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Abstract We consider holographic superconductors in a
rotating black string spacetime. In view of the mandatory
introduction of the Aϕ component of the vector potential
we are left with three equations to be solved. Their solutions
show that the rotation parameter a influences the critical tem-
perature Tc and the conductivity σ in a simple but non-trivial
way.

1 Introduction

The use of the AdS/CFT (Anti-de Sitter/Conformal Field
Theory) correspondence has been recently proposed by Hart-
noll, Herzog, and Horowitz [1,2] for the investigation of the
strongly correlated condensed matter physics from the grav-
itational dual. It generally shows that the instability of black
strings corresponds to a second-order phase transition from
the normal state to a superconductor state with the spon-
taneous U (1) symmetry breaking and leads to interesting
physics in the related lower-dimensional physics.

Such a breakthrough result has been widely used more
recently to model conductivity and other condensed mat-
ter physics properties, in particular, holographic supercon-
ductors in various spacetimes [3–22]. Most authors consid-
ered, up to now, the holographic superconductor on a static
background. However, we still have room for the other hair,
namely angular momentum, on top of mass and charge. Or,
equivalently, we can say that a real black string (or black hole)
could have angular momentum in the background. It is thus
our goal to study the holographic superconductor related to
the 4-dimensional rotating black hole. We consider the sim-
plest uncharged background case and we will use both ana-
lytical and numerical methods to find the critical temperature
and conductivity of the holographic superconductor related
to the rotating black hole background.

a e-mail: lk314159@hotmail.com
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The paper is planned as follows. In Sect. 2, we introduce
the metric of the uncharged rotating black hole and calculate
the Hawking radiation and Hawking temperature. Then the
analytical and numerical methods are applied to find the con-
ductivity of such a black hole in Sects. 3 and 4, respectively.
In Sects. 5 and 6, we want to improve the analytical method to
research the holographic superconductor with backreactions.
Section 7 includes a summary and a conclusion.

2 Uncharged rotating black strings and Hawking
temperature

The simplest uncharged rotating black string in 4-dimen-
sional ADS spacetime is given by [24–26]

ds2 = − f (r)(�dt − adϕ)2 + r2
( a

l2 dt −�dϕ
)2

+ dr2

f (r)
+ r2

l2 dθ2, (2.1)

where f (r) = r2

l2 − 2M
r and � = 1 + a2

l2 ; M and a are
the mass and rotation parameters of the black string, while
� = −3/ l2 is the cosmological constant. Without loss of
generality, we set l = 1 and rewrite the function f (r) as

f (r) = r2 − r3
h

r
, (2.2)

where rh is the event horizon of the AdS black hole. Although
a very simple model of rotation, the results will show a depen-
dence on the above rotation parameter a. Rotation is one of
the few possible hairs of a black hole and corresponds to a
general solution of the end fate of a collapsing star. The solu-
tion we are considering is simpler than the full rotating Kerr
solution, but it is a sensible and consistent model. On the
other hand, rotation in a physical condensed matter system
is generally related to spin and corresponds also to a generic
physical system.
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We first find the Hawking radiation and temperature of
such a black hole solution. A simple and effective method to
study the Hawking radiation is the tunneling radiation the-
ory of black holes proposed by Robinson and Wilczek et al.
[27–29]. Developing the tunneling theory, the Hamilton–
Jacobi method has been proposed to compute the Hawking
tunneling rate and Hawking radiation at the horizon of the
black hole [30–34]. We use that method to find the Hawking
tunneling radiation and the temperature of the black hole.

Let us consider the semi-classical Hamilton–Jacobi equa-
tion [30–34]

gμν
∂S

∂xμ
∂S

∂xν
+ μ2

0 = 0, (2.3)

where μ0 is the mass of the radiation particle. We shall use a
semi-classical approximation to find the Hawking radiation
and temperature of the black hole.

