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Abstract We consider a general chaotic inflation model
with non-canonical kinetic term, resulting in attractor solu-
tions for the inflation of quadratic or other monomial type.
In particular, the form of the kinetic term and the potential
is fixed due to the requirement that the inflation model is a
quadratic form in the large field values of the inflaton. We
show that a large coupling in the non-canonical kinetic term
allows for the slow-roll inflation with sub-Planckian field val-
ues of the inflaton; the successful predictions of the quadratic
or other monomial type chaotic inflation in light of BICEP2
results are maintained in our model. We find that due to the
large rescaling of the inflaton field in the vacuum, there is no
unitarity problem below the Planck scale.

1 Introduction

The BICEP2 collaboration [1] has recently announced the
evidence for B-modes in the CMB polarization, which are
presumably originated from the primordial gravitational
waves of cosmic inflation. The reported value of the tensor-
to-scalar ratio is r = 0.20+0.07

−0.05, which is quite larger than
the previous upper bound, r < 0.11, given at 95 % C.L. by
Planck data combined with WMAP polarization and high-l
[2]. In the case of single-field inflation models, such a large
value of r implies that there was an excursion of the inflaton
beyond the Planck-scale field values during inflation [3,4].
As a result, simple monomial chaotic inflation models have
become favored.1 On the other hand, many of the inflation
models predicting a small value of r including Starobinsky
model [5,6] and Higgs inflation [7,8] in a simple form2 have

1 We note that there is an issue on a sizable running of the spectral
index, which resolves the tension between BICEP2 and Planck [1], but
it is hard to realize it in most of the slow-roll inflation models.
2 See, however, the recent discussion in Ref. [9–15].
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been disfavored by a large r , on top of the problem of unitarity
violation [16–22].

Among the monomial chaotic inflation models, the
quadratic inflation [23] has drawn a new attention due to
the fact that the model predictions are consistent with Planck
+ BICEP2 within 1σ . We consider a general quadratic infla-
tion with a single scalar field containing the general kinetic
term and potential. The condition that the quadratic infla-
tion is reproduced at large field values fixes the form of the
kinetic and potential terms. As a consequence, we show how
the model parameters in the general quadratic inflation are
constrained after BICEP2.

A large r suggests that the inflaton field with canoni-
cal kinetic term must have traveled to trans-Planckian field
values during inflation, so there is a concern about how to
address the quantum gravity effects suppressed by the Planck
scale from the pointview of the effective field theory. In
our general quadratic inflation, the field value of the non-
canonical inflaton remains sub-Planckian during inflation,
thanks to a large coupling in the non-canonical kinetic term
[15,24–26]. Furthermore, we find that there is no unitarity
violation coming from the large coupling below the Planck
scale, because the wave function rescaling of the inflaton field
in the vacuum eliminates any positive powers of the large
coupling as in the induced inflation models [22]. Therefore,
the higher order terms for the non-canonical inflaton, which
are suppressed by the Planck scale, can be safely ignored.
We also generalize the results to the case with general mono-
mial chaotic inflation in the model with a similar conclusion.
There were previous discussions on more general polynomial
chaotic inflation models obtaining a large tensor-to-scalar
ratio with sub-Planckian inflation field values [27–30].

The paper is organized as follows. We begin with a model
description of the general chaotic inflation focusing on the
quadratic form and discuss the inflation constraints on the
model in view of Planck and BICEP2. Then we address the
issue of unitarity violation in this model and conclusions are
drawn.
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2 General chaotic inflation

We introduce a real scalar inflaton having a general kinetic
term with two derivatives and a potential as follows:

L√−g
= 1

2
�(φ)R − 1

2
K (φ)(∂μφ)2 − V (φ). (1)

Without loss of generality, we choose the general kinetic term
and the potential in the following discussion as

