference between the correct P1-loop and the one with EdS assumption. b The percentage

difference between PNL and P(EdS)
NL

results are general for any background universe model includ-
ing time varying dark energy models.
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Appendix

We need to obtain In(a) of each order solution to calculate
the higher order power spectrum. This can be obtained from

Eqs. (7)–(10) by using the proper initial conditions. One can
rewrite the above equations by using the scale factor a,

d2 D

da2 + 3

2a

(
1 − w�DE

)dD

da
− 3�m

2a2 D = 0, (26)

d2 E

da2 + 3

2a

(
1 − w�DE

)dE

da
− 3�m

2a2 E = −3�m

2a2 D2, (27)

d2 Fa

da2 + 3

2a

(
1 − w�DE

)dFa

da
− 3�m

2a2 Fa = −3�m

a2 D3,

(28)

d2 Fb

da2 + 3

2a

(
1−w�DE

)dFb

da
− 3�m

2a2 Fb =−3�m

a2 D(E −D2).

(29)

One can obtain the fastest growing mode solution of each
order by using the proper initial condition. At the early epoch,
the background evolution should be identical to the EdS Uni-
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Fig. 3 The coefficients of E , Fa , and Fb as a function of time. The dotted lines are those of the EdS approximation

verse (�m = 1) and the linear growing mode solution should
be proportional to the scale factor and thus the initial con-
ditions become Dg(ai ) = ai and dD

da |a=ai = 1. Also, we
assume initial Gaussianity for the higher order solutions. It
means that higher solutions should be zero at an early epoch.
From these, one can obtain the proper EdS fastest growing
mode solutions for higher orders (Eg , Fag , and Fbg),

D(EdS)
g (ai ) = ai ,

dD(EdS)
g

da

∣∣∣
a=ai

= 1, (30)

E (EdS)
g (ai ) = −3

7
a2 + 3

7
ai a = 0,

dE (EdS)
g

da

∣∣∣
a=ai

= −3

7
ai ,

(31)

F (EdS)
ag (ai ) = −1

3
a3 + 1

3
a2

i a = 0,
dE (EdS)

g

da

∣∣∣
a=ai

= −2

3
a2

i ,

(32)

F (EdS)
bg (ai ) = 70

147
a3 − 54

147
ai a

2 − 16

147
a2

i a = 0,

dE (EdS)
g

da

∣∣∣
a=ai

= 86

147
a2

i . (33)

From the above initial conditions Eqs. (30)–(33), one can
find the higher order fastest growing mode solution for the
general dark energy model and one can obtain In(a) from the
relation

I2(a) = E

D2 , I3a(a) = Fa

D3 , I3b(a) = Fb

D3 . (34)

We show the time evolutions of In in Fig. 3. In the first
panel, we show the behavior of I2. As time increases, I2

approaches that of the EdS assumed one. Even though we

show the behavior of I3a in the second panel, this term does
not contribute to the one-loop power spectrum as we show.
I3b increases as a does. This is shown in the last panel of
Fig. 3.
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