In the rotating black string spacetime, we separate the
Hamilton–Jacobi equation as

S = −ω0t + R(r)+ m0ϕ + Y (θ), (2.4)

where ω0 and m0 are the energy and angular momentum of
particles, respectively, so that we obtain the radial and angular
Hamilton–Jacobi equations as

f 2 R′2 − (�ω0 − m0a)2

(a2 −�2)2

+ f

[
(aω0 − m0�)

2

r2(a2 −�2)2
+ λ

r2 + μ2
0

]
= 0,

(
dY

dθ

)2

= λ,

(2.5)

where λ is a constant. At the event horizon r0, we can expand
the function f as

f (r) = f ′(rh)(r − rh)+ f ′′(rh)

2
(r − rh)

2 + · · · , (2.6)

and we get

R± = ± iπ

f ′(rh)

ω0 − m0a
�

�− a2

�

, (2.7)

where R+ and R− are the radial outgoing and incoming
modes, respectively [27–29]. Therefore, the tunneling rate
at the event horizon is

� = e−2(�R+−�R−) = exp

(
− 4π

f ′(rh)

ω0 − m0a
�

�− a2

�

)
, (2.8)

while the Hawking temperature is given by [27–29]

Th = f ′(rh)

4π
= 3rh

4π
(2.9)

where  = �
�2−a2 = 1+a2

1+a2+a4 .

We thus find that the form of the Hawking temperature is
very similar to the temperature of static black hole, while the
 in Eq. (2.9) depends on the rotation parameter a. We use
the results to analyze the holographic superconductor in the
next section.

3 Holographic superconductor modes and analytical
investigation

In the rotating black hole spacetime background, the Lagran-
gian density of the simplest holographic superconductor
model with a Maxwell field and a charged complex scalar
field is

L = −1

4
FμνFμν − |∂� − i A�|2 − m2

L2�
2, (3.1)

where Fμν = ∂μAν − ∂ν Aμ and � = �(r) since gμν only
depends on r . As in the static background spacetime case,
Aμ = δt

μ�(r), but in the rotating black string background,
we must set Aμ = δt

μ�(r)+ δϕμ�(r) in view of the presence
of the gtϕ term.

From the variation of Eq. (3.1), we get three equations.
They are

� ′′ +
(

f ′

f
+ 2

r

)
� ′ +

[
(1 + a2)�+ a�

(1 + a2 + a4) f

]2

�

+
[
(1 + a2)�+ a�

r(1 + a2 + a4) f

]2

� − m2

L2 f
� = 0, (3.2)

�′′ +
[

2(1 + a2)2

(1 + a2 + a4)r
− a2 f ′

(1 + a2 + a4) f

]
�′

−2�2

f
�+

[
2(a + a3)

(1 + a2 + a4)r
− a(1 + a2) f ′

(1 + a2+a4) f

]
�′ =0,

(3.3)

�′′ −
[

2a2

(1 + a2 + a4)r
−

(
1 + a2

)2
f ′

(1 + a2 + a4) f

]
�′

−2�2

f
�−

[
2(a + a3)

(1 + a2 + a4)r
− a(1 + a2) f ′

(1 + a2 + a4) f

]
�′ =0.

(3.4)

The boundary condition at the horizon requires Aμ to be
finite. The solutions of the above equations at infinity are
given by

� =
√

2〈O1〉
r�− +

√
2〈O2〉
r�+ + · · · ,

� = μ− ρ

r
+ · · · ,

� = ν − ζ

r
+ · · · ,

(3.5)
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where �± = 3
2 ±

√
9
4 + m2

L2 implying that � satisfies 1
2 <

� < 3. In the following, we set L = 1.
Siopsis and Therrien [35] proposed an effective analytic

method to calculate the critical temperature of holographic
superconductor in static spacetime. We generalize such a
method for the rotating black hole case in this section.

According to that procedure, we change the coordinates
as z = r0/r and the field equations can be rewritten as

z�,zz − 2 + z3

1 − z3�,z + z[(a2 + 1)�+ a�]2

(a4 + a2 + 1)2r2
0 (1 − z3)2

�

+ z((a2 + 1)�+ a�)2

(a4 + a2 + 1)2r2
0 (z

3 − 1)
� − m2

z(1 − z3)
� = 0, (3.6)

�,zz − 3a2z2�,z

(a4 + a2 + 1)(z3 − 1)
− 2�2

z2(1 − z3)
�

− 3a(a2 + 1)z2�,z

(a4 + a2 + 1)(z3 − 1)
= 0, (3.7)

�,zz + 3(a2 + 1)2z2�,z

(a4 + a2 + 1)(z3 − 1)
− 2�2

z2(1 − z3)
�

+ 3a(a2 + 1)z2�,z

(a4 + a2 + 1)(z3 − 1)
= 0. (3.8)

At the critical temperature Tc, we have � = 0, thus
Eqs. (3.7) and (3.8) become

�,zz − 3a2z2�,z

(a4 + a2 + 1)(z3 − 1)

− 3a(a2 + 1)z2�,z

(a4 + a2 + 1)(z3 − 1)
= 0

�,zz + 3(a2 + 1)2z2�,z

(a4 + a2 + 1)(z3 − 1)

+ 3a(a2 + 1)z2�,z

(a4 + a2 + 1)(z3 − 1)
= 0.