�(φ) = 1 + ζh(φ), K (φ) = 1 + ξ f (φ),

V (φ) = λ(g(φ) − g(φ0))
2 (2)

where ζ, ξ, λ are constant parameters, h(φ), f (φ), g(φ) are
general functions of φ, and we have chosen the potential to
vanish in the vacuum with 〈φ〉 = φ0. The generic feature
of the above Lagrangian is that the inflaton field has non-
canonical kinetic terms for h(φ0) �= 0 or f (φ0) �= 0 so the
interaction terms get rescaled after the graviton or inflaton
kinetic term is made canonical. This aspect leads to an inter-
esting result for the unitarity scale as will be discussed in a
later section. Here, we have used the units with MP = 1, but
the Planck scale is introduced whenever necessary.

We note that the non-canonical kinetic term K (φ) for the
inflaton could be always canonically normalized locally, as
far as the inflaton field distance during inflation is not larger
than the curvature radius in the field space of graviton and
inflaton [31]. Then one can describe a single-field inflation in
terms of the canonically normalized field. As a consequence,
when the canonically normalized field describes monomial
chaotic inflation, it appears super-Planckian effectively, even
if the original inflaton field before a canonical normalization
is sub-Planckian. The case with a large non-minimal coupling
has been discussed in the context of Starobinsky-like models
in Ref. [22], but the tensor-to-scalar ratio in this case turned
out to be negligible. Thus, for discussion on the scalar func-
tions at the leading order and correction terms in this work,
we reside in the field basis where the non-minimal coupling
of order unity is present and the inflaton kinetic term is non-
canonical. Then we focus on the case that the non-canonical
kinetic term K (φ) plays a crucial role during inflation, while
the non-minimal coupling does not.

2.1 Quadratic inflation

Even if the potential is not dominated by a mass term,
the model can describe a quadratic inflation due to a non-
canonical kinetic term during inflation. For simplicity, we
take the functions f (φ), g(φ) and h(φ) to be power-like,

f (φ) = φn, g(φ) = φm, h(φ) = φk . (3)

Then, in the limit of ξ f (φ) = ξφn � 1 during infla-
tion,3 we obtain the canonically normalized inflaton as χ ≈√

ξφn/2+1/(n/2 + 1), as far as the mixing between gravi-
ton and inflaton can be ignored for ζφk � 1, namely,
ζ/ξ � φn−k for ζ = O(1) and a large ξ . In this case, the
potential function becomes g(φ(χ)) ∼ χ2m/(n+2). There-
fore, choosing m = (n + 2)/2 and ignoring the contribution
of the non-minimal coupling, we obtain the Lagrangian dur-
ing inflation as follows:

L√−g
≈ 1

2
R − 1

2
(∂μχ)2 − λ

ξ

(
1 + n

2

)2
(χ − χ0)

2 (4)

where χ0 ≡ √
ξφ

1+n/2
0 /(1+n/2). Then we can get rid of χ0

by making a shift for χ without changing any physics, end-
ing up with a quadratic inflation model. The running kinetic
term with f (φ) = φ2 and a general form was previously con-
sidered in Refs. [15,24–26] but the unitarity issue was not
discussed. The unitarity problem distinguishes the models as
will be shown in a later section.

The mass of the canonical inflaton is given by

mχ = n + 2

2

√
2λ

ξ
. (5)

Therefore, the predictions of the model for inflation are
the same as for the usual quadratic inflation with canonical
kinetic term. Although variations of quadratic inflation with
a polynomial potential can also be consistent with Planck +
BICEP2 [32], we focus on the simplest case with attractor
solutions for the quadratic inflation.

