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Abstract We consider a fermion chirally coupled to a pre-
scribed pseudoscalar field in the form of the soliton of the
sine-Gordon model and calculate and investigate the Casimir
energy and all of the relevant quantities, i.e. the spectrum
of the states and the phase shifts, for each parity channel,
separately. We present and use a simple prescription to con-
struct the simultaneous eigenstates of the Hamiltonian and
parity in the continua from the scattering states. We also use
a prescription we had introduced earlier to calculate unique
expressions for the phase shifts and check their consistency
with both the weak and the strong forms of the Levinson theo-
rem. In the graphs of the total and parity decomposed Casimir
energies as a function of the parameters of the pseudoscalar
field distinctive deformations appear whenever a fermionic
bound state energy level with definite parity crosses the line
of zero energy. However, the latter graphs show considerable
sensitivity to the fine details of the shape of the background
field which cannot be seen from the graph of the total Casimir
energy. Finally, we consider a system consisting of a valence
fermion in the ground state and find that the most energet-
ically favorable configuration is the one with a soliton of
winding number one, and this conclusion does not hold for
each parity, separately.

1 Introduction

In 1948 Casimir [1] and Casimir and Polder [2], while pre-
senting their work on the forces on neutral atoms and con-
ducting plates, laid the foundations of what is now called the
Casimir effect (for a review on the subject see for example
[3]). The Casimir effect arises from the change in the zero-
point energy of the system [4–8]. This change could happen
when nontrivial boundary conditions are imposed or nontriv-
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ial spatial background fields such as solitons are present. We
shall henceforth refer to these cases as nontrivial cases.

The Casimir energy and the resulting forces have been
investigated for different fields in different geometries and
boundary conditions [9–24]. In some of these investigations
the Casimir forces on the boundaries are also calculated.
The results show that the sign of the force depends on the
type of the field considered, the geometry of the problem,
the boundary conditions imposed, and the number of space-
time dimensions considered (see [25] and the references
therein). The fact that the vacuum energy of quantum fields
diverges both in the free space and nontrivial cases have been
known for many years [26,27]. Many different regularization
schemes have been used to properly subtract the energy of
the free space vacuum from the energy of the vacuum in the
nontrivial case to find the Casimir energy. Sometimes instead
of these direct subtraction methods, various analytic contin-
uation schemes are used, the most popular of which is the
zeta function method [28–34].

Quantitative experimental confirmation of the Casimir
effect became possible after the advent of the high precision
probes in the 1990s. In 1997 Lamoreaux [35,36] conducted
the first successful measurement for the Casimir effect using
a plate and a part of a conducting sphere with a large radius.
Since then, many experimental investigations have measured
the Casimir force for systems with different shapes and
boundary conditions [37–42]. Recently, it has been shown
that the Casimir force can be utilized in the design of non-
contact wear-proof parts of MEMS and NEMS [43–47].

As mentioned above, the zero-point energy can also be
affected by the presence of nontrivial background fields
which are usually chosen to be soliton. In this regard, the
Casimir energy can be considered as the lowest-order quan-
tum correction to the mass of solitons. Also sometimes a
very simple potential such as an electric potential well is
chosen as the background field. This simple choice renders
the problem of vacuum polarization and the Casimir energy
exactly solvable and reveals finer details of these effects [48].
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Some authors compute the Casimir energy as the lowest-
order quantum correction to the mass of the solitons includ-
ing supersymmetric solitons [49–61]. Most of the models
with solitons are not exactly solvable and the Casimir energy
cannot be calculated directly. In such cases, one has to resort
to numerical methods which sometimes can be facilitated by
the use of the indirect methods such as the phase shift method
which relates the derivative of the phase shift with respect to
the momentum to the spectral deficiency in the continuum
states [48,49,58–60,62].

