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Abstract The position of a mobile D-3 brane moving
towards a stack of localized D-5 branes has been studied as a
candidate driving inflation in the warm-inflationary scenario.
Here we consider the dissipation parameter � as an arbitrary
function of only the inflaton field. We find that the observ-
ables remain well within PLANCK predictions for a range
of model parameters. We also discuss the non-gaussianity
generated during inflation in this model.

1 Introduction

In the past few years there have been many attempts to build
cosmological inflation models in the framework of string
theory. One of the popular class of models is based on a
scenario with a brane moving toward a localized antibrane,
where the position of the mobile brane plays the role of the
inflaton field [1–19]. In another approach, for inflation model
building, the open string tachyon field described by a non-
standard action [20], which lives in a world volume of a non-
BPS brane, has been used as the inflaton field [21–28]. It
was observed that the same non-standard tachyon effective
action also describes the dynamics of a mobile BPS brane
in the background of a stack of BPS branes [29–31]. Infla-
tionary models have been constructed in this set-up [32–36].
In particular, an inflation model, where a D3 brane moves
in the background of a stack of k coincident D5 branes was
investigated in [37]. It was noted that the inflation ends much
before the mobile brane comes to a distance of the order of the
string length scale, from the stack of localized branes. Thus,
the tachyon field, which would have been excited, when they
are close enough, does not play any role in driving the infla-
tion.

However, from a thermodynamic viewpoint, there are two
dynamical realizations of inflation. The earlier version is the
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standard inflation scenario (also known as supercooled infla-
tion) where radiation is red-shifted during expansion and
leads to a vacuum dominated universe. This gives an isen-
tropic perspective of the inflation paradigm where the uni-
verse expands almost exponentially in the inflation phase
and as a result its temperature decreases rapidly. Radia-
tion is being introduced through a reheating period after
the end of inflation. The fluctuations during this inflation
phase are zero-point ground state fluctuations and infla-
ton field evolution is governed by the ground state evo-
lution equation. There are no thermal perturbations and,
therefore, density perturbations here are only adiabatic in
nature. In these types of models expansion and reheating
are two distinguished phases. Also, energy transfer from
potential energy to radiation remains a nontrivial aspect
of supercooled inflation [38]. Cold inflation, in fact, is
an idealized situation where the dynamics reduces to the
classical evolution of the scalar inflaton field with vac-
uum quantum fluctuations superposed on this background
field.

In contrast to the cold-inflationary picture, warm inflation,
the other thermodynamic alternative, presents the attractive
feature of avoiding the reheating period altogether [39,40].
In such type of models dissipative effects are important dur-
ing the inflationary era, so that radiation production can
occur together with the inflationary expansion. The dissi-
pating effect is the result of the friction arising from the
scalar field dissipating into a thermal bath via its interac-
tion with other fields during the period of inflation [41].
Phenomenologically in the interaction process, the inflaton
decays into some other fields and the decay of the scalar
field can be described by means of an interaction Lagrangian.
From the point of view of statistical mechanics, the interac-
tion between quantum fields and a thermal bath could be
demonstrated by a general fluctuation–dissipation relation
[42]. Warm inflation shows how thermal fluctuations may
play a dominant role in producing the initial fluctuations
necessary for the formation of large-scale structures. Here,
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the density fluctuations arise from thermal rather than quan-
tum fluctuations as happens in supercooled inflation [43–
46]. These fluctuations have their origin in the hot radia-
tion and their influence on the inflaton scalar field is intro-
duced through a friction term in its equation of motion
[47].

Warm inflation was criticized on the basis that the infla-
ton field cannot decay during the slow-roll phase [48] of
inflationary expansion. However, it can be shown that the
inflaton field can indeed decay during the slow-roll phase
(see [49–51] and references therein), thereby placing the con-
cept of the warm-inflationary paradigm on solid theoretical
ground. Over the years, the theory of the dissipation coeffi-
cient has met with immense success in the high temperature
regime with the condition Tγ > mχ where χ is the field
interacting with the inflaton and Tγ is the radiation tempera-
ture. The warm-inflationary scenario in the low temperature
regime is also of great interest nowadays which involves a
two-stage decay procedure φ → χ → yy where χ is the
heavy intermediate field and y is the finally decaying weak
field [52]. As the decay processes in the two regimes are
not the same, the density perturbation can be expressed in
terms of the dissipation coefficients with a different temper-
ature dependence—which will certainly give rise to different
observational consequences [53]. Recently Bastero-Gil et al.
have obtained an expression for the associated dissipation
coefficient in supersymmetric models [54] in the low tem-
perature regime. Since for cosmological models the space
time has to be de Sitter, which does not admit supersymme-
try, we refrain from this form of � in our analysis. In the
warm-inflationary scenario, in the presence of radiation in
the early universe, the idealization in general made is that of
a perfect fluid whereas some deviations might be there from
this limit leading to viscous dissipation and corresponding
noise forces which might have observational consequences
[55].

