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2 Department of Physics, Abant Izzet Baysal University, Gölköy Kampüsü, 14980 Bolu, Turkey
3 Department of Physics, Kocaeli University, 41380 Izmit, Turkey

Received: 16 May 2014 / Accepted: 4 August 2014 / Published online: 16 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We calculate the shifts in decay constants of the
pseudoscalar B and D mesons in nuclear medium in the
frame work of QCD sum rules. We write those shifts in terms
of the B–N and D–N scattering lengths and an extra phe-
nomenological parameter entered to calculations. Comput-
ing an appreciate forward scattering correlation function, we
derive the QCD sum rules for the B–N and D–N scattering
lengths and the extra phenomenological parameter in terms
of various operators in nuclear medium. We numerically find
the values of the shifts in the decay constants compared to
their vacuum values. Using the sum rules obtained, we also
determine the shifts in the masses of these particles due to
nuclear matter and compare the results obtained with the pre-
vious predictions in the literature.

1 Introduction

Study the in-medium properties of hadrons can help us not
only better understand the perturbative and non-perturbative
natures of QCD, but also can play crucial role in analyzing the
results of heavy ion collision experiments as well as under-
standing the internal structures of the dense astrophysical
objects like neutron stars. From the experimental side, there
have been a lot of experiments such as CEBAF and RHIC etc.
focused on the study of the properties of hadrons in nuclear
medium. The FAIR and CBM Collaborations intend to study
the in-medium properties of different hadrons including the
charmed mesons. The PANDA Collaboration also aims to
focus on the study of the properties of hadrons in charm sec-
tor [1–4].

Along with the experimental progress, there were many
theoretical works devoted to the study of the in-medium prop-
erties of hadrons. The basic properties of the nuclear matter
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are determined in [5]. Some finite-density problems and the
saturation properties of nuclear matter are studied in [6–9]. In
series of papers [10–12], the authors have studied the effects
of nuclear matter on the masses of the nucleons. In [13], the
ρ, ω and φ mesons–nucleon scattering lengths and their mass
shifts in nuclear medium are investigated via QCD sum rules.
[14] applies the same method to investigate the mass mod-
ification of D-meson at finite density. In [15], the authors
expand the work of [14] to study the mass shift of also B
meson in nuclear matter. The in-medium mass modification
of the scalar charm meson is investigated in [16], which is
then extended to include also the mass modification of the
scalar B0 meson in [17]. For some studies of mainly mass
shifts for different hadrons in nuclear medium see for instance
[18–46].

In the present study, we extend the works of [14,15] to
investigate the modifications in the decay constants of the
pseudoscalar B and D mesons in the framework of QCD
sum rules. Considering contributions of various operators in
nuclear medium, we calculate the appreciate forward scat-
tering correlation function in hadronic and operator product
expansion (OPE) sides in nuclear matter to obtain the QCD
sum rules for the B–N and D–N scattering lengths and an
extra phenomenological parameter entering the expressions
of the modifications in the decay constants of the mesons
under consideration. To study the electromagnetic structures
and strong interactions of these mesons with other hadrons
existing in the medium as well as for investigation of the B
decays into the charmed D meson, we need to know also the
modifications in the decay constants of these mesons due to
nuclear medium besides the modifications in their mass. Our
results can be useful in this respect. The results of the present
work can also be used in analyses of the data obtained via
heavy ion collisions held at different experiments.

The outline of the paper is as follows. In next section, after
deriving the expressions of the modifications in the decay
constants, we get the QCD sum rules for the B–N and D–N
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scattering lengths and an extra phenomenological parameter
via calculating an appreciate forward scattering correlation
function in terms of both the hadronic parameters and the
QCD degrees of freedom in nuclear matter. Last section is
devoted to the numerical analysis of the sum rules, obtaining
the working regions for the auxiliary parameters entering the
sum rules and numerical results on the shifts in the decay con-
stants as well as the masses of the B and D mesons. We also
compare the obtained results on the physical quantities under
consideration with the existing predictions in the literature.