(3.9)

Therefore, we can rewrite the above equations as �,z =
�,z(�,zz,�,z) and �,z = �,z(�,zz,�,z), and then substi-
tute into Eq. (3.9) again, so that the decoupling equations are
given by

�,zzz + 2

z

2z3 + 1

z3 − 1
�,zz = 0

�,zzz + 2

z

2z3 + 1

z3 − 1
�,zz = 0

(3.10)

and the solutions are

� = μ− ρz + C1

[√
12 arctan

(
1 + 2z√

3

)

+ ln

(
1 + z + z2

(1 − z)2

)]
,

� = ν − ζ z + C2

[√
12 arctan

(
1 + 2z√

3

)

+ ln

(
1 + z + z2

(1 − z)2

) ]
. (3.11)

Considering the boundary condition at the horizon, we
require �|z=1 = �|z=1 = 0, so that we may set

� = λrhc(1 − z),

� = λ̄rhc(1 − z),
(3.12)

where λ = ρ

r2
hc

[35], and rhc is the radius of the horizon

at critical temperature. Next, substituting Eq. (3.12) into
Eq. (3.9), we find λ̄ = − a

1+a2 λ.
According to the idea of Siopsis and Terrien, we introduce

�(z) = 〈O�〉√
2r�h

z�F(z) (where F |z=0 = 1, and F,z |z=0 = 0)

to match the boundary condition, and substitute Eq. (3.12)
into Eq. (3.6), which becomes

−F,zz + 1

z

(
2 + z3

1 − z3 − 2�

)
F,z + �2z

1 − z3 F

= λ̃2

(1 + z + z2)2
F, (3.13)

where λ̃ = λ
1+a2 . We observe that the form of Eq. (3.13)

is the same as the result of [35], so we can directly use the
mathematical conclusions about the eigenvalue λ̃,

λ̃2 =
∫ 1

0 dz{z2�−2[(1 − z3)(F,z)2 +�2zF2]}
∫ 1

0 dz
[
z2�−2 1−z

1+z+z2 F2
] , (3.14)

and we assume a very simple trial function F = Fα(z) ≡
1 − αz2. We can thus compute the minimizing value of λ̃2.
Then, using the temperature’s formula, the critical tempera-
ture is given by the expression

Tc = 3

4π
rhc = 3

4π

√
ρ

λ
= 3

4π
η

√
ρ

λ̃
, (3.15)

where

η = 1


√

1 + a2
= 1 + a2 + a4

(1 + a2)3/2
. (3.16)

From the above equations, we can get the relation between
the critical temperature Tc and λ̃, which depends on �.

In Table 1 we write the results of the analytical method in
the rotating black strings spacetime.

It is clearly evident that the conclusion is no other than
the results of [35] as η = 1 (a = 0), and all the corrections
depend on η; thus we focus on η.

In Fig. 1 we plot the relationship between η and a.
We find that η < 1 as |a| < a1 where a1

=
√

22/3

6 [(25+3
√

69)1/3+(25−3
√

69)1/3]− 1
3 ≈ 0.868837.

In this region, the correction from a led the critical temper-
ature Tc to decrease. The minimum value of η is ηmin =
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Table 1 Relation of the critical
temperature Tc and � � Tc

0.6 0.45504η
√
ρ

0.8 0.29124η
√
ρ

1 0.22496η
√
ρ

1.2 0.18638η
√
ρ

1.4 0.16066η
√
ρ

1.6 0.14214η
√
ρ

1.8 0.12810η
√
ρ

2 0.11704η
√
ρ

2.2 0.10809η
√
ρ

2.4 0.10067η
√
ρ

2.6 0.09440η
√
ρ

2.8 0.08903η
√
ρ

√
26

√
13

27 − 70
27 ≈ 0.937774 at amin =

√√
13−3
2 ≈ 0.550251.

