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Abstract An inverted mass hierarchy in the squark sec-
tor, as in so-called “natural supersymmetry”, requires non-
universal boundary conditions at the mediation scale of
supersymmetry breaking. We propose a formalism to define
such boundary conditions in a basis-independent manner
and apply it to generic scenarios where the third-generation
squarks are light, while the first two-generation squarks are
heavy and near-degenerate. We show that not only is our
formalism particularly well suited to study such hierarchical
squark mass patterns, but in addition the resulting soft terms
at the TeV scale are manifestly compatible with the princi-
ple of minimal flavour violation, and thus automatically obey
constraints from flavour physics.

1 Introduction

In supersymmetric extensions of the Standard Model (SM),
any particles with sizeable couplings to the Higgs sector are
expected to have masses not too far above the electroweak
scale. This concerns in particular the squarks of the third
generation, which should be lighter than about a TeV in
order not to create a severe naturalness problem. By contrast,
the squarks of the first two generations could well be much
heavier. This possibility is particularly attractive because the
bounds from supersymmetry (SUSY) searches at the LHC
are strongest by far for the first two generations of squarks,
and because flavour constraints are also easier to satisfy when
they are very heavy. The scenario of an inverted mass hier-
archy in the squark sector, typically combined with a small
higgsino mass parameter and a not too heavy gluino (see
e.g. [1–4] and references therein), is commonly dubbed “nat-
ural” or “effective” SUSY, and is increasingly becoming the
new paradigm of SUSY phenomenology.

In the Minimal Supersymmetric Standard Model (MSSM)
with boundary conditions at the Grand Unification (GUT)

a e-mail: fbruemmer@sissa.it

scale, light stops and sbottoms with otherwise very heavy
squarks are especially interesting because they can lead to
radiatively induced large stop mixing [5–7]. The latter is
needed in the MSSM to obtain a 126 GeV Higgs mass while
keeping the stops reasonably light. More precisely, if the first
two-generation squarks have masses of the order of 10 TeV,
and if supersymmetry breaking is mediated at a very high
scale such as MGUT ≈ 1016 GeV, then the stop masses at
the low scale receive significant negative contributions from
two-loop running (or possibly even from one-loop running if
there is a non-vanishing hypercharge D-term). This allows
one to realise a sizeable ratio |At/mt̃ |, where At is the stop
trilinear parameter and mt̃ is the average stop mass, leading to
large one-loop corrections to the lightest Higgs mass. How-
ever, in precisely this situation where radiative corrections
to the spectrum from the first two generations are important,
they may also induce a significant misalignment between
the squark and quark mass matrices. The resulting flavour-
changing neutral currents (FCNCs) are tightly constrained by
experiment. The effects of such a split squark spectrum on
flavour observables have already been investigated in [8–11]
(see also [12–20] for some recent discussions on FCNCs in
selected models with light third-generation squarks). Here,
we propose to shed light on this issue using a different strat-
egy.

Firstly, having assumed a very high mediation scale, hier-
archical squark soft terms at the low scale have to be obtained
from some non-universal boundary conditions through the
renormalisation group evolution. But even just prescribing
such boundary conditions in a model-independent way is
nontrivial, since they depend on the chosen flavour basis.
Our first result is to propose a formalism to define general
soft-term boundary conditions in a basis-independent man-
ner. Secondly, we apply this formalism to the cases where
either a subset or all of the third-generation squarks are light,
while the first two-generation squarks are heavy and near-
degenerate. It turns out that not only is our formalism par-
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ticularly well suited to study such squark mass patterns, but
in addition the resulting TeV-scale soft terms are in many
cases manifestly compatible with the minimal flavour vio-
lation principle (MFV),1 as proposed in Reference [21]. In
addition, whenever a departure from MFV is observed, it can
be quantified precisely. Clearly, realizing split squark scenar-
ios in this way is of great advantage because it helps ensure
that there will be no conflict with bounds on D–D̄ and K –K̄
mixing observables, which one might otherwise expect for
generic hierarchical soft terms.

In Sect. 2, we briefly recall the essentials of the SUSY
flavour problem, the concept of MFV, and present our pro-
cedure to define fully generic and non-universal boundary
conditions for soft-breaking terms. In Sect. 3 we use this
scheme to parametrise the boundary conditions leading to
third-generation squarks much lighter than the first two gen-
erations, and characterise their flavour properties. Section 4
contains our conclusions. In the “Appendix”, we address
some technical subtleties regarding the definition and run-
ning of the CKM matrix and show that our scheme allows to
easily deal with, and correct for, CKM-induced uncertainties
in the renormalisation group (RG) running.

2 The SUSY flavour sector

We follow the conventions of the SLHA2 [22], which we
now briefly recall. The matter fields of the supersymmetric
Standard Model transform under a global non-abelian flavour
symmetry GF = SU(3)Q × SU(3)U × SU(3)D × SU(3)L ×
SU(3)E . This symmetry is explicitly broken by the Yukawa
superpotential

WYukawa = −(Yu)i j Hu QiU j + (Yd)i j Hd Qi D j

+(Ye)i j Hd Li E j , (1)

as well as by the soft mass matrices for the squarks and
sleptons, and by the soft trilinear terms.

In the lepton–slepton sector, Ye can always be diago-
nalised via a suitable SU(3)L × SU(3)E transformation. We
will focus on the quark–squark sector, where at most one of
the matrices Yu and Yd can be chosen diagonal in a gauge
eigenstate basis. After electroweak symmetry breaking, the
Yukawa matrices are diagonalised by

̂Yd,u = VR†
d,uYT

d,uVL
d,u, ̂Yd = diag(yd , ys, yb),

̂Yu = diag(yu, yc, yt ). (2)

The misalignment of left-handed quarks is encoded in the
CKM matrix, VCKM = VL†

u VL
d . Rotating quarks and squarks

1 In this respect, it should be stressed that our strategy to prove the com-
patibility of hierarchical squark mass patterns with FCNC constraints is
different from that of Reference [11], which relied on a modified MFV
principle, based on a smaller flavour symmetry group.

by the same unitary transformations defines the super-CKM
basis, in which the squark mass matrices take the form

M2
ũ =

⎛

⎝

VCKM m̂2
QV†

CKM+ v2
u
2

̂Y2
u

vu√
2

(

̂T†
u −̂Yu μ cot β

)

vu√
2

(

̂Tu −̂Yu μ∗ cot β
)

m̂2
U + v2

u
2

̂Y2
u

⎞

⎠

+D-terms ,

M2
d̃

=
⎛

⎝

m̂2
Q + v2

d
2

̂Y2
d

vd√
2

(

̂T†
d − ̂Yd μ tan β

)

vd√
2

(

̂Td − ̂Yd μ∗ tan β
)

m̂2
D + v2

d
2

̂Y2
d

⎞

⎠

+D-terms. (3)

In terms of the interaction-basis soft masses m2
Q,U,D and

trilinear terms Tu,d ,

m̂2
Q = VL†

d m2
QVL

d , m̂2
U = VR†

u (m2
U )TVR

u ,

m̂2
D = VR†

d (m2
D)TVR

d ,

̂Tu = VR†
u TT

u VL
u , ̂Td = VR†

d TT
d VL

d . (4)

Our aim is now to establish a formalism for encoding the
squark sector soft-term data without fixing a flavour basis.
Such a basis-independent formalism has both conceptual and
practical advantages which will be discussed in detail below.