Warm inflation ends when the universe heats up to
become radiation dominated. At this epoch, the universe
stops inflating and smoothly enters into a radiation dom-
inated Big Bang phase [56,57]. The matter components
of the universe are created by the decay of either the
dominant radiation field or the remaining inflationary field
[58].

Warm inflation has been studied in the context of tachyon
cosmology [59,60], the brane–antibrane scenario [41,61]
and the geometric-tachyon driven case [62]. In the present
piece of work, we revisit the inflationary scenario driven by
the radion field of separation between a D3 and a stack of D5
branes in presence of thermal bath. In Sect. 2 we describe
the warm-inflationary scenario in the present context consid-
ering the dissipation coefficient an arbitrary function of the
inflaton field. Section 3 is dedicated to a discussion and our
conclusion.

2 Warm inflation driven by the radion field between D3
brane and stake of D5 branes

2.1 Review of formalism

The dynamics of a warm-inflationary model where the infla-
ton field can be described by a non-standard tachyonic action
for a flat FRW metric are described by the equations [59]

H2 = 1

3M2
P

V
√

1 − Ṫ 2
, (1)

T̈
√

1 − Ṫ 2
+ 3H Ṫ + �Ṫ

V

√
1 − Ṫ 2 = − V,T

V
, (2)

and

ρ̇γ + 4Hργ = �Ṫ 2, (3)

where MP is the reduced Planck mass and V,T ≡ ∂V/∂T ;
overdots represent derivatives with respect to real time. �

is the dissipation coefficient resulting from the decay of
the scalar field into radiation during the inflationary epoch
and ργ is the energy density due to radiation. � must sat-
isfy � > 0 by the second law of thermodynamics. In
the analysis of this section, we consider � as an arbi-
trary function of only the scalar field, though in principle
it should be a function of both scalar field and tempera-
ture.

Now to have an inflationary scenario, the necessary condi-
tions are ρT ∼ V and ρT > ργ . Also, the slow-roll approxi-
mation requires that Ṫ 2 � 1 and T̈ � (

3H + �
V

)
Ṫ . Under

these conditions, the evolution equations can be written as
[59]

H2 = V

3M2
P

(4)

3H(1 + r)Ṫ = − V,T

V
, (5)

where we have defined a dimensionless parameter r by
r ≡ �

3H V .
In addition, to have a quasi-stable radiation production

during the inflationary epoch, the necessary conditions are
ρ̇γ � 4Hργ and ρ̇γ � �Ṫ 2. With slow-roll conditions, we
then have

ργ = �Ṫ 2

4H
. (6)

On the other hand ργ can be written as ργ ≡ σ Tγ
4 where σ

is the Stephan–Boltzmann constant and Tγ is the temperature
of the thermal bath.

By using Eqs. 5 and 6 with the definition of r , we get

ργ ≡ σ Tγ
4 = r M2

P

4(1 + r)2

(
V,T

V

)2

. (7)
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The combination σ Tγ
4 can be chosen as a dimension-

ful parameter d and all the observable quantities in a warm
tachyonic inflationary scenario can be expressed in terms of
this parameter.