2 In-medium modifications of the decay constants
of the D and B mesons via QCD sum rules

In order to calculate the shifts in the decay constants of D
and B mesons in nuclear matter, we start with the following
two-point correlation function which can be divided into the
vacuum �0(q) and the static one-nucleon �N (q) parts in
Fermi gas approximation for the nuclear matter. The �N (q)

function can also be approximated in the linear density of the
nuclear matter as [14,47,48]

�(q) = i
∫

d4xeiq·x 〈T [JB[D](x)J †
B[D](0)]〉ρN

= �0(q) + �N (q) � �0(q) + ρN

2MN
TN (q), (1)

where T is the time ordering operator, ρN is the density of the
nuclear matter, MN is the mass of the nucleon and JB[D](x)

denotes the interpolating current of the B[D] meson. To find
the shifts in the values of the decay constants, we shall con-
sider the forward scattering amplitude TN (q) which can be
written as

TN (q0 = ω, q)

= i
∫

d4xeiq·x 〈N (p)|T [JB[D](x)J †
B[D](0)]|N (p)〉, (2)

where qμ = (ω, q) is the four-momentum of the meson
and |N (p)〉 represents the isospin- and spin-averaged static
nucleon state which is normalized covariantly as 〈N (p)|
N (p′)〉 = (2π)32p0δ

3(p − p′) [14,17]. The pseudoscalar
B[D]-meson interpolating field is taken as

JB[D](x) = ū(x)iγ5b[c](x) + b̄[c̄](x)iγ5u(x)

2
, (3)

where u(x), b(x), and c(x) are quark fields. Note that in eval-
uating the TN (q) function we need to know the condensates
〈Oi 〉N which are related to the condensates 〈Oi 〉ρN via the
following equation, valid at relatively low density [49]:

〈Oi 〉ρN = 〈Oi 〉0 + ρN

2MN
〈Oi 〉N + o(ρN ). (4)

In the following, our main goal is to evaluate the forward
scattering amplitude to find the shifts in the decay constants.
According to the general philosophy of the method, we calcu-
late this function via two different ways: in the phenomeno-
logical or hadronic side using the hadronic parameters and in
the OPE or theoretical side in terms of QCD degrees of free-
dom. Equating these two representations of the same func-
tion, we obtain QCD sum rules for the shifts in the physi-
cal quantities under consideration. To suppress contributions
of the higher states and continuum, a Borel transformation
and continuum subtraction are applied to both sides of the
obtained sum rules.

2.1 Hadronic side

The forward scattering amplitude TN (ω, q) is calculated in
terms of the hadronic parameters in the limit q → 0, around
ω = m B[D]. Near the pole position of the pseudoscalar
meson, TN (ω, 0) is related to the T-matrix for the forward
B[D]− N scattering amplitude [13]. The function TN (ω, 0)

is written as the following dispersion integrals [13]:

TN (ω, 0) =
∫ +∞

−∞
du

ρ(u, q = 0)

u − ω − iε
=

∫ ∞

0
du2 ρ(u, q = 0)

u2 − ω2 ,

(5)

where ω2 �=positive real number and the spin-averaged spec-
tral density ρ(u, q = 0) can be expressed in terms of the
spin-averaged B[D]−N scattering T-matrix, decay constant
and mass of the B[D] meson as well as phenomenological
parameters a, b, and c in the following way:

ρ(u > 0, q = 0)

= − f 2
B[D]m4

B[D]
πm2

b[c]
Im

[
TB[D]N (u, 0)

(u2 − m2
B[D] + iε)2

]
+ · · ·

= − f 2
B[D]m4

B[D]
πm2

b[c]

{
Im

1

(u2−m2
B[D]+iε)2

Re[TB[D]N (u, 0)]

+ Re
1

(u2 − m2
B[D] + iε)2

Im[TB[D]N (u, 0)]
}

+ · · · (6)