The slow-roll parameters for the quadratic inflation at hori-
zon exit are written in terms of the number of e-foldings N
as

ε∗ = η∗ = 2

χ2∗
= 1

2N + 1
. (6)

Then we get the spectral index of the scalar perturbation and
the tensor-to-scalar ratio, respectively, as

ns = 1 − 6ε∗ + 2η∗ = 1 − 4

2N + 1
, (7)

r = 16ε∗ = 16

2N + 1
. (8)

Therefore, for N = 50 (60), we find that ns = 0.960 (0.967)

and r = 0.158 (0.132). As a result, the model leads to
large primordial gravitational waves, and the model predic-
tions can be consistent with ns = 0.9600 ± 0.0071 and
r = 0.20+0.07

−0.05 given by Planck + WP + high-l + BICEP2
within about 1σ . On the other hand, the running of the spec-

3 In the opposite case with ξ f (φ) � 1, our model is equivalent to
chaotic inflation models with canonical kinetic term.
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tral index is negligibly small:

dns

d ln k
= −7.84(5.46) × 10−4. (9)

Thus, there is a tension with the previous limit on the tensor-
to-scalar ratio, r < 0.11, obtained at 95 % C. L. for Planck
+ WP + high-l, in the case of a zero running of the spec-
tral index. But we do not discuss the solution to resolve the
tension in this work.

Finally, from the COBE normalization, As = V/(24π2

M4
Pε∗) = 2.196 × 10−9, the inflaton mass is determined

mχ = 1.74 (1.45) × 1013 GeV, (10)

for N = 50 (60), resulting in the fixed ratio of the constant
parameters as

λ

ξ
= 16

(n + 2)2 × 6.37 (4.44) × 10−12. (11)

As a consequence, we need a large ξ or a small λ to satisfy the
COBE normalization. For a higher power of the polynomial,
we would get a smaller ratio λ/ξ . The value of the inflaton
mass is suggestive of solving the vacuum instability problem
with a heavy scalar threshold in the SM with an inflaton
coupling to the Higgs doublet [33,34].

In particular, for f (φ) = φ2 and g(φ) = φ2, the
Lagrangian (1) with Eq. (2) becomes

L√−g
= 1

2
R − 1

2
(1 + ξφ2)(∂μφ)2 − λ(φ2 − φ2

0)2. (12)

In this case, we can get the analytic expression for the canon-
ical inflation field as follows:

χ = 1

2
√

ξ
ln

⎛
⎝
√√

1 + ξφ2 + 1 +
√√

1 + ξφ2 − 1√√
1 + ξφ2 + 1 −

√√
1 + ξφ2 − 1

⎞
⎠

+1

2
φ
√

1 + ξφ2. (13)

For ξφ2 � 1 during inflation, we obtain χ ≈ √
ξφ2/2. The

slow-roll condition with χ � 1, however, requires a stronger
condition on the φ field value as φ � 1/ξ1/4. Therefore, for
a large ξ , there is a large room, 1/ξ1/4 � φ � 1, for the φ

field value to be sub-Planckian during inflation.
In passing, we make some comments on the higher order

Planck-suppressed terms in the effective field theory. Keep-
ing the Z2 symmetry with φ → −φ and the second order
derivatives, we can consider higher order terms for the orig-
inal field φ or the redefined field χ , respectively, as follows:

φ :
∑

n

(
an

φ2+2n

M2+2n
P

(∂φ)2 + bn
φ4+2n

M2n
P

)
, (14)

χ :
∑

n

(
cn

χn

Mn
P

(∂χ)2 + dn
χn+2

Mn−2
P

)
. (15)

Here, we assumed that the unitarity cutoff is given by the
Planck scale. Then, using χ ≈ √

ξφ2/2 for ξφ2 � 1 during
inflation, the higher order terms for the χ field in Eq. (15)
can be rewritten as

χ :
∑

n

(
cn

ξ1+ n
2

2n

φ2+2n

M2+2n
P

(∂φ)2 + dnξ1+ n
2

2n+2

φ4+2n

M2n
P

)
.