However, the effect of η leads to an increase of the critical
temperature Tc as |a| > a1.

Further details of holographic superconductor shall be
investigated by a numerical method in the next section.

4 Numerical investigation and conductivity

In this section, we set m2 = −2, rh = 1, and then use
the shooting method [1,2], combining with the boundary

condition (3.5) and the main equations (3.2)–(3.4), to calcu-
late the condensate as a function of temperature. The results
are shown in Fig. 2.

In Fig. 2, it is easy to find that, as the rotation parameter
a increases, the curved line gets lower.

Finally, we study the conductivity. Considering the per-
turbed Maxwell field dA = Ax (r)e−iωt dx , we obtain the
equation

A′′
x + f ′

f
A′

x − 2
[

1 − f a2

(1 + a2)2r2

]
ω2

f 2 Ax

−2
�2

f
Ax = 0. (4.1)

The boundary condition at the event horizon requires

Ax (r) ∼ f (r)−iω/3rh , (4.2)

while the behavior of Ax in the asymptotic AdS region is

Ax = A(0) + A(1)

r
. (4.3)

Therefore, we can get the conductivity of the superconductor
by using the AdS/CFT dictionary [1,2]

σ = − i A(1)

ωA(0)
. (4.4)

We use the above equations to calculate the conductivity
in Figs. 3 and 4. It can be seen that the effect of a drives the
real part of the conductivity to smaller and smaller values.

Fig. 1 The relationship between η and |a| according to Eq. (3.16) and in the second diagram the dependence of the temperature with |a|

Fig. 2 The condensate as a function of the temperature for the two operators O1 and O2 in rotating spacetime
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Fig. 3 The real part of conductivity for the two operators O1 and O2 in rotating spacetime

Fig. 4 The imaginary part of conductivity for the two operators O1 and O2 in rotating spacetime

Fig. 5 −ωImσ for the two operators O1 and O2 in rotating spacetime

For the imaginary part the behavior is more involved: the fre-
quency times the imaginary part increases in absolute value,
as we see in Fig. 5, where we plot −ωImσ with small ω. The
results also show that −ωImσ with different a go to the same
constant as ω goes to 0. This implies superconductivity for
zero frequency.

5 Modified analytical method with backreaction

The authors of reference [36] proposed a method to analyti-
cally research the holographic superconductor with backre-
action. However, using such a method still poses a problem:
the error will be larger as the backreaction increases. Here, we
improve the method in [36] to get more precise results and use
the improved method to study the holographic superconduc-
tors with backreaction in a rotating black strings spacetime.

Let us consider the general action of holographic super-
conductor model in the d-dimensional spacetime,

S =
∫

dd x
√−g

[
1

2κ2 (R − 2�)− 1

4
FμνFμν

− |∂ψ − i Aψ |2 − m2ψ2
]
, (5.1)

where κ2 = 8πGd ,� = − 1
2L2 (d −1)(d −2), dA = φ(r)dt ,

and ψ(r) are the d-dimensional gravitational constant, the
cosmological constant, the gauge field, and the scalar field,
respectively.

In this section, we use d-dimensional static spacetime as
an example to show the improved analytical method of holo-
graphic superconductor. In [36], the authors focus on the
d-dimensional planar Anti-de Sitter black hole
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ds2 = − f (r)e−χ(r)dt2 + dr2

f (r)
+ r2hi j dxi dx j , (5.2)

where hi j dxi dx j is the line element of the (d − 2)-
dimensional hypersurface with the curvature k = 0.

Considering the backreaction from thespacetime, we fail
to directly get the results of f (r) and χ(r), while the effect
from ψ is very small, so that we can expand them as

f = f0 + ε2 f2 + ε4 f4 + · · ·
χ = χ0 + ε2χ2 + ε4χ4 + · · · , (5.3)

where ε 
 1. According to the calculation in [36], at the
critical temperature,

φc(z) = λrc(1 − zd−3), (5.4)

where φc and rc are At = φ and event horizon position at
the critical temperature, while z = rc

r and λ = ρ/rd−2
c (ρ is

the charge density). Therefore, we can get f0 and χ0,

f0 = r2
c g(z)

= r2
c

[
1

L2z2 − zd−3

L2 − κ2λ2 d − 3

d − 2
zd−3(1 − zd−3)

]
,

χ0 = 0. (5.5)