In order to find a basis-independent parameterisation of
the soft terms, we expand them in powers of the Yukawa
matrices, covariantly with respect to the spurious GF flavour
symmetry. To this end we define the matrices

A = YdY†
d , B = YuY†

u . (5)

They transform as bifundamentals under an SU(3)Q rotation
which sends Q → VQ Q:

A → V∗
QA VT

Q, B → V∗
QB VT

Q . (6)

Given that m2
Q also transforms as a bifundamental,

(m2
Q)T → V∗

Q(m2
Q)T VT

Q , we can expand

(m2
Q)T = m2

0(a
q
1 1 + aq

2 A + aq
3 B + aq

4 A2 + aq
5 B2

+aq
6 {A, B} + i bq

1 [A, B] + i bq
2 [A, B2]

+i bq
3 [B, A2]), (7)

where the expansion coefficients aq
i and bq

i are invariant
under GF. Likewise, given their respective transformation
properties under GF, the right-handed squark mass matrices
and the trilinear terms are covariantly expanded as

m2
U = m2

0(a
u
1 1 + Y†

u(au
2 1 + au

3 A + au
4 B + au

5 A2

+au
6 {A, B} + i bu

1 [A, B] + i bu
2 [A, B2]

+i bu
3 [B, A2])Yu),

m2
D = m2

0(a
d
1 1 + Y†

d(ad
2 1 + ad

3 A + ad
4 B + ad

5 B2

+ad
6 {A, B} + i bd

1 [A, B] + i bd
2 [A, B2]
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+i bd
3 [B, A2])Yd), (8)

Tu,d = A0(c
u,d
1 1 + cu,d

2 A + cu,d
3 B + cu,d

4 A2 + cu,d
5 B2

+cu,d
6 {A, B} + i cu,d

7 [A, B]
+i cu,d

8 [A, B2] + i cu,d
9 [B, A2])Yu,d . (9)

The coefficients aq,u,d
i , bq,u,d

i are real because the mass

matrices are hermitian, but the cu,d
i are generally complex.

The parameters m0 and A0 are placeholder constants of mass
dimension one which could as well be absorbed into the a, b,
and c coefficients at one’s convenience. Eqs. (7)–(9) define
our basis-independent general parameterisation of the squark
sector soft terms.

Since the matrices appearing on the RHS of Eq. (7) are
linearly independent (for generic A and B) [23], there is no
loss of generality in this expansion. The same is true for
each of Eqs. (8) and (9). Indeed it is a simple exercise in
counting to show that the real aq,u,d

i and bq,u,d
i together with

the complex cu,d
i coefficients contain exactly the degrees of

freedom needed for describing three hermitian 3 × 3 mass
matrices and two general complex 3 × 3 trilinear matrices.
The bases of flavour-covariant 3×3 matrices we are project-
ing on are not unique, but they are in a sense the simplest
choices, being symmetric in Yu and Yd and using the lowest
powers of Yukawa matrices possible.

These matrix bases turn out to be numerically somewhat
peculiar when realistic values for Yu and Yd are inserted.
Because of the large hierarchy in the Yukawa couplings, one
has B2 ≈ tr(B)B and A2 ≈ tr(A)A; that is, some of the basis
matrices are nearly parallel in flavour space. In addition, the
only non-diagonal structure provided by A and B is the very
hierarchical CKM matrix. Therefore, numerically expanding
a generic 3 × 3 matrix requires coefficients spanning several
orders of magnitude, typically up to the order of m2

t /m2
u ∼

1010.
The above expansion enables us to adopt a very simple

and clear definition of Minimal Flavour Violation (MFV).
The basic assumption of MFV is often stated as GF being
broken only through powers of Yukawa matrices [21] (see
also e.g. [24–26]). The usual rationale is that GF could be
an exact but spontaneously broken symmetry of some more
fundamental theory whose dynamics is responsible for the
generation of both the Yukawa couplings and the soft terms.
In our framework, we define MFV as follows: all ax

i , bx
i and

cx
i coefficients in Eqs. (7)–(9) should be at most O(1) when

m0 and A0 represent the typical soft mass scale. (In fact
the statement “the only sources of GF breaking are powers
of Yukawa matrices” is somewhat meaningless when taken
on its own, since the above expansion shows that one can
parameterise any general soft mass and trilinear matrices in
this way. However, if the expansion coefficients are allowed
to be arbitrarily large, they could not possibly originate from

GF spurions in a weakly coupled theory.) For more details,
see also [27,28].

At this point we should emphasise that our approach does
not rely on the GF symmetry being in any way fundamental.
When we allude to MFV in the following, it is mostly because
the MFV condition (in the strict above sense) has certain
other appealing properties: Firstly, it is stable and generally
even IR-attractive [29,30] under the renormalisation group;
secondly, it allows a model to automatically satisfy many
stringent bounds from flavour physics.

Unification may impose additional relations between the
soft terms and hence between the expansion coefficients.
GUT relations are typically spoiled at the subleading level
by higher-dimensional operators involving GUT-breaking
VEVs (for instance, the SU(5) relation Yd = Ye should be
violated to obtain a valid fermion spectrum). Neglecting such
GUT-breaking effects, one may look for simple conditions on
the coefficients to ensure that the soft terms are compatible
with grand unification, depending on the actual GUT model.
For example, standard SU(5)unification requires m2

Q = m2
U .

Choosing a basis in which Yu is diagonal, it is clear that for
this to hold it is sufficient to choose aq

1 = au
1 , aq

3 = au
2 ,

aq
5 = au

4 with all other aq,u
i = 0. More general patterns are

of course possible since our parametrisation is fully general,
but they will in general not be MFV-like.

In this work we are interested in models where the soft
terms are neither universal nor necessarily MFV-like at some
very high mediation scale MGUT ≈ 1016 GeV. We will define
the soft-term boundary conditions through the expansion
Eqs. (7)–(9). Such a procedure has many desirable features
(below, we use the short-hand xq,u,d = aq,u,d , bq,u,d , cu,d ;
x = xq , xu, xd ):

1. The soft masses and trilinear terms at any scale Q admit
expansions of the form (7)–(9), where both soft terms and
Yukawa couplings are understood as those at the scale Q.
Thus, the running of the soft masses and trilinear terms
can be represented by that of the flavour coefficients.
Their renormalisation group equations (RGEs) were
studied in References [29,30]. Typically, not only are the
evolutions of the coefficients ai �=1[Q], bi [Q], ci �=1[Q]
from Q = MGUT down to the TeV scale smooth and
bounded, but they even exhibit infrared “quasi”-fixed
points, whose values mostly depend on the non-flavoured
MSSM parameters.