(16)

Therefore, in order for the higher order terms to be frame
independent, we need the following conditions on the coef-
ficients:

an 
 cnξ1+ n
2

2n
, bn 
 dnξ1+ n

2

2n+2 . (17)

Then, since the φ field is sub-Planckian, the higher order
corrections suppressed by the Planck scale can be ignored
during inflation, as far as an = O(1) and bn = O(1). We note
that if the vacuum expectation value of the inflaton is small,
the unitarity cutoff can be smaller than the Planck scale, even
for the same non-minimal kinetic term in the leading order, as
will be shown in a later section. Then the higher order terms
with a unitarity cutoff smaller than the Planck scale could be
dangerous, because φ � ξ−1/4. We will come back to this
issue with unitarity problem for general quadratic inflation
models in a later section.

We note that for a linear form with f (φ) = φ, which is
obviously the lowest term in the non-canonical kinetic term
for a singlet scalar φ, a quadratic inflation can be obtained
only for a fractional power term in the potential as g(φ) =
φ3/2.

For the general polynomials satisfying f (φ) = φn and
g(φ) = φ(n+2)/2, the potential for the canonically nor-
malized inflaton becomes a quadratic form, because the
canonical scalar field during inflation is written as χ ≈√

ξφn/2+1/(n/2 + 1). Then the slow-roll condition, χ � 1,
again requires the φ field value to be φ � ξ−1/(n+2). As a
consequence, for ξ ∼ 10l and taking ξ−1/(n+2) � 10−2 for
sub-Planckian φ field values, the power of the polynomial is
restricted to n � l/2 − 2, or ξ � 102(n+2) is required for a
given power of the polynomial.

2.2 Monomial chaotic inflation

In this section, for completeness, we consider the mono-
mial chaotic inflation other than quadratic inflation in our
model and compare the model predictions to BICEP2. As
noted before, for an arbitrary choice of powers, n and m, in
Eq. (3), the power of the potential for the canonically nor-
malized inflaton takes a general form of chaotic inflation as
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V (φ(χ)) ∼ χ4m/(n+2) for large field values as follows:

L√−g
≈ 1

2
R − 1

2
(∂μχ)2 − λ

ξ
2m

n+2

×
(

1+ n

2

) 4m
n+2

(
χ

2m
n+2 −χ

2m
n+2

0

)2

. (18)

For the effective potential, V (χ) = α
(
χk/2 − χ

k/2
0

)2
,

with k = 4m
n+2 , the slow-roll parameters at horizon exit are

ε∗ = k2

2

1

χ2∗
(
1 − (χ0/χ∗)k/2

)2 , (19)

η∗ = k(k − 1) − k(k/2 − 1)(χ0/χ∗)k/2

χ2∗
(
1 − (χ0/χ∗)k/2

)2 . (20)

On the other hand, the number of e-foldings is

N = 1

2k

[
χ2∗

(
1 − 1

1 − k/4

(
χ0

χ∗

)k/2
)

−χ2
e

(
1 − 1

1 − k/4

(
χ0

χe

)k/2
)]

(21)

where χe is the value of the inflaton field at the end of infla-
tion, given by the solution to χe

(
1 − (χ0/χe)

k/2
) = k/

√
2.

Then, for χ0 � χe < χ∗, we get the slow-roll parameters in
terms of the number of e-foldings as

ε∗ ≈ k2

2χ2∗
≈ k

2(2N + k/2)
,

η∗ ≈ k(k − 1)

χ2∗
≈ k − 1

2N + k/2
. (22)

For a slow-roll inflation with general monomial terms, we
need χ2∗ ≈ k(2N + k/2) so the fact that χ∗ � 1 implies
that the non-canonical inflaton field values are sub-Planckian
during inflation only for ξ−1/(n+2) � φ � 1, similarly
to the general quadratic inflation. Therefore, we can keep
the non-canonical inflaton field sufficiently small due to a
large coupling ξ and accommodate various monomial chaotic
inflation models containing the canonical kinetic term.