The dimensionless slow-roll parameters in this model are
expressible as

ε ≡ − Ḣ

H2 = M2
P

2(1 + r)V

(
V,T

V

)2

(8)

η ≡ − Ḧ

H Ḣ
= M2

P

(1 + r)V

[
V,T T

V
− 1

2

(
V,T

V

)2
]

. (9)

With r = 0, the above equations reproduce the usual cold-
inflation expressions. The inflation ends when either of the
parameters ε or η goes to one (whichever is early). The num-
ber of e-folds from an arbitrary field value to the end of
inflation is given by

N (T ) = − 1

M2
P

∫ Te

T

V 2

V,T ′
(1 + r) dT ′, (10)

where Te is the field magnitude at the end of inflation. For
perturbations, both scalar and tensor, we note that in the case
of scalar perturbations the scalar and the radiation fields are
interacting. Therefore, isocurvature (or entropy) perturba-
tions are generated besides the adiabatic ones. In this context
dissipative effects can produce a variety of spectra, ranging
between red and blue, and thus producing the running blue
to red spectra [41].

At the high dissipation regime, the density perturbations
are expressed as [59]

δH = 16 π

5

M2
P exp(−ζ̄ (T )

(ln(V )),T
δT, (11)

where

ζ̄ (T ) = −
∫ [

1

3Hr

(
�

V

)
,T

+9

8

(
1 − (ln(�)),T (ln(V )),T

36H2r

)
(ln(V )),T

]
dT

(12)

= −
∫ [

2
V,T T

V,T
− 3V,T

8V
− 3d V,T T

4V V,T
+ 3d V,T

16V 2

]
dT .

(13)

In terms of the slow-roll parameter ε, the quantity δ2
H can

be expressed as

δ2
H =

√
3

75 π2 exp[−2ζ̄ (T )]
[(

1

ε

)3
(

9M4
P

2r2σ V

)] 1
4

, (14)

which gives rise to expressions for various cosmological
observables. For example, the spectral index defined by

ns ≡ 1 + d lnδ2
H

d lnk becomes

ns = 1 −
[

3η

2
+ ε

[
2V

V,T

(
2ζ̄ (T ) − rT

4r

)
− 5

2

]]
(15)

and the running spectral index is found to be

αs ≡ d ns

d ln k

= −2V ε

V,T

[
2η,T

2
+ εT

ε

[
ns − 1 + 3η

2

]

+ 2ε

[(
V

V,T

)
,T

(
2ζ̄ ,T − (ln(r)),T

4

)

+
(

V

V,T

)(
2ζ̄ ,T T − (ln(r)),T T

4

)]]
. (16)

Similarly, the power spectrum, defined by

P ≡ 25

4
δ2

H , (17)

is expressible as

P = 1

4π2

[
1

σd

V 6

(V,T )4

] 1
4

exp(−2ζ̄ (T )) (18)

and the tensor to scalar ratio is given by

R ≡
[

A2
g

P

]

k=k0

, (19)

where A2
g is called the tensor spectrum, and is expressed as

A2
g = H2

2π2 M2
P

[
coth

[
k

2Tγ

]]

k=k0

. (20)

2.2 Warm inflation driven by the Radion field

When we consider the motion of a D3 brane in the back-
ground of k coincident D5 branes, in presence of a radiation
bath the scalar field describing the distance between them
becomes tachyonic and can be expressed as

T (R) =
√

L2 + R2 + 1

2
L ln

√
L2 + R2 − L√
L2 + R2 + L

, (21)

where R is the distance between the moving D3 and k number
of static D5 branes. L is defined as L = √

k gsl2
s , gs being

the string coupling and ls being the string length scale.
Now, for this tachyonic field T, the potential function can

be written as [37]

V (T ) = τ3
x√

x2 + 1
= τ3V (x), (22)
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where τ3 is the tension on the branes and x = R
L is related to

T by

⇒ dT

dx
= L

V (x)
. (23)

Thus, in terms of the dimensionless parameter x , the tachy-
onic field T can be expressed as

T = L

(
√

1 + x2 + 1

2
log

(√
1 + x2 − 1√
1 + x2 + 1

))

. (24)

In terms of the parameters r and d defined by r ≡ �
3H V =

M2
P(V,T )2

4dV 2 and d ≡ σ(Tγ )4, the number of e-folds from some
initial time to the end of inflation is found to be

N ≡
∫ t f

ti
Hdt = −

∫ T f

T

3H2r V (T )

V,T
dT

= p[V (x) − V (x f )]

= p

⎡

⎣ x√
x2 + 1

− x f√
x2

f + 1

⎤

⎦ , (25)

where p is another parameter defined as p ≡ τ3
4d .