≡ a
d

du2 δ(u2 − m2
B[D])+b δ(u2−m2

B[D]) + c δ(u2 − s0),

(7)

where . . . in Eq. (6) denotes the contribution of higher states
and continuum which is not associated with the B[D] − N
scattering. It is equivalent to the third term in Eq. (7) which
represents the scattering contribution in the continuum part
of the B[D] current starting at the threshold s0. Applying the
Borel transformation and continuum subtraction suppresses
this contribution. Note that the first term proportional to the
parameter a in Eq. (7) denotes the double-pole term and cor-
responds to the on-shell effect of the T-matrix. The second
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term proportional to the parameter b in Eq. (7) denotes the
single-pole term and corresponds to the off-shell effect of
the T-matrix. The phenomenological parameters a and b are
found as

a = − f 2
B[D]m4

B[D]
m2

b[c]
Re[TB[D]N (u, 0)]|u=m B[D]

= −8π f 2
B[D]m4

B[D](MN + m B[D])
m2

b[c]
aB[D],

b = − f 2
B[D]m4

B[D]
m2

b[c]

d

du2 Re[TB[D]N (u, 0)]|u=m B[D] , (8)

where the parameter aB[D] is the B[D]− N scattering length
[13]. The decay constant fB[D] of the pseudoscalar B[D]
meson is defined as

〈0|JB[D](0)|B[D]〉 = fB[D]m2
B[D]

mb[c]
. (9)

Combining Eqs. (7), (5), (2), and (1), we can relate the
phenomenological parameters a and b extracted from the
forward scattering amplitude TN with the shifts in the mass
and decay constant of the B[D] meson as [13]

�HAD(ω, 0) ∝ F

m2
B[D] − ω2

+ ρN

2MN

×
{

a

(m2
B[D] − ω2)2

+ b

m2
B[D] − ω2

}

� F + δF

(m2
B[D] + 
m2

B[D]) − ω2
(10)

where

F = f 2
B[D]m4

B[D]
m2

b[c]
,

δF = ρN

2MN
b,


m2
B[D] = − ρN

2MN F
a. (11)

Using the modified mass in nuclear matter, m∗
B[D] = m B[D]

+ δm B[D] =
√

m2
B[D] + 
m2

B[D], the mass shift of B[D]

meson is obtained as:

δm B[D] = 2π
MN + m B[D]

MN m B[D]
ρN aB[D]. (12)

From Eq. (11), the shift in decay constant of the B[D] meson
is also obtained as

δ fB[D] = m2
b[c]

2 fB[D]m4
B[D]

(
ρN

2MN
b− 4 f 2

B[D]m3
B[D]

m2
b[c]

δm B[D]

)
.

(13)

As is clear from the above relations, to find the shifts in
the mass and decay constant, we need to calculate the phe-
nomenological parameters a and b using the forward scatter-
ing amplitude calculated both in hadronic and OPE sides.

In the low energy limit ω → 0, the T HAD
N (ω, 0) is equiv-

alent to the Born term T Born
N (ω, 0). Hence, the forward scat-

tering amplitude on the hadronic side can be written as

T HAD
N (ω, 0) = T Born

N (ω, 0) + a

(m2
B[D] − ω2)2

+ b

m2
B[D] − ω2

+ c

s2
0 − ω2

, (14)

with the condition

a

m4
B[D]

+ b

m2
B[D]

+ c

s0
= 0. (15)

The Born term can be determined by the Born diagrams
at the tree level [13,14]. To calculate it, we consider the con-
tributions of the baryons �b[c] and �b[c] in the medium pro-
duced by the interaction of B[D] with the nucleon, i.e.

B−(bu) + p(uud) or n(udd)→�0
b(udb) or �−

b (ddb),

D0(cu)+ p(uud) or n(udd)→�+
c , �+

c (udc) or �0
c (ddc)

(16)

The Born term T Born
N (ω, 0) is obtained as [14]

T Born(ω, 0)

= 2MN (MN +MB)m4
B[D] f 2

B[D]
[ω2−(MN +MB)2](ω2−m2

B[D])2(mu +mb[c])2
g2

N B[D]B(ω2).

(17)

where B denotes the �b[c] or �b[c] baryon and gN B[D]B(ω2)

is the strong coupling constant among the B[D] meson,
nucleon and B baryon.