In this paper we choose a Lagrangian describing a Fermi
field coupled to a prescribed pseudoscalar background field,
in (1 + 1) dimensions. The background field is chosen to be
the soliton of the sine-Gordon model. It is well known that
the back-reaction of the fermion on the soliton is small and
it changes the shape of the soliton very slightly [63,64]. This
has motivated us to investigate this coupled fermion–soliton
model with the sine-Gordon soliton as a prescribed back-
ground field. Amongst solitonic models, sine-Gordon model
enjoys a special status due to its intrinsic richness and wide
range of applications in several areas including QCD [65,66]
and condensed matter physics [67]. Since 1958, much work
has been done to phenomenologically describe hadrons and
their interactions using nonlinear field theory [68]. The sine-
Gordon soliton is a low-dimensional analog of the Skyrmion
which is associated with baryons [69]. In solid state physics,
this model appears in diverse fields such as Josephson junc-
tions and its associated magnetism and topological excita-
tions [70–73]. Sine-Gordon type models are also used in
order to understand the vortex dynamics in superconducting
systems [74]. Specially, sine-Gordon solitons appear as vor-
tices in the low energy effective theory of a domain wall in a
U(1) gauge theory with massive charged scalar fields, intro-
ducing the Josephson interaction term between the scalar
fields [75]. Furthermore, the Casimir energy in a double-
boundary sine-Gordon model can be used to investigate the
Josephson current in some systems [76]. Moreover, in soft
condensed matter physics, the compression-induced folding
of a thin elastic sheet lying on a fluid substrate which com-
monly appears in composite structures like biological tissues
and synthetic coating can be solved exactly using the sine-
Gordon model as an integrable one. The connection between
the shape of a fold in a compressed elastic film and the dynam-
ics of the sine-Gordon chain has recently been found [77,78].

More generally, the interaction of fermions with solitonic
backgrounds could produce or affect a variety of interest-
ing physical phenomena such as charge and fermion num-
ber fractionalization [79–83], hadron physics [68,69,84–
86], superfluidity [87,88], superconductivity [89], Bose–
Einstein condensation [90,91], conducting polymers [83,92–
94] and localization of fermions [95–98]. The spectrum of
the fermion can in general be distorted due to the presence
of such a background; bound states can appear and contin-

uum states can change as compared with the free fermion.
As a result, the zero-point energy of the fermion changes and
therefore we encounter the well known Casimir effect. Our
main purpose in this paper is to calculate the Casimir energy
of our model.

Since the equations of motion of the fermion for our model
are not analytically solvable, we solve them using numerical
methods and obtain both bound and continuum scattering
states for the Fermi field. In our model, parity is an exact
symmetry of the system. This gives us the opportunity to
investigate and explore the properties of the Casimir energy
in each parity channel, separately. The bound states are auto-
matically parity eigenstates, since they turn out to be non-
degenerate. For the continuum states, we first compute the
scattering states and then use a very simple and straightfor-
ward prescription to compute the parity eigenstates. For an
alternative method to construct the parity eigenstates from the
scattering states see [59,60]. In this paper, we compare our
results with those of a similar model in which the prescribed
pseudoscalar field has a simple piecewise linear form which
behaves like a soliton. This simple form makes the problem
exactly solvable [99]. We have computed the Casimir energy
of this Simple Exactly Solvable Model (SESM) by subtract-
ing directly the vacuum energies of the system in the pres-
ence and absence of the disturbance [61]. Moreover, we have
already solved an analogous problem with the kink of the
λ�4 as the topologically nontrivial prescribed background
field, but without exploring the properties of the system for
each parity, separately [62]. We have adjusted the parame-
ters of the three models to be the same so that the results
of the three models are comparable, and we compare them
whenever possible. The comparison between these models
helps us to investigate how the functional form of the back-
ground field and the details of its shape affect the results for
each parity channel, as well as the scattering problem. We
have also utilized SESM as a testing ground for our numer-
ical methods. That is, we have applied all of the numerical
methods employed in this paper to the SESM, and a com-
parison with the exact solutions [99] shows that the relative
errors in the numerical results are always less than 10−4. In
this paper we use the phase shifts to compute the Casimir
energy. The phase shifts of the upper and lower components
of Dirac spinors coupled to topologically nontrivial config-
urations are not generically equal. We have devised a pre-
scription to define a unique phase shift for the Dirac spinors
in these cases: We define the phase shift to be the average of
those two phase shifts [100]. We have checked [62,100,101]
the correctness of this prescription in several different cases
using both the weak [102] and the strong [100] forms of
the Levinson theorem. In this paper we also check the con-
sistency of our results with the Levinson theorem for the
phase shifts of the parity eigenstates and also the scattering
states.

123



Eur. Phys. J. C (2014) 74:3020 Page 3 of 11 3020

In Sect. 2 we introduce the model. In Sect. 3 we find the
bound and continuum states and plot samples of them. In
Sect. 4 we focus on the calculation of the Casimir energy by
the use of phase shift method. Also, we check the consistency
of the resulting phase shifts with the weak and strong forms of
the Levinson theorem. We then plot the total Casimir energy
as well as the ones in each parity channel separately, all as a
function of the parameters of the pseudoscalar field. In Sect. 5
we investigate the stability of a system which consists of a
valence fermion present in the ground state, in the presence
of the sine-Gordon soliton. Finally, in Sect. 6 we conclude
with a brief summary.