Consequently, the spectral index of the scalar perturbation
and the tensor-to-scalar ratio are

ns ≈ 1 − k + 2

2N + k/2
, r ≈ 8k

2N + k/2
. (23)

On the other hand, for N = 50, the COBE normalization
restricts the inflaton parameters as

λ

ξ k/2 ≈ 2k+2

(n + 2)k

k1−k/2

(2N + k/2)−1+k/2 · 6.37 × 10−12. (24)

Here, we note that for k < 2, the coupling ξ in the non-
canonical kinetic term gets smaller, as compared to the case
with quadratic inflation in Eq. (11).

For instance, for n = 1, i.e. a linear non-canonical kinetic
term, we get k = 4

3 m. In this case, for N = 50, we find that
(ns, r) = (0.967, 0.106), (0.954, 0.211), (0.941, 0.314), in
the order of k = 4/3, 8/3, 4. Next, for n = 2, we get
k = m so the power of the effective potential is given by
the square root of the original potential. For n = 3, we get
k = 4

5 m and find for N = 50 that (ns, r) = (0.972, 0.06),
(0.964, 0.127), (0.957, 0.190), (0.949, 0.252), in the order
of k = 4/5, 8/5, 12/5, 16/5. Therefore, as compared to
Planck and BICEP2, successful chaotic inflation models with
fractional power can be obtained for the general polyno-
mial functions f (φ) and g(φ) with regular powers. Just for
quadratic inflation, the running of the spectral index is too
small to be observed at the current level of precision.

3 General chaotic inflation and unitarity scale

It is remarkable that the unitarity scale depends on the back-
ground field values and the vacuum expectation value of the
inflaton field plays an important role in determining the uni-
tarity scale [22,35,36]. In this section, focusing on the gen-
eral monomial functions leading to the quadratic inflation and
general monomial chaotic inflation, we consider the effective
Lagrangian in the vacuum and discuss the unitarity problem.

By expanding the φ field around the vacuum with φ =
φ0 + φ̄, we obtain the Lagrangian with f (φ) = φn , g(φ) =
φm and h(φ) = φk in Eq. (1) as

L√−g
= 1

2

(
1 + ζ(φ0 + φ̄)k

)
R − 1

2

(
1 + ξ(φ0 + φ̄)n)

×(∂μφ̄)2 − λ
(
(φ0 + φ̄)m − φm

0

)2
. (25)

Then, after the scalar perturbation is canonically normalized
by φ̂ = √

1 + ξφn
0 φ̄, the above Lagrangian is rewritten as

L√−g
= 1

2
R + 1

2
ζφk

0

(
1 + φ̂

φ0
√

1 + ξφn
0

)k

R

−1

2

(
1+ ξφn

0

1 + ξφn
0

[(
1 + φ̂

φ0
√

1 + ξφn
0

)n

−1

])
(∂μφ̂)2

−λφ2m
0

[(
1 + φ̂

φ0
√

1 + ξφn
0

)m

− 1

]2

. (26)

Therefore, for ξφn
0 � 1, the relevant higher order interactions

for determining the unitarity scale are the following:

ζ

(ξφn
0 )1/2 φ̂ hν

ν�hμ
μ (k = 1),

ζ

(ξφn
0 )k/2 φ̂k�hμ

μ (k > 1)

(27)
1

(ξφn+2
0 )n/2

φ̂n(∂μφ̂)2 (n > 0),
λ

(ξφn
0 )m

φ̂2m (m > 2)

(28)
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where the non-minimal coupling ζ is assumed to be of
order one so the graviton kinetic term is already canonically
normalized. From the first higher dimensional operator in
Eq. (28), we identify the unitarity scale �UV as follows:

�UV =
√

ξφ
1+n/2
0

Mn/2
P

. (29)

Consequently, for �UV ∼ MP , we need the vacuum expec-
tation value of the φ field to be

φ0 ∼ MP

ξ1/(n+2)
. (30)

For instance, requiring ξ � 102(n+2) for sub-Planckian field
values of φ during inflation, we just need the inflaton VEV
to be φ0 � 0.01MP . We note that the non-minimal coupling
does not lead to a lower unitarity scale than the Planck scale,
as far as ζ � (ξφn)k/2. Moreover, the unitarity scale iden-
tified from the potential in Eq. (28) is not smaller than the
Planck scale, as far as λ � (ξφn

0 )m . We note that for ξφn
0 � 1,

the inflaton mass in the vacuum is the same value as during
inflation, which is given by Eq. (5).