After the Borel transformation and using the quark–
hadron duality assumption, the hadronic side of the current-
nucleon forward scattering amplitude is obtained as (see also
[14]):

B̂T HAD
N = a

(
1

M2 e−m2
B[D]/M2 − s0

m4
B[D]

e−s0/M2

)

+b

(
e−m2

B[D]/M2 − s0

m2
B[D]

e−s0/M2

)

+ 2 f 2
B[D]m4

B[D]MN (MN + MB)

[(MN +MB)2−m2
B[D]](mu +mb[c])2

g2
N B[D]B

×
[
− e−(MN +MB)2/M2

(MN + MB)2 − m2
B[D]

+
(

1

(MN + MB)2 − m2
B[D]

− 1

M2

)
e−m2

B[D]/M2

]
.

(18)
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2.2 OPE side

The OPE side of the forward scattering amplitude is obtained
via inserting the explicit form of the interpolating current
JB[D] into Eq. (2). After contracting out all quark pairs via
Wick’s theorem, we get

T OPE
N = i

4

∫
d4xeiq.x 〈

N (p)
∣∣T r

[
SQ(−x)γ5Su(x)γ5

+Su(−x)γ5SQ(x)γ5
]∣∣ N (p)

〉
, (19)

where Su is light quark and SQ with Q = b or c is the heavy
quark propagator. The light quark propagator in the fixed-
point gauge at nuclear medium is given by [20,50]

Si j
u (x) ≡ 〈N (p)|T [qi (x)q̄ j (0)]|N (p)〉

= i

2π2 δi j 1

(x2)2 � x − mq

4π2 δi j 1

x2 + χ i
q(x)χ̄

j
q (0)

− igs

32π2 F A
μν(0)t i j,A 1

x2 [� xσμν + σμν � x] + · · · ,

(20)

where χ i
q and χ̄

j
q are the Grassmann background quark fields

and F A
μν is classical background gluon field. The first and

second terms in the above equation stand for free or per-
turbative part, and the third and fourth terms denote the
non-perturbative part or contributions due to the background
quark and gluon fields. The heavy quark propagator is taken
as

Si j
Q (x) ≡ 〈N (p)|T [Qi (x)Q̄ j (0)]|N (p)〉

= i

(2π)4

∫
d4ke(−ik·x)

{
δi j

� k − m Q

−gs Gn
αβ tn

i j

4

σαβ( � k + m Q) + ( � k + m Q)σαβ

(k2 − m2
Q)2

+δi j 〈g2
s GG〉

12

m Qk2 + m2
Q � k

(k2 − m2
Q)4

+ · · ·
}

. (21)

The next step is to use the light and heavy quark propaga-
tors in Eq. (19). As we deal only with the shifts in the mass
and decay constant compared to their vacuum values, it is
enough to consider only the terms having non-perturbative
effects. To go further, we need to define the products of
the Grassmann background quark fields and classical back-
ground gluon fields in terms of the ground-state matrix ele-
ments of the corresponding quark and gluon operators at
nuclear medium [20],

χ
q
iα(x)χ̄

q
jβ(0)=〈qiα(x)q̄ jβ(0)〉N , F A

κλ F B
μν =〈G A

κλG B
μν〉N ,

χ
q
iαχ̄

q
jβ F A

μν =〈qiα q̄ jβ G A
μν〉N , χ

q
iαχ̄

q
jβχ

q
kγ χ̄

q
lδ =〈qiα q̄ jβqkγ q̄lδ〉N .

(22)

The matrix elements 〈qiα(x)q̄ jβ(0)〉N and 〈gsqiα q̄ jβG A
μν〉N

are defined as [20]

〈qiα(x)q̄ jβ(0)〉N = −δi j

12

[(
〈q̄q〉N + xμ〈q̄ Dμq〉N

+1

2
xμxν〈q̄ DμDνq〉N + · · ·

)
δαβ +

(
〈q̄γλq〉N

+xμ〈q̄γλ Dμq〉N + 1

2
xμxν〈q̄γλDμDνq〉N +· · ·

)
γ λ
αβ

]
,

(23)

and

〈gsqiα q̄ jβG A
μν〉N

= − t A
i j

96

{
〈gsq̄σ · Gq〉N

[
σμν + i(uμγν − uνγμ) �u]

αβ

+〈gsq̄ �uσ · Gq〉N
[
σμν �u + i(uμγν − uνγμ)