2. The β-functions of the soft masses and trilinear terms
are naturally compatible with the expansions (7)–(9),
and the running of the various coefficients sum up dif-
ferent physical effects. For example, the leading coeffi-
cients aq,u,d

1 [Q], cu,d
1 [Q] entirely encode the dominant

flavour blind evolution, while subleading terms evolve
separately.
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3. The phenomenological impact of the flavour mixing
induced by the off-diagonal soft-term entries can imme-
diately be assessed. Indeed, the MFV limit is recov-
ered when all the coefficients are O(1). This means that
one can directly spot potentially dangerous sources of
new FCNCs simply by looking at the relative sizes of
the coefficients. For example, if aq

1 [1 TeV] = 1 but
aq

3 [1 TeV] = 1000, then one should expect difficulties
with FCNC constraints from K and B physics. Indeed,
assuming SUSY masses of the order of 1 TeV, such val-
ues grossly violate current bounds on mass insertions; see
e.g. Reference [31], with for example [m2

Q]12/[m2
Q]11 ≈

1000 × V ∗
td Vts ∼ O(0.1).

4. Starting with universal mSUGRA-like soft-breaking
terms, xi [MGUT] = δi1, the coefficients at the low scale
are all MFV-like, xi [Q] ∼ O(1) or smaller. More gener-
ally, the logarithmic running with small coupling con-
stants cannot upset initial MFV-like boundary condi-
tions at the GUT scale. The converse is not true though,
because of the presence of the aforementioned quasi-
fixed points [30].

5. Intrinsically new CP-violating phases, entering exclu-
sively through bq,u,d

i [MGUT] �= 0 and Im cu,d
i [MGUT] �=

0, can be simply factored out from CP-violating effects
induced by the CKM phase, introduced through Yu and
Yd . Note that if bq,u,d

i [MGUT] = 0 and Im cu,d
i [MGUT] =

0, their values at the electroweak scale are entirely
induced by the CP-violating phase of VCKM, and end up
tiny. In this respect, the CP-violating phases of cu

1 [Q] and
cd

1 [Q] are a bit special. Being flavour blind, they should
be considered along with those of the other flavour blind
complex parameters of the MSSM such as μ and the
gaugino masses [27].

6. For a given boundary condition, one can easily and
completely probe its CKM neighbourhood by allowing
O(1) variations of the coefficients. Indeed, these varia-
tions simulate the presence of arbitrary CKM-like mixing
matrices in both the left- (VL

u,d ) and the right-handed sec-

tor (VR
u,d ). In practice, this is far less demanding than it

seems. For O(1) perturbations, not all the 63 coefficients
are equally relevant, so varying only the first few in each
expansion is sufficient.

7. As analysed in the “Appendix”, provided none of the
leading coefficients are particularly large, the soft-
term expansions are largely independent of the precise
parametrisation of the CKM matrix. In particular, the
coefficients are similar using the full CKM matrix or its
CP-conserving limit, no matter how this limit is taken. By
contrast, off-diagonal entries of the soft terms can devi-
ate by tens of percent depending on the chosen CKM
matrix. This observation is useful in practice since it per-
mits to compute the coefficients under some simplifying
assumptions (CP-limit, no threshold corrections, and/or

no experimental errors for the CKM parameters), and
then to reconstruct with an excellent accuracy the physi-
cal soft terms and thereby reliably compute all the flavour
observables.

8. Last but not least, it is easy and straightforward to
parametrise boundary conditions where the third-
generation squarks are split from the first two genera-
tions, since YuY†

u and YdY†
d do have precisely such a

hierarchy. This possibility will be explored in detail in
the next section.

To be complete, we should point out that there is one prac-
tical issue that needs to be kept in mind. Since the basis matri-
ces span several orders of magnitude and are approximately
linearly dependent, it is necessary to maintain a high level
of accuracy in the numerical evaluations, otherwise instabil-
ities can easily arise. This is especially true when computing
the coefficients of highly suppressed terms such as au,d

6 or

bu,d
3 . For the same reason, a perfectly unitary representation

of the CKM matrix must be used, otherwise spuriously large
coefficients can arise.

3 Split squarks and MFV

The peculiar structure of the MSSM Yukawa couplings
should have its origin in some unknown flavoured dynam-
ics at some high scale MF. If supersymmetry breaking is
mediated at a scale greater than MF, then one can reason-
ably expect that this flavour dynamics will also generate
some non-trivial flavour structures for the soft mass terms
and the trilinear couplings. In that sense, expressing the soft
terms directly in terms of the Yukawa couplings through the
expansions (7)–(9) can be regarded as an attempt at capturing
the relationships between them. If this picture is correct, the
expansion coefficients at the scale MF would not be random
but would derive from the flavour dynamics at that scale.
It is thus quite possible that the various coefficients would
actually follow a very definite pattern.

With the above idea in mind, our goal is to design flavour
structures leading to spectra with light third-generation
squarks at the low scale. There are many ways to achieve
this. A first possibility is to impose

aq
3 � −aq

1 /〈B〉, aq
i �=1,3 = bq

i = 0, (10)

where 〈·〉 denotes the trace in flavour space. More explicitly,
let us set

m2
Q[MGUT] = m2

0(1 − αqYuY†
u〈YuY†

u〉−1)T,

m2
U,D[MGUT] = m2

01,

Tu,d [MGUT] = A0Yu,d . (11)
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When the free parameter αq is close to one, in the basis
where Yu is diagonal, m2

Q has its first two entries nearly
degenerate and much larger than the third, which is precisely
what we aim for. Note, however, that in this particular case
the value of (m2

Q)33 receives large negative loop corrections

from (m2
U )33. In order to generate a realistic spectrum, the

GUT-scale (m2
Q)33 cannot not be chosen too small, and/or

sizeable positive corrections from the gaugino masses are
needed to overcome this effect. At the low scale t̃L and b̃L

then end up much lighter than all the other squarks.
It should be remarked that compared to naively setting

m2
Q[MGUT] =

⎛

⎝

m2
1 0 0

0 m2
1 0

0 0 m2
2

⎞

⎠ , (12)

our procedure requires the same number of free parameters.
But, at the same time, setting the initial conditions in our way
is entirely independent of the flavour basis, while Eq. (12) in
principle requires one to specify also the four mixing matri-
ces VL ,R

u,d . In addition, the parameter αq could bear some

physical meaning. First, because 〈YuY†
u〉−1 is factored out,

its RG evolution is very flat over the whole range down to the
electroweak scale. Typically αq changes by � 20 % during
the evolution. (We explicitly show the evolution of αq for
a different scenario in the following discussion; see Fig. 2.)
Second, it is tempting to imagine that some unknown flavour
dynamics sets αq to exactly one at the scale MF. However,
since MF �= MGUT, one would then have αq [MGUT] close
but not exactly equal to one. Thus, the only phenomenolog-
ical constraint on this parameter is for it to evolve down to a
value smaller than one at the low scale, so as to avoid induc-
ing negative eigenvalues for the stop or sbottom squarks and
the ensuing colour symmetry breaking. We are, however, not
aware of any specific flavour model which predicts αq = 1,
so for the moment we will treat αq ≈ 1 merely as a parameter
choice, and study its implications independently of a possible
dynamical generation.

A very interesting feature of the boundary condition
Eq. (11) is that even if left-squark masses are highly hier-
archical, it nevertheless respects the MFV principle since
〈YuY†

u〉 ≈ y2
t is of O(1) at all scales. So, once evolved to

the low scale, we can immediately predict that these initial
conditions should be compatible with flavour constraints.