2 A fermion in the presence of the prescribed
sine-Gordon soliton

The model that we study in this paper consists of a Fermi
field coupled to a prescribed pseudoscalar field, as defined
by the following Lagrangian:

L = ψ̄
(

iγ μ∂μ − Meiφ(x)γ 5
)
ψ, (1)

where all of the expressions are in natural units, h̄ = c = 1,
the external field φ(x) is chosen to be the soliton of the sine-
Gordon model, i.e.φ(x) = (m/

√
λ)

{
tan−1

[
exp(mx)

] − π
}

and λ is the conventional coupling constant of the sine-
Gordon model. The parameters M and m refer to the masses
of the Fermi and pseudoscalar fields, respectively. Through-
out the paper, instead of the parameters m and λ, we use two
important parameters θ0 = m√

λ
and μ = m2√

2λ
, denoting the

value of the soliton at spatial infinity and its slope at x = 0,
respectively. Our purpose is to compute the Casimir energy
of this system. The Casimir energy in the standard approach
is obtained by computing the change in the zero-point energy
of the field due to the presence of the boundary conditions
or the background field. This energy for a Fermi field can be
written as follows (see for example [61,62]):

ECasimir =
∫ +∞

−∞
dx

∫ +∞

0

dp

2π

∑
j=±

(
−

√
p2 + M2

)
ν

j†
p ν

j
p

+
∫ +∞

−∞
dx

∑
i

(
Ei−

bound

)
χ

†
2bi
χ2bi

−
∫ +∞

−∞
dx

∫ +∞

−∞
dk

2π

(
−

√
k2 + M2

)
v

†
kvk

=
∑

i

Ei−
bound −

∫ +∞

0
dk

√
k2 + M2

× [
ρsea(k)− ρsea

0 (k)
] + M

2
. (2)

The functions ν j
p(x) and vk(x) refer to the normalized

fermion wave functions for the continuum states with neg-

ative energy in the presence and absence of the distur-
bance, respectively. The functionsχ2bi (x) are the normalized
fermion wave functions for the bound states with negative
energy and Ei−

bound denote their energies. The M/2 term in the
last line takes into account the contribution of the fermionic
negative-parity half-bound state at E = −M in the free case.
The factor [ρsea(k)− ρsea

0 (k)] is the difference between the
density of the continuum states with the negative energy in
the presence and absence of the disturbance. One usually
refers to the calculation of the Casimir energy using Eq. (2)
as the direct approach.

For exactly solvable systems one can calculate all the nor-
malized continuum wave functions with negative energy in
the presence of the disturbance, ν j

p(x), and all the negative-
energy bound states, χ2bi (x) along with their energies,
Ei−

bound. One can then in principle obtain the Casimir energy
using either one of the two equalities in Eq. (2), though the
calculations could be very difficult and one might need to
calculate the integrals numerically. In a previous paper [99]
we considered a model described by the Lagrangian shown
in Eq. (1) in which the pseudoscalar field φ(x) was pre-
scribed and had a piecewise linear form. That form of φ(x)
along with the sine-Gordon soliton and the kink of the λ�4

model are shown in Fig. 1. In this figure we indicate the
parameters θ0, μ and l, which denote the value of φ(x) at
x = ∞, the slope of the pseudoscalar field at x = 0 and
the common scale of variation for the background fields,
respectively. The piecewise linear form chosen for φ(x) ren-
ders the problem exactly solvable and we are able to obtain
the whole spectrum of the fermion [99]. We refer to this
system as SESM, as mentioned in Sect. 1. For that prob-
lem we have calculated the Casimir energy by the use of
the direct approach [61]. However, for the problem with the
sine-Gordon soliton, the equations of motion are not ana-
lytically solvable. We obtain the spectrum of this system by

Fig. 1 Solid, dashed, and dot-dashed lines show φ(x) for the sine-
Gordon soliton, SESM, and the kink, respectively. The parameters θ0,
μ and l are also shown in the figure, and these are connected by the
relation θ0 = μl
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the use of appropriate numerical methods. Throughout the
paper we compare the results of the three models, wherever
possible.

It is worth noticing that the expressions given for the
Casimir energy in Eq. (2) only contain the negative-energy
states. However, in [61] we showed that the total negative-
and positive-energy densities are exactly the mirror images
of each other for the SESM. Therefore, the Casimir energy
for that model can be computed only from the negative states
or only the positive states, or the average of all of the states
and the results are exactly the same in all cases. Notice that
since all the symmetries of the model with the sine-Gordon
soliton are the same as SESM, the aforementioned argument
is also true for the present model.