Accordingly, the slow-roll parameter ε and η take the
forms

ε = 2d

τ3V (x)
= 1

2pV (x)
(26)

and

η = 1

2pV (x)
(1 − 6x2) = ε(1 − 6x2). (27)

From Eqs. 26 and 27, it is evident that epsilon approaches
1 faster as the field rolls from higher to lower value for any
value of the parameter p so long as x � 1, i.e. R � L . Hence
the end of inflation is marked by the condition

1

2pV (x)
= 1, (28)

which in turn gives

x f = 1
√

4p2 − 1
. (29)

Putting the value of x f in the expression of N , x becomes

x = 1
√

p2

(N+ 1
2 )2 − 1

. (30)
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Fig. 1 Variation of the spectral index with p for N = 70 (brown), 60
(red) and 50 (blue), respectively

Thus, we see that the parameter x can be expressed in
terms of p and N . It may also be noted that R � L imposes
the constraint p � 86.

After the introduction of all these parameters, we are now
ready to compute all the observables which arise from the
perturbation spectrum of CMB.

2.2.1 Perturbational analysis

(a) Spectral index

The spectral index in terms of the model parameter p may
be expressed as

ns = 1 −
[

3η

2
+ ε

[
2V

V,T
(2ζ̄ (T ) − rT

4r
) − 5

2

]]

= 3d2

2V 2 + 3d

V
+ 1 − 6d2V,T T

V (V,T )2 + 12V,T T d

(V,T )2

= 1 +
(

3

32p2V (x)
+ 3

4p

)
1

V (x)
− 3

8p2

×
(

1

V (x)2 + V ′′(x)

V (x)V ′(x)2

)
+ 3

p

(
1

V (x)
+ V ′′(x)

V ′(x)2

)

= 1 + 3[−3 + x(40p
√

1 + x2 + 3x[3 + 4x(x − 8p
√

1 + x2)])]
32p2x2 .

(31)

As x is expressible as a function of both p and N , the
spectral index can be expressed in terms of the parameter p
and the number of e-foldings N before the end of inflation at
which the observables are evaluated.

In Fig. 1, the variation of the spectral index with respect
to p for three different N values are shown. It can be seen
that for a wide range of the parameter p, the value of ns

lies well within the limit viz. ns = 0.09603 ± 0.0073
predicted by PLANCK [63]. A reanalysis, however, yields
ns = 0.9608 ± 0.0057 (68 % C.L.) from Planck + WP, BAO
and Union2.1 compilation data [64]. It may be worth not-
ing that the inclusion of an effective number of neutrino
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species could significantly weaken the constraint, namely
ns = 0.9693 ± 0.0079 (68 % C.L.).

(b) Running of spectral index

The running of the spectral index is another observable asso-
ciated with the spectral index, and it can be defined as

αs = −2V ε

V,T

[
2η,T

2
+ εT

ε

[
ns − 1 + 3η

2

]

+2ε

[(
V

V,T

)
,T

(
2ζ̄ ,T − (ln(r)),T

4

)

+
(

V

V,T

)(
2ζ̄ ,T T − (ln(r)),T T

4

)]]

= − 12d2

V 3(V,T )4 [(d + V )(V,T )4 − 2dV (V,T )2V,T T

+4V 2[−d + 2V ](V,T T )2 + 2[d − 2V ]V 2V,T V,T T T ]

= −
(

3

16p3V (x)3 + 3

4p2V (x)2

−3[V (x)V ′(x)2 + V (x)2V ′′(x)]
8p3V (x)4V ′(x)2

−3[V (x)V ′(x)2 + V (x)2V ′′(x)]2

4p3V (x)5V ′(x)2

+6[V (x)V ′(x)2 + V (x)2V ′′(x)]2

p2V (x)4V ′(x)2

+3[V (x)V ′(x)3 + 4V (x)2V ′(x)V ′′(x) + V (x)3V ′′′(x)]
8p3V (x)4V ′(x)4

−3[V (x)V ′(x)3 + 4V (x)2V ′(x)V ′′(x) + V (x)3V ′′′(x)]
p2V (x)3V ′(x)3

)

= − 3

16p3x3(1 + x2)2 [2 − 5
√

1 + x2

+4px(5 + 3x2 + 195x4 + 33x5 − 84x8 − 48x10)
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Fig. 2 Variation of the running of the spectral index with respect to p
for N = 70 (brown), 60 (red) and 50 (blue), respectively

+x2(−20 + 27
√

1 + x2 + x2(−106 − 21
√

1 + x2

+x2(−160 + 92x4 + 90x6 + 24x8 + 17
√

1 + x2

+x2(−50 + 6
√

1 + x2))))]. (32)

In Fig. 2, the running of the spectral index is plotted against
the parameter p and it is found that in the range of parameter
p for which the αs is within the limit predicted by PLANCK
[63], viz. α = −0.013 ± 0.009, we have a subset of the
parameter range obtained for ns.