At first order, we can set ψ = ψC
r�

z�F(z) (where m2 =
�(1−d +�) andψ0 is a constant) and the asymptotic Anti-
de Sitter boundary condition for ψ requires F(0) = 1 and
F ′(0) = 0. Finally, the equation of motion for F(z) in [36]
is given by

F ′′ +
[

2(�+ 2)− d

z
+ g′

g

]
F ′ +

[
λ2 (1 − zd−3)2

z4g2

+�
z

(
�+ 3 − d

z
+ g′

g

)
− m2

z4g

]
F = 0. (5.6)

From the Sturm–Liouville eigenvalue problem, we get

λ2 =
∫ 1

0 T (F ′2 − U F2)dz∫ 1
0 T V F2dz

, (5.7)

where

T = z2(�+2)−d g,

U = �

z

(
�+ 3 − d

z
+ g′

g

)
− m2

z4g
,

V = (1 − zd−3)2

z4g2 ,

(5.8)

and we assume F(z) = 1 − az2, which satisfies the AdS
boundary condition.

At the probe limit, we can calculate λ2 at the critical tem-
perature as the minimum eigenvalue in Eq. (5.8) andcompute

Table 2 Comparing the Tc results of the iteration method and the
method of [36] with �κ = 0.025 in the 5-dimensional AdS black
hole background, where m2 L2 = −3

κ Iteration method Method of [36] Numerical

0 0.1962ρ1/3 0.1962ρ1/3 0.1980ρ1/3

0.05 0.1934ρ1/3 0.1934ρ1/3 0.1953ρ1/3

0.10 0.1854ρ1/3 0.1853ρ1/3 0.1874ρ1/3

0.15 0.1726ρ1/3 0.1722ρ1/3 0.1748ρ1/3

0.20 0.1558ρ1/3 0.1549ρ1/3 0.1580ρ1/3

0.25 0.1361ρ1/3 0.1345ρ1/3 0.1382ρ1/3

0.30 0.1147ρ1/3 0.1123ρ1/3 0.1165ρ1/3

the critical temperature Tc by the relationship between λ
and Tc.

However, when considering the backreaction from space-
time, we must face the troubling fact that g in Eq. (5.5)
includes λ2 as κ �= 0. In order to solve this difficulty, the
authors in [36] express κ as

κn = n�κ, n = 0, 1, 2 . . . , (5.9)

where�κ = κn+1−κn and κ0 = 0, so we can use the λ2|κn−1

to replace λ2 in g(r), which can be rewritten as

g ≈ 1

L2z2 − zd−3

L2 − κ2
n (λ

2|κn−1)
d − 3

d − 2
zd−3(1 − zd−3).

(5.10)

The authors of [36] got good results by using the above
method, but the error between exact numerical values
and the values from the above method are larger as κ
increases.

We want to use the iteration method to improve the above
method, so let us consider the λ2|κn−1 (or directly λ2|κ0 ) as
the initial value of λ2

0 in g and then calculate the minimum
eigenvalue of λ2

1 in Eq. (5.7), and substitute λ2
1 into Eq. (5.7)

again to calculate the minimum eigenvalue λ2
2. Using this

iteration process, we can get λ2 as λ2
i+1 ≈ λ2

i . Next, from
the relation between Tc and λ2 we find

Tc = 1

4π

[
(d − 1)− κ2λ2 (d − 3)2

d − 2

] (ρ
λ

) 1
d−2

. (5.11)

In Table 2, the numerical results are exact like [36,37]. We
compare the results of the iteration method and the results in
[36], and we find that the values from the iteration method
are better.

In Sect. 6, we will use the iteration method to analytically
research the holographic superconductor in a rotating black
string spacetime.
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6 Analytical investigation of holographic
superconductors with backreactions

The metric of spacetime and the electromagnetical potential
of rotating ADS black strings could be given by

ds2 = − f (r)
[

N (r)dt − ω

α2 dϕ
]2 + dr2

f (r)

+ r2[N (r)dϕ − ωdt]2 + α2r2dz2,

dA =N (r)φ(r)dt − ω

α2 φ(r)dϕ,

(6.1)

where ω is a constant which is determined by the rotation
parameter, and � = −3/α2 is the cosmological constant.
Without loss of generality, we set α = 1. According to the
calculation method in Sect. 2, the Hawking temperature of a
black hole (6.1) is [30–34]

Th = f ′(rh)