]
αβ

− 4
(〈q̄u · Du · Dq〉N + imq〈q̄ �uu · Dq〉N

)
× [

σμν + 2i(uμγν − uνγμ) �u]
αβ

}
, (24)

where Dμ = 1
2 (γμ �D+�Dγμ). The matrix element of the four-

dimension gluon condensate is also defined as

〈G A
κλG B

μν〉N

= δAB

96

[
〈G2〉N (gκμgλν − gκνgλμ) + O(〈E2 + B2〉N )

]
,

(25)

where we neglect the last term in this equation because of
its small contribution. We also ignore from the four-quark
condensate contributions in Eq. (22).

Various condensates appear in calculations are defined in
terms of the four-velocity uμ of the nuclear medium as [11,
20]

〈q̄γμq〉N = 〈q̄ �uq〉N uμ, (26)

〈q̄ Dμq〉N = 〈q̄u · Dq〉N uμ = −imq〈q̄ �uq〉N uμ, (27)

〈q̄γμDνq〉N = 4

3
〈q̄ �uu · Dq〉N

(
uμuν − 1

4
gμν

)

+ i

3
mq〈q̄q〉N (uμuν − gμν), (28)

〈q̄ DμDνq〉N = 4

3
〈q̄u · Du · Dq〉N

(
uμuν − 1

4
gμν

)

−1

6
〈gsq̄σ · Gq〉N (uμuν − gμν), (29)

〈q̄γλDμDνq〉N = 2〈q̄ �uu · Du · Dq〉N

[
uλuμuν

−1

6
(uλgμν + uμgλν + uνgλμ)

]

−1

6
〈gsq̄ �uσ · Gq〉N (uλuμuν − uλgμν),

(30)
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where the equation of motion have been used and terms
O(m2

q) have been neglected due to their very small contribu-
tions [20].

Making use of all above equations, the OPE side of the TN

function in the rest frame of the nuclear matter in the Borel
scheme is obtained as

B̂T OPE
N

= 1

3

e−m2
Q/M2

M4

{−m Q
(−2m2

Q + M2 + 2p2
0

) 〈q̄gsσ Gq〉N

− 4m Q
(
m2

Q − 2M2 + 4p2
0

) 〈q̄ D0 D0q〉N

+ 4M2 (−m2
Q + M2 + 4p2

0

) 〈q†i D0q〉N

+ 2M2 [
2m2

Qmu − 3m Q M2 + mu
(
M2 − 2p2

0

)] 〈q̄q〉N
}

+ 1

12π2 〈g2
s G2〉N

∫ ∞

0
dα

em2
Q/(4α−M2)m Q(
4α − M2

)4

× {
16α2(m Q + 3mu) + M2 (−m2

Qmu + 3m Q M2 + 3mu M2)

− 4α
(
m3

Q − m2
Qmu + 4m Q M2 + 6mu M2)}

×θ

[
1

−4α + M2

]
− m Qe−m2

Q/M2

M2 〈q̄gsσ Gq〉N . (31)

2.3 QCD sum rules for the phenomenological parameters a
and b

In this subsection, the Borel transformed hadronic and OPE
sides of the TN function are equated to find the QCD sum
rules for the parameters a and b, i.e.,

B̂T HAD
N = B̂T OPE

N . (32)

As we have two unknowns, we need one more equation which
is found applying the derivative with respect to 1

M2 to both
sides of Eq. (32):

∂

∂(1/M2)

{
B̂T HAD

N

}
= ∂

∂(1/M2)

{
B̂T OPE

N

}
. (33)

By simultaneous solving of Eqs. (32) and (33), we obtain the
following sum rules for the parameters a and b:

a = f 2
B[D]g2

N B[D]B

 
′(mu + mb[c])2

{
− 2m4

B[D]MN (MN + MB)

× exp

[
−m2

B[D] + (MB + MN )2

M2

]

+2s0m2
B[D]MN (MN + MB)

(
(MN + MB)2 − s0

)

′

× exp

[
− (MB + MN )2 + s0

M2

]

+2m4
B[D]MN (MN + MB) exp

[
−2m2

B[D]
M2

]

−2s0m2
B[D]MN (MN + MB)