(c) Power spectrum

The power spectrum in terms of the model parameters can
be expressed as

P = 1

4π2

[
1

σd

V 6

(V,T )4

] 1
4

exp(−2ζ̄ (T ))

=
exp

[
−3 log[V (x)]

8p − 3 log[V ′(x)]
8p − 3

32pV (x)

]
V (x)

13
4 V ′(x)4

[
f p2V (x)2

V ′(x)4

] 1
4

4π2

= 1

4π2 exp

⎡

⎢⎢
⎣

−3
√

1 + x2

32px
−

3 log

(
x√

x2+1

)

8p
−

3 log

(
−x2

(1+x2)
3
2

+ 1√
x2+1

)

8p

⎤

⎥⎥
⎦

[
x√

x2 + 1

]( 13
4 )

⎡

⎢⎢⎢
⎣

f p2x2

(1 + x2)

(
−x2

(1+x2)
3
2

+ 1√
x2+1

)4

⎤

⎥⎥⎥
⎦

1
4

×
[

1√
x2 + 1

− x2

(1 + x2)
3
2

]4

, (33)

where we have defined a dimensionless parameter f as f ≡
16 L4

σ
. The value of the parameter f can be found from the

observational constraint on the power spectrum as predicted
by COBE normalization condition i.e. P = 2 × 10−9. The
parameter f can be expressed in terms of p and N and hence
it is not a new parameter in our model.
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Fig. 3 Variation of R with the parameter p for N = 70 (brown), 60
(red) and 50 (blue), respectively

(d) Tensor to scalar ratio

Another observable, the ratio of tensor spectrum to the
scalar one, in terms of the model parameters reads

R = 2

3M4
P

[
σd[V,T ]4

V 2

] 1
4

exp(2ζ̄ (T ))

[
coth

[
k

2Tγ

]]

k=k0

=
32d

[
p2V (x)2V ′(x)4

f

] 1
4

exp
[

3 log[V (x)]
8p + 3 log[V ′(x)]

8p + 3
32pV (x)

]

3V (x)
13
4 V ′(x)4

=

32d exp

⎡

⎢⎢
⎣

3
√

1+x2

32px +
3 log

(
x√

x2+1

)

8p +
3 log

(
−x2

(1+x2)
3
2

+ 1√
x2+1

)

8p

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

p2x2

[
1√

x2+1
− x2

(1+x2)
3
2

]4

f (x2+1)

⎤

⎥⎥
⎦

1
4

3

[
1√

x2+1
− x2

(1+x2)
3
2

]4 (
x√

x2+1

) 13
4

. (34)

R can be evaluated by using the observational value of
d, which is a combination of the radiation temperature Tγ ,
Stefan’s constant σ and k0. From observation, using the fact
that Tγ

∼= 0.24 × 1016GeV , σ = 1 and k0 = 0.002Mpc−1

[59], R can be measured in terms of the parametersp and
N . In Fig. 3, R is plotted against p for three different

values of N and it is found that for each value of N , the
value ofR lies well within the bound predicted by PLANCK
i.e. r < 0.11. But the PLANCK observation is under tension
from a recent BICEP2 result [65], which claims the detec-
tion of a tensor to scalar ratio R = 0.2+0.07

−0.05. However, with
consideration of foreground dust the value has been claimed
to be in need to be lowered to R = 0.16+0.06

−0.05 [66]. Also
it may be noted that depending upon the modeling of fore-
ground dust the value of R could be lowered to the level of
becoming undetectable in observations [67].

2.2.2 Non-gaussianity

Non-gaussian statistics provides a powerful way to observa-
tionally discriminate between different mechanisms of gen-
erating a curvature perturbation. Since a warm-inflationary
scenario can be viewed as a multifield inflationary scenario, it
may produce large non-gaussianities. In order to study these
non-gaussian effects, we need to obtain the three point corre-

lation function of the density perturbation or the bispectrum
[68]. The bispectrum is expressed in terms of the fN L param-
eter, the value of which predicts whether non-gaussianity is
arising from the inflationary model or not.