4̂π
, (6.2)

where ̂ = N
N 2−ω2 . Now, let us substitute the metric and

electromagnetical potential in Eq. (6.1) into the holographic
superconductor action (5.1), and from the variation of the
action (5.1), we get four field equations:

κ2
[

2ω2φ2 f ′N ′

r2ω2 N − r2 N 3 + 2φ(r)2 N ′′ (r2 N 2 − ω2 f
)

r2
(
N 3 − ω2 N

)

+ N ′
(

4φφ′(r2 N 2 − ω2 f )

r2(N 3 − ω2 N )
− 4Nφ2

rω2 − r N 2

)

+ 2ω2( f − r2)φ2 N ′2

r2(ω2 − N 2)2
+ 4 fψ ′2 − 4ψ2φ2

f
+ 4m2ψ2

+φ
(

2φ′′ + 4φ′

r

)]
+ f ′′ + 4

r
f ′ + 2 f

r2 − 12

+ N ′′(−2r2 f (ω2 − 2N 2)+ ω2 f 2 + r4ω2)

r2(N 3 − ω2 N )

− ω2( f + r2)2 N ′2

r2(ω2 − N 2)2
− N ′(8 f N 2 − 4ω2 f + 4r2ω2)

rω2 N − r N 3

+ N ′[2ω2 f − 2r2(ω2 − 2N 2)]
r2(N 3 − ω2 N )

f ′ = 0, (6.3)

N ′′ + N ′2(ω2 f + r2 N 2 − κ2ω2φ2)

r2ω2 N − r2 N 3

+2κ2(N 2 − ω2)( f 2ψ ′2 + ψ2φ2)

f 2 N
= 0, (6.4)

φ′′ + φ′
(

2N N ′

N 2 − ω2 + 2

r

)
− ω2(r2 − f )N ′2

r2(ω2 − N 2)2
φ

+φ
(

N N ′′

N 2 − ω2 − 2N N ′

rω2 − r N 2 − 2ψ2

f

)
= 0, (6.5)

ψ ′′(r)+ ψ(φ2 − m2 f )

f 2

+ψ ′
(

f ′

f
+ 2N N ′

N 2 − ω2 + 2

r

)
= 0. (6.6)

The field φ must remain finite at event horizon, while as
r → ∞, the boundary condition requires

ψ =
√

2〈O−〉
r�− +

√
2〈O+〉
r�+ + · · · ,

φ = μ− ρ

r
+ · · · ,

f = r2 + · · · ,
N = N0 + · · · ,

(6.7)

where ρ and μ are, respectively, the charge density and the
chemical potential in the dual field theory and �± = 3

2 ±√
9
4 + m2, implying that � satisfies 1

2 < � < 3. Please

note that N0 = 1 +ω2 according to the rotating black string
solution given in [25,26].

An effective analytic method proposed by Siopsis and
Therrien [35] can be used to investigate the holographic
superconductor at the critical temperature. According to
the procedure, we should change the radial coordinates as
z = rh/r , so that the field equations can be rewritten as

κ2
{

2ω2z2φ2 f,z N,z
ω2r2

h N − r2
h N 3

+ 2φ2 N,zz(r2
h N 2 − ω2z2 f )

r2
h (N

3 − ω2 N )

+ N,z

[
4φφ,z(r2

h N 2 − ω2z2 f )

r2
h (N

3 − ω2 N )
− 4ω2z f φ2

r2
h (N

3 − ω2 N )

]

− 2ω2φ2 N 2
,z(r

2
h − z2 f )

r2
h (ω

2 − N 2)2
− 4r2

hψ
2φ2

z4 f
+ 4 fψ2

,z

+ 4m2r2
hψ

2

z4 + 2φφ,zz

}
+ f,zz

+ f,z

[
N,z(2r2

h (ω
2 − 2N 2)− 2ω2z2 f )

r2
h N (ω2 − N 2)

− 2

z

]

+
z2 N,zz

(
− 2 f r2

h (ω
2−2N 2)

z2 + ω2 f 2 + ω2r4
h

z4

)

r2
h (N

3 − ω2 N )

− ω2 N 2
,z(z

2 f + r2
h )

2

z2r2
h (ω

2 − N 2)2
− 2ω2 N,z(r4

h − z4 f 2)

z3r2
h (N

3 − ω2 N )

+ 2(z2 f − 6r2
h )

z4 = 0, (6.8)