Other scenarios can be constructed along the same lines.
For instance, to also split the t̃R from the first- and second-
generation squarks, one can further impose

m2
U = m2

0(1 − αuY†
uYu〈Y†

uYu〉−1), (13)

which is also compatible with the MFV principle when
αu ≈ 1. As opposed to the above scenario, the condition that
both m2

U and m2
Q be hierarchical is radiatively stable (pro-

vided that the other states which couple strongly to the stop

sector, such as the up-type Higgs and the gauginos, are not too
heavy). Together with a small μ parameter, this constitutes
a way to realise “natural supersymmetry” within MFV. An
example for the typical evolution of the leading expansion
coefficients for such a natural SUSY-MFV scenario is given
in Fig. 1. The RG evolution and computation of the mass
spectrum is done with SPheno [32,33] with boundary con-
ditions adapted according to Eqs. (7)–(9). The a1 coefficients
are not shown because they remain very close to unity, with
deviations at the level of less than a percent. The evolution
of the aq

3 and au
2 coefficients is much steeper than that of the

other ai . The reason for this is that aq
3 and au

2 are dominated
by the running of yt ; when the yt dependence is factored out,
the evolution is very flat, see Fig. 2.

On the other hand, there is no way to split the right sbottom
from the first two generations without moving away from
MFV. Indeed, all the non-trivial terms in the expansion of
m2

D are sandwiched between Y†
d and Yd , which are small

when tan β is not very large. Specifically, the simplest way
to lighten all third-generation squarks is to impose

m2
Q = m2

0(1 − αqYuY†
u〈YuY†

u〉−1)T,

m2
U = m2

0(1 − αuY†
uYu〈Y†

uYu〉−1),

m2
D = m2

0(1 − αdY†
dYd〈Y†

dYd〉−1),

Tu,d = A0Yu,d , (14)

with αq,u,d ≈ 1. Clearly, unless tan β is very large, m2
D sig-

nificantly deviates from the MFV assumption. One might
worry that this setting conflicts with current flavour con-
straints, which would thus disfavour light b̃R squarks. How-
ever, this is not the case. First, note that a large ad

2 ∼
〈Y†

dYd〉−1 ≈ y−2
b at the low scale is harmless, since it does

not contribute to the δd
R R mass insertions (this is evident in

a basis where Yd is diagonal). The impact of a large ad
2 at

the high scale is less obvious, since it can drive other coeffi-
cients towards large non-MFV values through the RGE evo-
lution. However, as illustrated in Fig. 3, this effect turns out
to be quite limited numerically. Though some coefficients
are indeed initially driven towards large values, the quasi-
fixed point behaviour of the RGE evolution then kicks in and
brings them back to MFV-like values at the low scale (see
e.g. the coefficient ad

4 in Fig. 3). So, even if the low-scale
coefficients are not strictly compatible with the MFV prin-
ciple, they are sufficiently close to MFV to pass all flavour
constraints (we also checked this explicitly by direct compu-
tation of the flavour observables, using the SUSY_FLAVOR
2.02 code [34]).

There is another scenario worth considering. Imagine that
for some reasons, the shift from universality induced by the
yet unknown flavour dynamics occurs only in the SU(3)Q

space, through the YuY†
u − 〈YuY†

u〉 combination. Plugging
this structure in the soft-breaking expansion, they can be
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Fig. 1 Evolution of the leading expansion coefficients for the strictly
MFV “natural SUSY” scenario with light t̃L ,R and b̃L but a heavy b̃R .
Concretely, we take m0 = 10 TeV, m1/2 = 1 TeV, A0 = −1 TeV,
tan β = 10, m2

Hu
= m2

Hd
= 7.5 (TeV)2, and αq = αu = 0.97.

The resulting spectrum has mt̃1 = 555 GeV, mb̃1
= 570 GeV,

mt̃2 � 1.8 TeV and all other squark masses ≈ 10 TeV; moreover,
μ � 800 GeV and mg̃ � 2.5 TeV. The point has a light Higgs mass
of mh = 124 GeV and passes flavour constraints (computed with
SUSY_FLAVOR 2.02 [34]). Finally, m A � 3 TeV, so we are deep
in the Higgs decoupling regime

Fig. 2 Evolution of αq and αu within the scenario of Fig. 1. The plot
serves to confirm the flatness of the evolution of α. Moreover, it illus-
trates that the evolution of the flavour coefficients aq

3 and au
2 is domi-

nated by the RG evolution of yt , which is factored out here

parametrised at the scale MGUT:

m2
Q = m2

0aq
1 (1 − α0YuY†

u〈YuY†
u〉−1)T,

m2
U = m2

0(a
u
1 1 + au

2 Y†
u(1 − α0YuY†

u〈YuY†
u〉−1)Yu) ≈ m2

0au
1 1,

m2
D = m2

0(a
d
1 1 + ad

2 Y†
d (1 − α0YuY†

u〈YuY†
u〉−1)Yd ) ≈ m2

0ad
1 1,

Tu,d = cu,d
1 A0Yu,d (1 − α0Y†

uYu〈YuY†
u〉−1), (15)

for some O(1) coefficients aq,u,d
i and cu,d

i , which we set to

one for simplicity. Note how the au,d
2 terms end up negligible

because 1 − α0YuY†
u〈YuY†

u〉−1, whose (3, 3) entry is sup-
pressed, is sandwiched between Y†

u,d and Yu,d . Again, this
input respects the MFV requirement. The only difference
with the first scenario is to impose inverted hierarchies in the
trilinear terms at the unification scale. Such a pattern does
not survive to the evolution, however. Looking at the expan-
sion of the trilinear terms, the leading cu,d

1 and subleading

cu,d
i �=1 coefficients do not evolve at the same speed, especially

when the former are driven by the gluino mass. So, the can-
cellation present at the unification scale does not happen at
the low scale, and trilinear terms end up being quite similar
to those obtained with the first scenario. In this respect, the
difficulty mentioned there to obtain a viable spectrum applies

123



Eur. Phys. J. C (2014) 74:3059 Page 7 of 12 3059

Fig. 3 Evolution of the leading expansion coefficients in scenario 2,
which is not quite MFV because the b̃R is also light. Here, we take
αd = 315. The other parameters are as in Fig. 1, apart from adjusting
m2

Hu
= m2

Hd
= 5 (TeV)2 to obtain a mh near 125 GeV. The resulting

spectrum is mt̃1 = 796 GeV, mb̃1
� mt̃2 � 1.4 TeV, and mb̃2

� 2.4 TeV.
The first/second-generation squark masses are again ≈ 10 TeV. The
higgsino mass turns quite low, μ � 240 GeV, while the gluino and the
additional Higgs states remain heavy, mg̃ � 2.4 TeV and m A � 2 TeV

here also; a dedicated numerical analysis would be needed
to conclude on the valid parameter space of these scenarios.