In a warm-inflationary scenario, the fN L parameter can
be expressed in terms of the potential V (x) as [69]

fN L = −5

3

(
Ṫ

H

)(
1

H
log

(
k f

H

))[
V,T T T

�
+ (2k f )

2V,T

�

]
(35)

=
5 log

[√
3V ′(x)

2
√

d

] [ [V (x)V ′(x)3+4V (x)2V ′(x)V ′′(x)+V (x)3V ′′′(x)]
V (x)

3
2 V ′(x)2

+ 2p
√

V (x)V ′(x)

]

3p2V ′(x)V (x)
3
2

. (36)
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Fig. 4 Variation of fN L with the parameter p for N = 70 (brown), 60
(red) and 50 (blue), respectively

In this case, V (x) = x√
x2+1

and hence in terms of the
model parameters

fN L

=
5 log

[ √
3

2
√

d(1+x2)
3
2

]
[1 − 14x2 − 3x4 + 12x6 + 2px

√
x2 + 1]

3p2x2 .

(37)

Like the other observables, fN L can also be expressed in
terms of the parameter p and N .

In Fig. 4, the fN L parameter is plotted against the param-
eter p for N = 50, 60, 70, respectively. It can be seen that
the value of this parameter is well within the bound predicted
by recent observations of PLANCK [70] for a large range of
p.

2.2.3 Constraint on number of D5 branes

A constraint on the number of D5 branes to realize this model
of inflation can be obtained as follows. From the whole anal-
ysis, we can see that all the observables lie well within the
limit as predicted by recent observation for p � 86 Now at
the end point of inflation marked by ε = 1, we have

1

2V (x)
= 1 (38)

⇒ 1

2p x√
x2+1

= 1 (39)

⇒ x = 1
√

4p2 − 1
. (40)

As x = R
L and L = √

k gsl2
s , we have

gs = (4p2 − 1)R2

k l2
s

. (41)

Now, using the conditions R <
√

k gsl2
s and gs << 1, we

arrive at the expression

k > (R/ls)
2 (4p2 − 1). (42)

Now, using p = 100, the number of branes required is of
the order of k > 104 and as we increase p, this requirement
also increases. It may be interesting to note here that for a
similar inflationary picture in the absence of a radiation bath
[37], the constraint on the number of branes was obtained as
kgs(ls MP)2

� 1010, which roughly leads to the impression
that k � 1010.

3 Conclusion

In this work, the warm-inflationary scenario driven by a BPS
D3 brane moving in the background of k coincident D5 branes
has been analyzed. The unstable tachyonic field which arises
from the motion of a D3 brane in that background is the
source of inflation in this picture. The whole process is con-
sidered in the presence of a radiation bath. In such warm
inflation, the dissipative effects play an important role and
hence the whole dynamics is analyzed in terms of the dissi-
pative parameter. The slow-roll parameters and the cosmo-
logical observables are computed by considering the fact that
the dissipation parameter is a function of the tachyonic field.
The number of e-foldings N , the spectral index ns, running of
spectral index αs, and the tensor–scalar ratio R are evaluated
for the general tachyonic potential in terms of our model
parameters. We have carried out the analysis for the three
cases N = 50, N = 60, and N = 70 separately and found
that, for each case, all the observables lie well within the
bound predicted by the observation of PLANCK for a wide
range of the model parameter p, though the value of the ten-
sor to scalar ratio is far less than the predictions of BICEP2.
The model predicts that by a suitable choice of the parameter
p, one can get a constraint on the minimum number of D5
branes required to realize such a model. It is observed that
for p = 100, we need a minimum of 104 branes to drive
inflation. Also, it is seen that non-gaussian effects can arise
in this model due to the self-interaction of the inflaton field.
The non-gaussian effect of such inflationary mechanism is
analyzed by measuring the bispectrum of the gravitational
field fluctuations generated during the warm inflation in the
strong dissipative regime. The bispectrum of the inflaton is
expressed in terms of the parameter fN L and it can be seen
that the value of fN L parameter lies well within observed
limits for a wide range of the model parameters.
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