′M2

[
m4

B[D] + M2
N M2

+M2
N s0 − M2s0 − m2

B[D](M2
N + s0)

+ (s0 + M2 − m2
B[D])(M2

B + 2MN MB)
]

× exp

[
−m2

B[D] + s0

M2

]}
+ 1


m2
B[D]

×
{

m2
B[D]

[
m2

B[D]B̂T OPE
N +

(
d

d 1
M2

B̂T OPE
N

)]

× exp

[
−m2

B[D]
M2

]
− s0

[
s0B̂T OPE

N +
(

d

d 1
M2

B̂T OPE
N

)]

× exp
[
− s0

M2

] }
, (34)

b = f 2
B[D]g2

N B[D]B

′
�

{
− 2MN s0(MN + MB)


′M2(mu + mb[c])2

×
[

M2
N M2 + M2

B(m2
B[D] + M2)

+2MB MN (m2
B[D] + M2) +m2

B[D](M2
N − M2 − s0)

]

× exp

[
−m2

B[D] + (
(MN + MB)2 + s0

)
M2

]

+2m4
B[D]MN (MN + MB)

M2(mu + mb[c])2

× exp

[
−2m2

B[D] + (MN + MB)2

M2

]

+2s2
0 MN (MN + MB)(M2

B + 2MB MN + M2
N − s0)


′m2
B[D](mu + mb[c])2

× exp

[
− (MN + MB)2 + 2s0

M2

]

+2s0m2
B[D]MN (MN +MB)(m2

B[D]−s0)


′M2(mu +mb[c])2

× exp

[
−2m2

B[D] + s0

M2

]

−2s2
0 MN (MN + MB)(m2

B[D] − s0)


′m2
B[D](mu + mb[c])2

× exp

[
−m2

B[D] + 2s0

M2

]
− 2m4

B[D]MN (MN + MB)

M2(mu + mb[c])2
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× exp

[
−3m2

B[D]
M2

]

+
2s0 MN (MN +MB)

(
M4+m2

B[D](M2−m2
B[D]+s0)

)

M4(mu +mb[c])2

× exp

[
−2m2

B[D] + s0

M2

]

+2s2
0 MN (MN + MB)(m2

B[D] − M2 − s0)

M2m2
B[D](mu + mb[c])2

× exp

[
−m2

B[D] + 2s0

M2

]

+2
m4
B[D]MN (MN + MB)(
′ − M2)


′M2(mu + mb[c])2

× exp

[
−m2

B[D]
M2

]
+ 2
m4

B[D]MN (MN + MB)


′(mu + mb[c])2

× exp

[
− (MN + MB)2

M2

]}
+ B̂T OPE

N

�


{

 − m2

B[D]
M2

× exp

[
−2m2

B[D]
M2

]
+ s0(M2 + s0)

M2m2
B[D]

× exp

[
−m2

B[D] + s0

M2

]
− s3

0

m6
B[D]

exp

[
− 2s0

M2

]}

+ 1


�

(
d

d 1
M2

B̂T OPE
N

){
s0(M2 + m2

B[D])
M2m4

B[D]

× exp

[
−m2

B[D] + s0

M2

]
− 1

M2 exp

[
−2m2

B[D]
M2

]

− s2
0

m6
B[D]

exp

[
− 2s0

M2

]}
, (35)

where


′ = (MB + MN )2 − m2
B[D]


 = exp

[
−2m2

B[D]
M2

]
− 2s0

m2
B[D]

× exp

[
−m2

B[D] + s0

M2

]
+ s0

M2 exp

[
−m2

B[D] + s0

M2

]

+ s2
0

m4
B[D]

exp

[
−m2

B[D] + s0

M2

]
− s2

0

m2
B[D]M2

× exp

[
−m2

B[D] + s0

M2

]

� = exp

[
−m2

B[D]
M2

]
− s0

m2
B[D]

exp
[
− s0

M2

]
. (36)

3 Numerical results and discussion

In order to numerically analyze the QCD sum rules obtained
in the previous section, we need to know the numerical val-
ues of the 〈Oi 〉N condensates. As we deal only with the shifts
in the physical quantities under consideration with respect to
their vacuum values, we set the vacuum condensates 〈Oi 〉0 to
zero in Eq. (4) and find the values of the 〈Oi 〉N condensates in
terms of the condensates 〈Oi 〉ρN , i.e. 〈Oi 〉N = 2MN

ρN
〈Oi 〉ρN .