Beyond these specific examples, it is now straightforward
to state a more general sufficient condition for obtaining a
GUT-scale split spectrum which is guaranteed to be flavour-
safe, using our formalism. This condition is that the GUT-
scale flavour coefficients should at most be O(1) and should
approximately satisfy the relations (generalizing the expres-
sions for m2

Q in Eq. (11) and m2
U in Eq. (13))

aq
1 + aq

3 y−2
t + aq

5 y−4
t = 0,

au
1 + au

2 y−2
t + au

4 y−4
t = 0. (16)

The MFV condition ensures that there are no flavour prob-
lems, while the sum rules Eq. (16) ensure that the top
squarks are actually split from the first two-generation up-
type squarks (note that only aq

1 , aq
3 and aq

5 can significantly
contribute to the LH stop soft mass if all aq

i are � O(1), and
similarly for au

1 , au
3 and au

5 and the RH stop mass).
While this prescription covers a large class of viable spec-

tra, we note that it is of course also possible to obtain flavour-

safe natural SUSY mass patterns in a different manner—for
instance, as we have seen above, one may deviate from the
MFV prescription by splitting also the right-handed sbottom
mass, and rely on the RG evolution to produce an almost
MFV spectrum at the low scale. For such scenarios, how-
ever, safeness from FCNC constraints is not automatic but
must be checked in each case.

We also note that the above sum rules are tied to small
or moderately large tan β. At very large tan β, where yb is
of order one, they should be modified to take into account
also the remaining terms in Eqs. (7) and (8), which may now
contribute to the third-generation squark masses even if their
coefficients are O(1).

4 Conclusions

Third-generation squarks below the TeV scale are an essen-
tial requirement for supersymmetry to be natural, while the
squarks of the first two generations are likely much heavier.
Therefore it is important to study the physics of non-universal
squark masses, and of inverted squark mass hierarchies in
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particular. In phenomenological approaches which prescribe
the soft terms at the TeV scale, such as the pMSSM, this is
possible to a limited extent only, since effects arising from
the renormalisation group running from the mediation scale
are not accounted for. In particular, these effects could lead
to radiatively induced flavour-violating squark mass mixings.
Given the tight experimental constraints from flavour observ-
ables, to fully grasp the implications of non-universal squark
masses, one should be careful to account for such effects.

In this paper we have studied non-universal squark masses
in the case that SUSY breaking is mediated at the GUT scale.
We have shown how split squark mass matrices (and tri-
linears) can be conveniently and generally prescribed in a
basis-independent way, and investigated their renormalisa-
tion group evolution.

When requiring only the top squarks to be light, and the
first two generations to be nearly mass degenerate, the most
natural prescription automatically respects the principle of
minimal flavour violation at the GUT scale. Since MFV is
preserved during the RG evolution of the soft terms down to
the TeV scale, bounds on FCNCs can easily be evaded.

For more general hierarchical soft terms at the GUT scale,
the compatibility with flavour observables is not automatic,
even though generic soft terms tend to be attracted towards
MFV-like structures in the infrared [29,30]. We have con-
firmed this tendency for the particularly relevant case where
all third-generation squarks, including the right-sbottom, are
light compared to the squarks of the first two generations.
While this scenario strongly violates the MFV hypothesis
at the GUT scale, the soft terms become increasingly MFV-
like during the running, and end up compatible with flavour
constraints at the low scale.

Our analysis puts the increasingly popular framework
of “natural SUSY” on a more solid footing, showing that
it is actually possible to obtain a natural SUSY spectrum
at the TeV scale from well-motivated GUT-scale bound-
ary conditions without having to worry about RG-induced
flavour violation. Furthermore, our formalism for defining
non-universal soft terms in a basis-independent way should
be very useful for further studies of the supersymmetric
flavour problem beyond minimal flavour violation. A full
exploration, within our scheme, of the parameter space lead-
ing to natural SUSY is left for a subsequent work.
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Appendix: Stability of the expansion coefficients

The CKM matrix plays a central role in the description of
flavour mixing in the quark and squark sectors. Two numeri-
cal approximations are often introduced: the CP-conserving
limit and the neglect of threshold corrections. At first sight, it
may appear reasonable to use an approximate CKM matrix
in the running to and from the unification scale. After all,
the error should be small, and one can always plug back
the exact CKM matrix for computing flavour observables.
However, while this procedure obviously suffices to bring
back the quark mixing to its physical value, this is not the
case in the squark sector. Indeed, in many scenarios, the off-
diagonal entries in the squark soft terms at the electroweak
scale are entirely driven through RG running from the CKM
matrix. For example, starting with universal boundary con-
ditions, flavour mixing in the left-squark soft mass term is
given by

ML L
d̃

[1 TeV]I �=J ∼ (YuY†
u)J I ∼ y2

t V ∗
t I Vt J , (17)

since vuYT
u = Mu · VCKM in the down-quark mass eigen-

state basis (in Eq. (17), CKM entries are conventionally
denoted as VI J , with I = u, c, t and J = d, s, b instead
of I, J = 1, 2, 3). Therefore, if a wrong CKM matrix is used
throughout the running, the soft terms are also wrong, and so
are the estimated supersymmetric contributions to the FCNC
processes.

In the present section, our goal is to show that these
issues can be circumvented if the squark soft mass terms
and trilinear terms are defined through their expansion coef-
ficients. Indeed, to a large extent, these do not depend on
the precise value of the CKM matrix entries. So, once the
expansion coefficients at the low scale have been computed
under some approximation, it is a simple matter to recon-
struct with an excellent accuracy the physical soft terms by
plugging back the physical CKM matrix. Let us illustrate this
procedure.

CP-conserving limit for the CKM matrix

As a first approximation, the MSSM evolution is often com-
puted in the CP-conserving limit. To this end, the CP violating
phase of the SM must somehow be disposed of. There is no
unique way to achieve this, since there is no unique way to
parametrise the CKM matrix itself, and no matter the chosen
procedure, the modulus of at least one of the CKM entries is
significantly affected.
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Let us take m2
Q as an example. If the true, complex CKM

matrix is used, and using the same scenario as in Fig. 1, then

m2
Q [1 TeV]

m2
0

=
⎛

⎝

0.9932 0.3395 × 10−3 −0.8146 × 10−2

0.3395 × 10−3 0.9916 0.4085 × 10−1

−0.8146 × 10−2 0.4085 × 10−3 0.4543 × 10−2

⎞

⎠

+ i

⎛

⎝

0 0.1414 × 10−3 −0.3250 × 10−2

−0.1414 × 10−3 0 −0.0075 × 10−1

0.3250 × 10−2 0.0075 × 10−3 0

⎞

⎠ .

(18)

These numbers are obtained starting with the Wolfenstein
parameters [35] λ = 0.22457, A = 0.823, ρ̄ = 0.1289, η̄ =
0.348, using SM RGEs up to one TeV, and then MSSM
RGEs between 1 TeV and MGUT. Threshold corrections
for the quark masses and the gauge couplings are taken
from SPheno [32,33]. Projecting m2

Q[1 TeV], the expan-
sion coefficients at that scale are

a1...6 = (0.9933, −0.3297, −1.1499, −0.01476,

− 0.2474, 0.001419), (19)

b1...3 = (3.695, −4.989, 0.5002) × 10−2. (20)

The purely CP-violating coefficients b1...3 are entirely
induced through the RG running. Numerically, their contribu-
tions to Im(m2

Q) are extremely suppressed because they are

tuned by the small Jarlskog invariant Im〈(YuY†
u)2YdY†

dYuY†
u

(YdY†
d)2〉 ∼ 10−5. The bulk of Im(m2

Q) actually comes from

Im(YuY†
u); see Eq. (17).