N,zz + 2N,z
z

+ N 2
,z(ω

2z2 f + r2
h N 2 − κ2ω2 − z2φ2)

ω2r2
h N − r2

h N 3

+ 2κ2(N 2 − ω2)(z4 f 2ψ2
,z + r2

hψ
2φ2)

z4 f 2 N
= 0, (6.9)

123
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φ

(
−ω

2 N 2
,z(r

2
h − z2 f )

r2
h (ω

2 − N 2)2
− 2r2

hψ
2

z4 f
+ N N,zz

N 2 − ω2

)

+2N N,zφ,z
N 2 − ω2 + φ,zz = 0, (6.10)

ψ,z

(
f,z
f

+ 2N N,z
N 2 − ω2

)
+ r2

hψ(φ
2 − m2 f )

z4 f 2 + ψ,zz = 0.

(6.11)

It is very difficulty to calculate the exact solution from the
above equations, but considering the fact that the effect from
ψ is very small, at critical temperature we can expand f , N ,
φ, ψ , and the chemical potential μ as

ψ = εψ1 + ε3ψ3 + ε5ψ5 + · · · ,
φ = φ0 + ε2φ2 + ε4φ4 + · · · ,
f = f0 + ε2 f2 + ε4 f4 + · · · ,

N = N0 + ε2 N2 + ε4 N4 + · · · ,
μ = μ0 + ε2μ2 + ε4μ4 + · · · ,

(6.12)

where ε = 〈O±〉 
 1. Thus, the calculation accuracy is
enough to consider the first terms in Eq. (6.12).

Near the critical temperature point, the scalar fieldψ van-
ishes and we can use N0 to replace N , so that Eq. (6.10) has
the solution

At ≈ N0φ0 = λrhc(1 − z), (6.13)

where λ = ρr−2
hc , and the rhc is the position of the event

horizon at the critical temperature point. For convenience,
we set λ̂ = λ

N0
and ρ̂ = ρ

N0
. Next, substituting Eq. (6.13)

into Eq. (6.8), we obtain

f0 = r2
hc

[
z−2 − z + κ2λ̂2 z

2
(z − 1)

]
. (6.14)

Let us set ψ1 ∼ 〈O±〉
r�hc

z�F0(z), so that Eq. (6.11) becomes

F0,zz +
(

f0,z

f0
+ 2N0 N0,z

N 2
0 − ω2

+ 2�

z

)
F0,z

+
[
� f0,z

z f0
− m2r2

hc

z4 f
+ λ̂2(z − 1)2r4

hc

z4 f 2
0

− 2�N0 N0,z

ω2z − zN 2
0

+ (�− 1)�

z2

]
F0 = 0. (6.15)

Therefore, from the Sturm–Liouville eigenvalue problem, we
get, as in (5.7),

λ2 =
∫ 1

0 T0(F ′2
0 − U0 F2

0 )dz∫ 1
0 T0V0 F2

0 dz
, (6.16)

where

T0 = r2
hcz2�

(
1

z2 + 1

2
κ2λ̂2(z − 1)z − z

)
,

U0 = 4

(κ2λ̂2z3 − 2(z2 + z + 1))2
,

V0 = �κ2λ̂2z3(−�+�z + z)− 2m2

κ2λ̂2z6 − z5(κ2λ̂2 + 2)+ 2z2

− 2�(�(z3 − 1)+ 3)

κ2λ̂2z6 − z5(κ2λ̂2 + 2)+ 2z2
,

(6.17)

where we assume F(z) = 1 − az2, so that we can use the
iteration method to calculate the solution for λ. Finally, we
can compute the temperature (6.2) by

Tc = f ′
0(rhc)

40π
= 6 − κ2λ̂2

80π
rhc = 6 − κ2λ̂2

8π0

√
ρ

λ̂
, (6.18)

where 0 = N0
N 2

0 −ω2 . Comparing with the critical temperature

of statical black strings in [36], we found that the whole
correction of the rotation parameter ω comes from 0, while
the process of calculating λ̂ by Eq. (6.15) does not depend
on ω.

Now, we compare the analytical solution with the exact
numerical solution in Table 3. Because the calculation of λ̂
does not depend on the rotation parameter, while the correc-
tion of ω is included in 0, we can set 0 = 1 without loss
of generality.