Using this relation and the values of condensates 〈Oi 〉ρN pre-
sented in [11,12,19,20] we find the values of the condensates
〈Oi 〉N as depicted in Table 1 (see also [17]). To proceed with
the numerical analysis, we also need the values of some other
input parameters, like the quark masses, which are also pre-
sented in Table 1. Note that, in the present study, we use the
quark masses in the M S scheme.

Besides these input parameters, the sum rules for the
parameters a and b contain two auxiliary objects, namely
the Borel mass parameter M2 and continuum threshold s0.
According to the general philosophy of the method used,
the physical quantities should be independent of these aux-
iliary objects. Hence, we should look for “working regions”
of these parameters such that at these regions, the physical
quantities have weak dependence on M2 and s0. Our numer-
ical calculations show that in the intervals 25 GeV2 ≤ M2 ≤
40 GeV2 and 4 GeV2 ≤ M2 ≤ 8 GeV2, respectively, in the

Table 1 Numerical values for input parameters [11,12,14,17,19,20,
51,52]. ρsat

N means the saturation nuclear matter density

Parameters Values

pB[D]
0 5.279 [1.870] GeV

mb[c] 4.18 [1.275] GeV

MN 0.938 GeV

MBb[c] 5.619 [2.4] GeV

m B[D] 5.279 [1.870] GeV

gN B[D]B 6.74 GeV

fB[D] 0.17 [0.2067] GeV

ρsat
N (0.11)3 GeV3

〈q†q〉N
3
2 (2MN )

mq 6 MeV

σN 0.045 GeV

〈q̄q〉N
σN

2mq
(2MN )

〈q†gsσ Gq〉N −0.33 GeV2(2MN )

〈q†i D0q〉N 0.18 GeV(2MN )

〈q̄i D0q〉N � 0

〈q̄gsσ Gq〉N 3 GeV2(2MN )

〈q̄i D0i D0q〉N 0.3 GeV 2(2MN ) − 1
8 〈q̄gsσ Gq〉N

〈q†i D0i D0q〉N 0.031 GeV2(2MN ) − 1
12 〈q†gsσ Gq〉N

〈 αs
π

G2〉N −0.65 GeV(2MN )
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Fig. 1 The shift of B meson’s decay constant in nuclear matter versus the Borel mass M2 at three different values of continuum threshold (left
panel). The same, but for shift in decay constant of the D meson (right panel)

B and D channels, the dependence of the shifts in the phys-
ical quantities are weak. Also we see that in the intervals
34 GeV2 ≤ s0 ≤ 38 GeV2 and 5.6 GeV2 ≤ s0 ≤ 6.4 GeV2,
respectively for the B and D mesons, the results demonstrate
a weak dependence on the continuum threshold.

Making use of all input parameters and working regions
for the auxiliary parameters we depict the dependence of
the shifts in the decay constants of the B and D mesons
on the Borel mass parameter at different fixed values of the
continuum threshold in Fig. 1. The left panel in this figure
belongs to the shift of the decay constant of the B meson,
while the right panel includes the variations of this quantity
with respect to M2 in D channel. By a quick glance at this
figure, we see the following.

• The decay constant at B channel shows a good stability
with respect to the variations of M2 in its working region,
while this quantity weakly depend on M2 at D channel.
The absolute value of the shift in the decay constant of the
D meson decreases by increasing the value of M2, such
that at the upper band of the Borel mass parameter and a
higher value of the continuum threshold this shift becomes
very small.

• The shifts of decay constants due to nuclear medium are
negative in both B and D channels.

• The shift in the decay constant of B meson is roughly 10
times bigger than that of the D meson.

• Increasing the value of the continuum threshold in both
channels ends up with decrease in the absolute values of
the shifts in decay constants.