Let us now compare this with the results in the CP-
conserving limit. The most frequent CP-conserving prescrip-
tion is to set δ13 = 0 in the conventional CKM parametri-
sation. This is the prescription adopted in the RGE codes
SPheno [33] and SOFTSUSY [36].2 The only CKM entry
significantly affected by this is Vtd ,

|Vtd |δ13=0 = 0.0058 vs. |Vtd | = 0.0085. (21)

As a consequence of Eq. (17), the (1, 2) and (1, 3) entries of
m2

Q are then significantly reduced, since they are induced by
V ∗

tbVtd and V ∗
ts Vtd respectively:

m2
Q[1 TeV]δ13=0

m2
0

=
⎛

⎝

0.9933 0.2510 × 10−3 −0.5884 × 10−2

0.2510 × 10−3 0.9916 0.4137 × 10−1

−0.5884 × 10−2 0.4137 × 10−1 0.4543 × 10−4

⎞

⎠ .

(22)

2 Reference [36] explicitly mentions that the CP-conserving limit may
induce significant uncertainties.

If used to compute FCNC observables, this approximation is
particularly dangerous for the b → d and s → d transitions.
First, the SM and charged Higgs contributions to Z , γ pen-
guins and boxes, dominated by the top quark contributions
hence tuned by V ∗

tbVtd , are systematically underestimated.
This could still be cured by plugging back the correct CKM
matrix in the relevant vertices. This procedure fails, however,
to cure the also underestimated gaugino-induced FCNC con-
tributions tuned by (ML L

d̃
)13 and (ML L

d̃
)12.

On the other hand, it is easy to check that the expan-
sion coefficients discussed above stay very close to the
ones obtained in the CP-violating case. If we project
m2

Q[1 TeV]δ13=0 using the CP-conserving Yukawa matrices

Yu,d [1 TeV]δ13=0, we find

aδ13=0
1...6 = (0.9933, −0.3301, −1.1502, −0.01445,

− 0.2468, 0.001130), (23)

bδ13=0
1...3 = (0, 0, 0). (24)

This remains true for all the other soft terms: the shift in
the coefficients is below the percent level for the first five
coefficients, and of a few percent for the last four. Thanks to
this stability, we can use the coefficients computed in the CP-
conserving limit together with the true, CP-violating Yukawa
couplings to reconstruct the true CP-violating soft-breaking
terms with an excellent accuracy. To be precise, this means
that if we compute

(m̃2
Q)T = m2

0(a
δ13=0
1 1+aδ13=0

2 YuY†
u +aδ13=0

3 YdY†
d + . . .),

(25)

where Yd = Yδ13=0
d but YT

u = (YT
u )δ13=0 · Vδ13=0 †

CKM · VCKM,
then |m̃2

Q − m2
Q | < 10−9 × m2

0. Since such small differ-
ences are irrelevant phenomenologically, and since the other
soft-breaking terms are equally well reproduced, it is a sim-
ple matter to cure at the same time all the contributions to
the FCNC from the artefacts of the CP-conserving limit. In
practice, it is thus possible to perform the RGE study in the
CP-conserving limit, use our prescription on the output file to
reconstruct the full-fledged CP-violating flavour structures,
and then pass it on to codes likeSUSY_FLAVOR [34] to com-
pute reliably the supersymmetric contributions to the FCNC.
This is what we actually did to check the compatibility of
the scenarios described in the main text with current flavour
constraints.

This procedure works no matter the CP-conserving pre-
scription. Let us compare, for instance, the δ13 → 0 limit to
the η → 0 limit. In the latter case, |Vtd | is reduced only by
about 7 %, while Vub is suppressed by nearly 60 %,

|Vub|η=0 = 0.00132 vs. |Vub| = 0.00349. (26)
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However, an underestimated Vub does not bear serious con-
sequences because it does not affect the top sector. Loop level
FCNC are insensitive to this reduction since d I → d J tran-
sitions are dominantly tuned by V ∗

t I Vt J . For the same reason,
the soft mass terms are closer to the true CP-violating ones,
with

m2
Q[1 TeV]η=0

m2
0

=
⎛

⎝

0.9932 0.3420 × 10−3 −0.8147 × 10−2

0.3420 × 10−3 0.9916 0.4085 × 10−1

−0.8147 × 10−2 0.4085 × 10−1 0.4532 × 10−4

⎞

⎠ ,

(27)

which nearly matches the real part of the CP-violating result
(but stays significantly off for the absolute parts). This can
be understood from Eq. (17): the RGE corrections propor-
tional to YuY†

u depend, to an excellent approximation, only
on the third row of the CKM matrix, which stays close to the
true one. The η → 0 limit therefore mostly affects tree-level
charged-current flavour-changing observables like B → τν,
and this is easily cured by plugging back the true value for
the CKM matrix. In any case, the expansion coefficients
extracted in the η = 0 limit are again very close to those
obtained in the CP-violating case:

aη=0
1...6 = (0.9933, −0.3299, −1.1506, −0.01037,

− 0.2463, 0.000996), (28)

bη=0
1...3 = (0, 0, 0). (29)

From them, the reconstructed soft term m̃2
Q matches m2

Q up

to corrections of the order of 10−7 ×m2
0, which is again more

than enough phenomenologically.
It should be stressed here that our prescription works par-

ticularly well when the soft-breaking terms respect the MFV
hypothesis, i.e., when none of the leading expansion coef-
ficients are exceedingly large. In that case, their values are
extremely resilient to changes in the CKM parameters, and
the prescription reproduces the soft-breaking terms with an
impressive accuracy. Beyond MFV, the coefficients in the CP-
conserving and violating cases are not necessarily as close.
For example, taking the scenario detailed in Fig. 3, we find
that coefficients vary by up to about 20 %. But, crucially,
these variations affect mostly the subleading coefficients,
whose phenomenological impact is very limited. As a result,
the CP-conserving coefficients still permit to reconstruct the
full CP-violating soft-breaking terms with an accuracy better
than 1 %. Thus, even though we have not tested extensively
the range of validity of the prescription when moving out

Fig. 4 Evolution of the Wolfenstein parameters in the scenario of
Fig. 1. The evolution is first performed using the SM RGEs up to
1 TeV, and then according to the MSSM RGEs up to the GUT scale.
Plotted are the normalised deviations �X/X SM , X = λ, A, ρ̄, η̄, with
�X = X [Q] − X SM and X SM = X [MZ ] (the experimental values at
MZ are quoted in Eq. 31). These deviations are enhanced by 100 (1000)
for ρ̄ (λ, η̄) for better visibility

of the MFV framework, we expect it remains accurate for a
broad range of flavour-compatible scenarios.

Threshold corrections and experimental errors on the
CKM matrix

It is well known that the CKM matrix runs very slowly. So, for
simplicity, when it is evolved using the MSSM beta functions
already from the electroweak scale, it is not subsequently
corrected for threshold effects. There is, however, a coinci-
dental fact that tends to slightly enhance the error induced
by this procedure: the SM and MSSM beta functions for
the CKM parameters have opposite signs [37]. As shown in
Fig. 4, neglecting the former, the CKM angles are underesti-
mated at all scales. As a result, CKM-driven flavour mixing
in the squark soft-breaking terms, i.e. those arising from both
the RGE effects and the GUT-scale boundary conditions, are
underestimated.