Now we address the validity of the classical approxima-
tion for inflation in view of the identified unitarity scale. The
bottom line is that once the classical Lagrangian with a large
coupling in the kinetic term is given and the inflation VEV is
large, the unrenormalized, non-canonical field is always sub-
Planckian and the model is unitary and self-consistent at the
quantum level up to the Planck scale. When higher dimen-
sional operators in the scalar functions h(φ), f (φ) and g(φ)

are generated by new physics at the unitarity scale, that is,
the Planck scale in our model, they could affect the clas-
sical inflationary dynamics. But, since the unrenormalized,
non-canonical φ field is sub-Planckian,4 those higher dimen-
sional interactions for the φ field, if Planck-scale suppressed
as in Eq. (14), are under control. Therefore, there is no extra
degree of freedom needed to make the monomial chaotic
inflation UV complete below the Planck-scale cutoff and our
model predictions are insensitive to the Planck-scale sup-
pressed interactions. Thus, the model can be treated in an
effective field theory consistently from the vacuum all the
way to the inflationary era.

For general vacuum expectation values of the inflaton, the
unitarity scale read off from the most dangerous operator,
φ̂n(∂φ̂)2, in Eq. (26), becomes

�UV =
(

1 + ξφn
0

Mn
P

) 1
2 + 1

n

ξ−1/n MP . (31)

4 The inflaton field value during inflation is greater than a naive cutoff
MP/ξ1/n expected for the vacuum with a small inflation VEV. But, as
we discussed, the true cutoff depends on the inflaton VEV, becoming
of order the Planck scale for a large inflaton VEV.

Therefore, if the vacuum expectation value of the inflaton
field is negligible such that ξφn

0 � Mn
P , the unitarity cutoff

is saturated to �UV ≈ ξ−1/n MP , which is smaller than the
Planck scale. On the other hand, during inflation, the inflaton
φ runs over the field values, φ � ξ−1/n MP = �UV, which
are beyond the unitarity cutoff. Therefore, in this case, higher
order terms for φ suppressed by the Planck scale could not
be ignored. For instance, for the Higgs inflation with running
kinetic term [24–26], the vacuum expectation value of the
Higgs field is small so that the non-canonical kinetic term
with a large ξ introduces a unitarity problem below the Planck
scale, so the model is sensitive to higher order terms for the
Higgs field suppressed by �UV = ξ−1/n MP . Therefore, the
Higgs inflation with running kinetic term is similar to the
original Higgs inflation with non-minimal gravity coupling,
where inflaton field values are beyond the unitarity cutoff
during inflation [35,36].

4 Conclusions

We have proposed the general chaotic inflation models that
share the predictions of the usual chaotic inflation with
canonically normalized inflaton field and are favored by the
recent BICEP2 observation of a large tensor-to-scalar ratio.
Focusing on the general quadratic inflation, we have shown
that the non-canonical inflaton remains sub-Planckian during
inflation while the unitarity scale identified in the vacuum
is of order the Planck scale, after the non-canonical infla-
ton field obtains a large vacuum expectation value and it is
canonically normalized. Therefore, the higher order terms
for the non-canonical inflaton field, which are suppressed
by the Planck scale, are negligible. The very choice of the
particular terms in the classical Lagrangian should be justi-
fied for another reason, but we showed that there is a class of
self-consistent attractor solutions in a general form leading to
the sub-Planckian quadratic inflation with the Planck-scale
cutoff. The results were generalized to monomial chaotic
inflation models. Our result indicates that the well-known
chaotic inflation models such as quadratic inflation can be
UV complete in the presence of the non-canonical kinetic
term, due to the large vacuum expectation value of the infla-
ton.
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