Extracted from Fig. 1, we depict the average values of the
shifts in the decay constants of B and D mesons in Table 2.
The quoted errors in the values of the shifts in decay constants
belong to the uncertainties coming from both the determina-

Table 2 Average values of the shifts in the decay constants of the B
and D mesons

δ fB (GeV) δ fD (GeV)

Present work −0.023 ± 0.007 −0.002 ± 0.001

tion of the working region for auxiliary parameters and the
errors of other input parameters.

In order to make a comparison of the results on the
mass shifts with the previous theoretical predictions, we also
numerically analyze these shifts in the B and D channels.
For this aim, we depict the dependence of the mass shifts on
M2 at different fixed values of s0 in Fig. 2. From this figure,
we conclude that

• The shifts in the masses of both B and D mesons are
negative.

• The shift in the mass of the B meson is roughly 5 times
greater than that of the D meson.

• The shifts in both B and D channels demonstrate good
stabilities with respect to the variations of the Borel mass
parameter.

From Fig. 2, we also extract the values of the shifts in
the masses of the mesons under consideration as presented
in Table 3. For comparison, we also depict the predictions
of some previous theoretical works in the same table. From
this table, we see that our result on the mass shift in D chan-
nel is in a good consistency with the result of [14] which
uses the same method and interpolating current. However,
the prediction of [15] in this channel is in opposite sign with
ours and prediction of [14], although it predicts the same
value in magnitude. As far as the shift in the mass of B chan-
nel is considered, the only existing prediction belongs to [15]
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Fig. 2 The B meson mass shift in nuclear matter versus the Borel mass M2 at three different values of continuum threshold (left panel). The same,
but for D meson mass shift (right panel)

Table 3 Average values of the shifts in the masses of the D and B
mesons

δm B (GeV) δm D (GeV)

Present work −0.242 ± 0.062 −0.046 ± 0.007

[14] − −0.048 ± 0.008

[15] ∼ 0.060 ∼ 0.045

which is different from our result in both sign and magnitude.
Note that in [15] the authors use the interpolating currents
JD+ = i d̄γ5c and JB+ = i b̄γ5u or JB0 = i b̄γ5d in D and B
channels, respectively.

At the end of this section, we would like to discuss the
dependence of the results on the shifts in the decay constants
and masses to the nuclear matter density. In the above numer-
ical results, we have used the value of saturation density, i.e.

ρsat
N = (0.11)3 GeV3. In order to see how the results depend

on the nuclear matter density, we plot the shifts in the decay
constants and masses versus ρN /ρsat

N in Figs. 3 and 4 at the
average values of the Borel mass parameter and continuum
threshold.

As also expected from Eqs. (12) and (13), these figures
show that the shifts in the physical quantities under con-
sideration linearly depend on the nuclear matter density. The
absolute values of the shifts in the decay constants and masses
increase by increasing the nuclear matter density.

In summary, we calculated the shifts in the decay con-
stants and masses of the pseudoscalar D and B mesons due
to nuclear matter in the framework of the QCD sum rules.
We found considerable negative shifts in the values of the
considered quantities except for the shift in the decay con-
stant of the D meson which is very small. We compared our
results on the mass shifts in D and B channels with the pre-
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0.004

0.003

0.002

0.001

0.000

δ δ

Fig. 3 The dependence of the shift in the decay constant of the B meson to the nuclear matter density (left panel). The same, but for D meson
(right panel)

123



Eur. Phys. J. C (2014) 74:3021 Page 9 of 10 3021

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.08

0.06

0.04

0.02

0.00

ρ ρN N
sat ρ ρN N

sat

M
B

G
eV

δ

M
D

G
eV

δ

Fig. 4 The dependence of the shift in the mass of the B meson to the nuclear matter density (left panel). The same, but for D meson (right panel)

dictions of some existing theoretical works in the literature.
We also discussed the dependence of the shifts in the decay
constants and masses of these mesons on the nuclear mat-
ter density. The results obtained in the present work can be
useful in analyzing the future experimental data at different
heavy ion collision experiments. The results obtained for the
shift in masses especially for those in the decay constants can
also be used in theoretical calculations of the electromagnetic
properties of the considered mesons as well as their strong
couplings with other hadrons in nuclear medium.
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