Numerically, the effect on the CKM parameters is small
but not entirely negligible. Let us use their SM running
between MZ and 1 TeV as a measure of their sensitivity
to threshold corrections, see Fig. 4. The variations of the
Wolfenstein parameters are all much smaller than their cor-
responding experimental errors, except for the A parame-
ter [38], which increases by about 2 % from MZ to 1 TeV.
In view of this, we can estimate the impact of neglecting
CKM threshold effects on the soft terms by decreasing the A
parameter. As a rough estimate, we send the A parameter to
the low end of its 2σ range, A = 0.823+0.018

−0.042. Still using the
scenario of Fig. 1, this leads to
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m2
Q[1 TeV]

m2
0

=
⎛

⎝

0.9932 0.3061 × 10−3 −0.8324 × 10−2

0.3061 × 10−3 0.9916 0.4174 × 10−1

−0.8324 × 10−2 0.4174 × 10−3 0.4621 × 10−2

⎞

⎠

+ i

⎛

⎝

0 0.1476 × 10−3 −0.3321 × 10−2

−0.1476 × 10−3 0 −0.0077 × 10−1

0.3321 × 10−2 0.0077 × 10−3 0

⎞

⎠ ,

(30)

which deviates by up to about 10 % from the values in
Eq. (18). This shows that even supposedly negligible shifts
in the CKM parameters can build up sizeable effects in the
soft-breaking terms. The expansion coefficients, on the other
hand, are the same up to completely negligible shifts of the
order of 10−7. In other words, these coefficients are essen-
tially independent of the threshold corrections even though
soft-breaking terms can deviate significantly. So, whenever
the threshold effects for the CKM running are not fully taken
care of, one can rely on the same strategy as for the CP-limit,
i.e., compute the coefficients and then reconstruct accurately
the soft-breaking terms by plugging in the physical CKM
matrix.

As an interesting corollary, the stability of the coefficients
offers a very simple procedure to estimate the impact of the
CKM experimental errors on the soft-breaking terms. Only
one run is needed with the central values of the CKM parame-
ters to get the expansion coefficients, and once known, it suf-
fices to vary the CKM matrix entering the Yukawa couplings
used to reconstruct the soft-breaking terms at the low scale.
Let us illustrate this procedure. First, we perform the RGE
evolution starting with the electroweak-scale CKM matrix
obtained by shifting all the Wolfenstein parameters to the
extremes of their 2σ ranges [35]:

λ = 0.22457+0.00193
−0.00021, A = 0.823+0.025

−0.049,

ρ̄ = 0.129+0.056
−0.018, η̄ = 0.348+0.025

−0.030. (31)

We do not take into account the correlations between these
parameters. The ranges of values for the soft-breaking term
entries are then

m2
Q[1 TeV]

m2
0

=

⎛

⎜

⎜

⎝

0.99324+0.00002
−0.00001 0.340+0.037

−0.053 × 10−3 −0.815+0.093
−0.057 × 10−2

0.340+0.037
−0.053 × 10−3 0.9916+0.0002

−0.0001 0.409+0.016
−0.020 × 10−1

−0.815+0.093
−0.057 × 10−2 0.409+0.016

−0.020 × 10−3 0.454+0.014
−0.018 × 10−2

⎞

⎟

⎟

⎠

+ i

⎛

⎜

⎜

⎝

0 0.141+0.024
−0.026 × 10−3 −0.325+0.044

−0.040 × 10−2

−0.141+0.024
−0.026 × 10−3 0 −0.007 ± 0.001 × 10−1

0.325+0.044
−0.040 × 10−2 0.007 ± 0.001 × 10−3 0

⎞

⎟

⎟

⎠

. (32)

This represents sizeable shifts, up to 30 % (40 %) for the real
(imaginary) parts. On the other hand, the expansion coeffi-
cients do not change significantly: the first five of each expan-
sion being shifted by less than 10−6, while the last three of
each expansion by less than 10−4. They are thus essentially
constant over the experimental ranges for the CKM param-
eters. This confirms that once the experimental errors on the
CKM matrix at a given scale are known, the full RGE anal-
ysis needs to be performed only once to derive those on the
soft-breaking terms at that scale. Since this rather indirect
but nevertheless significant impact of the errors on the CKM
matrix elements is in general neglected, this could greatly
improve and simplify the study of their effect on the flavour
constraints for a given scenario.

References

1. A.G. Cohen, D.B. Kaplan, A.E. Nelson, The More minimal
supersymmetric standard model. Phys. Lett. B 388, 588 (1996).
hep-ph/9607394

2. R. Kitano, Y. Nomura, Supersymmetry, naturalness, and signatures
at the LHC. Phys. Rev. D 73, 095004 (2006). hep-ph/0602096

3. R. Barbieri, D. Pappadopulo, S-particles at their naturalness limits.
JHEP 0910, 061 (2009). arXiv:0906.4546 [hep-ph]

123

http://arxiv.org/abs/hep-ph/9607394
http://arxiv.org/abs/hep-ph/0602096
http://arxiv.org/abs/0906.4546


3059 Page 12 of 12 Eur. Phys. J. C (2014) 74:3059

4. M. Papucci, J.T. Ruderman, A. Weiler, Natural SUSY endures.
JHEP 1209, 035 (2012). arXiv:1110.6926 [hep-ph]

5. H. Baer, V. Barger, P. Huang, X. Tata, Natural supersymmetry:
LHC, dark matter and ILC searches. JHEP 1205, 109 (2012).
arXiv:1203.5539 [hep-ph]

6. F. Brümmer, S. Kraml, S. Kulkarni, Anatomy of maximal stop
mixing in the MSSM. JHEP 1208, 089 (2012). arXiv:1204.5977
[hep-ph]

7. M. Badziak, E. Dudas, M. Olechowski, S. Pokorski, Inverted
Sfermion mass hierarchy and the Higgs Boson mass in the MSSM.
JHEP 1207, 155 (2012). arXiv:1205.1675 [hep-ph]

8. G.F. Giudice, M. Nardecchia, A. Romanino, Hierarchical soft terms
and flavor physics. Nucl. Phys. B 813, 156 (2009). arXiv:0812.3610
[hep-ph]

9. J. Kersten, L. Velasco-Sevilla, Flavour constraints on scenarios
with two or three heavy squark generations. Eur. Phys. J. C 73,
2405 (2013). arXiv:1207.3016 [hep-ph]

10. F. Mescia, J. Virto, Natural SUSY and Kaon mixing in view of
recent results from lattice QCD. Phys. Rev. D 86, 095004 (2012).
arXiv:1208.0534 [hep-ph]

11. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuri-
dov, Minimal flavour violation with hierarchical squark masses.
JHEP 1012, 070 (2010) (erratum-ibid. 1102, 044 (2011)).
arXiv:1011.0730 [hep-ph]