On the other hand, we also calculate the Tc with different
κ and � in Table 4.

The results show that the critical temperature Tc will
decrease as κ or � increase, and from the relationship

η̂ =
√
ρ

0
, we also find that the effect of the rotation parameter

ω also is a decrease of Tc.

Table 3 Comparing the Tc results of the iteration method and the
numerical exact solution [36,37] in the 4-dimensional AdS black hole
background as m2 = −2

κ � = 1 � = 2

Analytical Numerical Analytical Numerical

0 0.2250ρ1/2 0.2255ρ1/2 0.1170ρ1/2 0.1184ρ1/2

0.05 0.2249ρ1/2 0.2253ρ1/2 0.1163ρ1/2 0.1177ρ1/2

0.10 0.2246ρ1/2 0.2250ρ1/2 0.1142ρ1/2 0.1156ρ1/2

0.15 0.2241ρ1/2 0.2245ρ1/2 0.1107ρ1/2 0.1121ρ1/2

0.20 0.2235ρ1/2 0.2239ρ1/2 0.1060ρ1/2 0.1074ρ1/2

0.25 0.2226ρ1/2 0.2230ρ1/2 0.1003ρ1/2 0.1017ρ1/2

0.30 0.2216ρ1/2 0.2220ρ1/2 0.0938ρ1/2 0.0951ρ1/2

123
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Table 4 Comparing the Tc results of the iteration method and the
numerical exact solution in the 4-dimensional AdS black hole back-
ground, where η̂ =

√
ρ

0

� κ = 0 κ = 0.1 κ = 0.2 κ = 0.3

0.6 0.4550η̂ 0.4550η̂ 0.4549η̂ 0.4547η̂

0.8 0.2912η̂ 0.2911η̂ 0.2906η̂ 0.2898η̂

1 0.2250η̂ 0.2246η̂ 0.2235η̂ 0.2216η̂

1.2 0.1864η̂ 0.1857η̂ 0.1837η̂ 0.1804η̂

1.4 0.1607η̂ 0.1596η̂ 0.1564η̂ 0.1513η̂

1.6 0.1421η̂ 0.1406η̂ 0.1359η̂ 0.1286η̂

1.8 0.1281η̂ 0.1259η̂ 0.1196η̂ 0.1099η̂

2 0.1170η̂ 0.1142η̂ 0.1060η̂ 0.0938η̂

2.2 0.1081η̂ 0.1045η̂ 0.0943η̂ 0.0795η̂

2.4 0.1007η̂ 0.0962η̂ 0.0839η̂ 0.0666η̂

2.6 0.0944η̂ 0.0890η̂ 0.0745η̂ 0.0550η̂

2.8 0.0890η̂ 0.0827η̂ 0.0660η̂ 0.0446η̂

7 Conclusions

We have considered holographic superconductors in 3+1-
dimensional rotating black strings. The investigation shows
that the Aϕ = � term can be ignored in 3+1-dimensional
static spacetime. The effect from the rotation parameter a
leads the real part of the conductivity to be smaller as the
rotation increases. On the other hand, the frequency times the
imaginary part increases in absolute value. Superconductiv-
ity, however, remains. This may imply that the presence of
spin can eventually minimize superconductivity in a physical
system.

On the other hand, we proposed an iteration method to
improve the analytical calculation for holographic supercon-
ductors with backreactions, and it is proved that we can use
this method to get better results. We also use this method to
research the holographic superconductor in a rotating space-
time, while the results point out that the influence of the
rotation parameter mainly concentrates on 0 terms, which
could make the critical temperature decrease. At the same
time, the backreactions also could lead Tc to decrease.

The spacetime we considered in this paper is the spacetime
of rotating black strings, while it could be more meaningful to
study further rotating black hole case. Some work as regards
the superconducting instability of the Kerr–Newmann–de
Sitter black hole appeared in [38]. Further work on the holo-
graphic superconductor in Kerr–Newmann–de Sitter space-
time is under way. On the other hand, recently Hořava pro-
posed a new gravity theory, Hořava–Lifshitz gravity [39–46],
which could solve several difficulties in quantum gravity and
cosmology such as dark energy and dark matter, and our
works [47–49] have proved this theory to satisfy the results
of post-Newtonian approximations, so it will be very interest-

ing to research the holographic superconductors in Hořava–
Lifshitz gravity with backreaction. Further study is under
way.
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