12. T. Gherghetta, B. von Harling, N. Setzer, A natural little hier-
archy for RS from accidental SUSY. JHEP 1107, 011 (2011).
arXiv:1104.3171 [hep-ph]

13. R. Auzzi, A. Giveon, S.B. Gudnason, Flavor of quiver-like real-
izations of effective supersymmetry. JHEP 1202, 069 (2012).
arXiv:1112.6261 [hep-ph]

14. G. Larsen, Y. Nomura, H.L.L. Roberts, Supersymmetry with light
stops. JHEP 1206, 032 (2012). arXiv:1202.6339 [hep-ph]

15. N. Craig, M. McCullough, J. Thaler, Flavor mediation delivers
natural SUSY. JHEP 1206, 046 (2012). arXiv:1203.1622 [hep-ph]

16. L. Eliaz, A. Giveon, S.B. Gudnason, E. Tsuk, Mild-split SUSY
with flavor. JHEP 1310, 136 (2013). arXiv:1306.2956 [hep-ph]

17. E. Dudas, G. von Gersdorff, S. Pokorski, R. Ziegler, Linking nat-
ural supersymmetry to flavour physics. JHEP 1401, 117 (2014).
arXiv:1308.1090 [hep-ph]

18. A. Arvanitaki, M. Baryakhtar, X. Huang, K. Van Tilburg and G.
Villadoro, The last vestiges of naturalness, arXiv:1309.3568 [hep-
ph]

19. F. Brümmer, M. McGarrie, A. Weiler, Light third-generation
squarks from flavour gauge messengers, arXiv:1312.0935 [hep-ph]

20. E. Dudas, M. Goodsell, L. Heurtier, P. Tziveloglou, Flavour models
with Dirac and fake gluinos, arXiv:1312.2011 [hep-ph]

21. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal
flavor violation: an effective field theory approach. Nucl. Phys. B
645, 155 (2002). hep-ph/0207036

22. B.C. Allanach, C. Balazs, G. Belanger, M. Bernhardt, F. Boud-
jema, D. Choudhury, K. Desch, U. Ellwanger et al., SUSY Les
Houches Accord 2. Comput. Phys. Commun. 180, 8 (2009).
arXiv:0801.0045 [hep-ph]

23. E. Nikolidakis, Ph.D. thesis. University of Bern, Bern (2008)
24. L.J. Hall, L. Randall, Weak scale effective supersymmetry. Phys.

Rev. Lett. 65, 2939 (1990)
25. A. Ali, D. London, Profiles of the unitarity triangle and CP violating

phases in the standard model and supersymmetric theories. Eur.
Phys. J. C 9, 687 (1999). hep-ph/9903535

26. G. Isidori, F. Mescia, P. Paradisi, C. Smith, S. Trine, Exploring the
flavour structure of the MSSM with rare K decays. JHEP 0608,
064 (2006). hep-ph/0604074

27. L. Mercolli, C. Smith, EDM constraints on flavored CP-violating
phases. Nucl. Phys. B 817, 1 (2009). arXiv:0902.1949 [hep-ph]

28. C. Smith, Minimal flavor violation in supersymmetric theories.
Acta Phys. Polon. Suppl. 3, 53 (2010). arXiv:0909.4444 [hep-ph]

29. P. Paradisi, M. Ratz, R. Schieren, C. Simonetto, Running minimal
flavor violation. Phys. Lett. B 668, 202 (2008). arXiv:0805.3989
[hep-ph]

30. G. Colangelo, E. Nikolidakis, C. Smith, Supersymmetric models
with minimal flavour violation and their running. Eur. Phys. J. C
59, 75 (2009). arXiv:0807.0801 [hep-ph]

31. G. Isidori, Y. Nir, G. Perez, Flavor physics constraints for physics
beyond the standard model. Ann. Rev. Nucl. Part. Sci. 60, 355
(2010). arXiv:1002.0900 [hep-ph]

32. W. Porod, SPheno, a program for calculating supersymmetric
spectra, SUSY particle decays and SUSY particle production
at e+ e− colliders. Comput. Phys. Commun. 153, 275 (2003).
hep-ph/0301101

33. W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-
phases and models beyond the MSSM. Comput. Phys. Commun.
183, 2458 (2012). arXiv:1104.1573 [hep-ph]

34. A. Crivellin, J. Rosiek, P.H. Chankowski, A. Dedes, S. Jaeger, P.
Tanedo, SUSY_FLAVOR v2: a computational tool for FCNC and
CP-violating processes in the MSSM. Comput. Phys. Commun.
184, 1004 (2013). arXiv:1203.5023 [hep-ph]

35. J. Charles et al., CKMfitter Group Collaboration, CP violation and
the CKM matrix: assessing the impact of the asymmetric B facto-
ries. Eur. Phys. J. C 41, 1 (2005). hep-ph/0406184 (updated results
and plots available at http://ckmfitter.in2p3.fr)

36. B.C. Allanach, SOFTSUSY: a program for calculating super-
symmetric spectra. Comput. Phys. Commun. 143, 305 (2002).
hep-ph/0104145

37. K.S. Babu, Renormalization group analysis of the Kobayashi–
Maskawa matrix. Z. Phys. C 35, 69 (1987)

38. C. Balzereit, T. Hansmann, T. Mannel, B. Plumper, The renormal-
ization group evolution of the CKM matrix. Eur. Phys. J. C 9, 197
(1999). hep-ph/9810350

123

http://arxiv.org/abs/1110.6926
http://arxiv.org/abs/1203.5539
http://arxiv.org/abs/1204.5977
http://arxiv.org/abs/1205.1675
http://arxiv.org/abs/0812.3610
http://arxiv.org/abs/1207.3016
http://arxiv.org/abs/1208.0534
http://arxiv.org/abs/1011.0730
http://arxiv.org/abs/1104.3171
http://arxiv.org/abs/1112.6261
http://arxiv.org/abs/1202.6339
http://arxiv.org/abs/1203.1622
http://arxiv.org/abs/1306.2956
http://arxiv.org/abs/1308.1090
http://arxiv.org/abs/1309.3568
http://arxiv.org/abs/1312.0935
http://arxiv.org/abs/1312.2011
http://arxiv.org/abs/hep-ph/0207036
http://arxiv.org/abs/0801.0045
http://arxiv.org/abs/hep-ph/9903535
http://arxiv.org/abs/hep-ph/0604074
http://arxiv.org/abs/0902.1949
http://arxiv.org/abs/0909.4444
http://arxiv.org/abs/0805.3989
http://arxiv.org/abs/0807.0801
http://arxiv.org/abs/1002.0900
http://arxiv.org/abs/hep-ph/0301101
http://arxiv.org/abs/1104.1573
http://arxiv.org/abs/1203.5023
http://arxiv.org/abs/hep-ph/0406184
http://ckmfitter.in2p3.fr
http://arxiv.org/abs/hep-ph/0104145
http://arxiv.org/abs/hep-ph/9810350

	The flavour of natural SUSY
	Abstract 
	1 Introduction
	2 The SUSY flavour sector
	3 Split squarks and MFV
	4 Conclusions
	Acknowledgments
	Appendix: Stability of the expansion coefficients
	CP-conserving limit for the CKM matrix
	Threshold corrections and experimental errors on the CKM matrix

	References