3 The fermionic spectrum in the presence
of the sine-Gordon soliton

The fermionic spectrum is usually distorted due to coupling
to a background field, as compared with the free case. In the
presence of the background field spectral deficiencies can
develop in the continua, and also the bound states can appear.
To obtain the distorted fermionic states and their energies in
the presence of the prescribed sine-Gordon soliton, we use the
Dirac equation obtained from the Lagrangian (1). Choosing
the representation γ 0 = σ1, γ 1 = iσ3 and γ 5 = γ 0γ 1 = σ2

for the Dirac matrices, this equation becomes

iσ1∂tψ−σ3∂xψ − M [cosφ (x, t)+ iσ2 sin φ (x, t)]ψ = 0,

(3)

where ψ =
(
ψ1

ψ2

)
. Using the definition ξ(x, t) =

(
ψ1 + iψ2

ψ1 − iψ2

)
= e−i Et

(
ξ1(x)
ξ2(x)

)
, the equations obeyed by

ξ1(x) and ξ2(x) can be written in the following matrix form:

(
i∂x − E i Meiφ(x)

−i Me−iφ(x) −i∂x − E

)(
ξ1

ξ2

)
=

(
0
0

)
. (4)

To obtain the fermionic bound states and their energies, we
use a numerical method called the relaxation method. This
method is used for solving boundary value problems and it
determines the solution by starting with a guess and improv-
ing it, iteratively. We have already used this method for a sys-
tem consisting of a fermion and a pseudoscalar field, where
both fields were considered to be dynamical (not prescribed)
[64]. The fermionic sector and the interaction part were iden-
tical to the Lagrangian given in Eq. (1) and the pseudoscalar
field had dynamics given by the λ�4 model with boundary
conditions appropriate for a topologically nontrivial solu-
tion. That is, we obtained simultaneously the exact fermionic
bound states, their energies and the profile of the solitary
wave, where the zero-order approximation of the latter is the
kink. In the present problem the number of the coupled first-
order ODEs is fewer by two, since the background field has
no dynamics. In our problem we use the fermionic bound
states and their energies for the SESM [99] as initial guesses.
When using numerical methods, we rescale all the param-
eters and variables with respect to the mass of the fermion
(M), so as to make them dimensionless. Notice that, in all

the results and graphs which follow, M = 1, m =
√

2μ
θ0

and

λ = 2μ2

θ4
0

.

Figure 2 shows the bound state energies obtained from the
numerical results. The left graph shows the bound energies
as a function of θ0 when μ = 10. The right graph shows
the bound state energies of the fermion as a function of μ at
θ0 = π , i.e. a soliton with winding number one (for a review
on solitons see for example [103]). In both graphs we also
depict the bound state energies of the fermion for SESM and
the model with the kink, for comparison.

Now, we focus on the continuum states. We first obtain the
fermion continuum wave functions for a scattering process

Fig. 2 The energies of the bound states of the fermion. The left graph
shows the bound state energies as a function of θ0 at μ = 10 and the
right graph shows the bound state energies as a function ofμ at θ0 = π .

In both graphs solid, dashed, and dot-dashed lines are for the models
with sine-Gordon soliton, SESM, and the kink, respectively. The ±
signs indicate the parity of each bound state
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in which a plane wave enters the scattering region from the
left or right. Then, using the scattering wave functions, we
construct the parity eigenfunctions which satisfy the parity
condition Pξ±(x, t) = −σ2ξ

±(x, t) = ±ξ±(−x, t).
The equations of motion for the real and imaginary parts

of ξ1(x) = η1(x)+ iη2(x) and ξ2(x) = η3(x)+ iη4(x), can
be obtained from Eq. (4) and are as follows:

η
′
1 + cosφ (x) η3 − Eη2 − sin φ (x) η4 = 0, (5)

η
′
2 + cosφ (x) η4 + Eη1 + sin φ (x) η3 = 0, (6)

η
′
3 + cosφ (x) η1 + Eη4 + sin φ (x) η2 = 0, (7)

η
′
4 + cosφ (x) η2 − Eη3 − sin φ (x) η1 = 0. (8)

We cannot solve this set of equations analytically for the
form chosen forφ(x), i.e. the sine-Gordon soliton. Therefore,
we use an appropriate numerical method to find the scat-
tering wave functions. We solve this set as an initial value
problem and find the wave functions for the whole inter-
val (−∞,+∞), using the Runge–Kutta–Fehlberg method of
order six. Since the form chosen for φ(x) in SESM is similar
to the sine-Gordon soliton and is identical to it for |x | � l,
where l is the scale of variation of these fields shown in Fig. 1,
we can take advantage of the solutions of SESM to deter-
mine the initial boundary values for solving the equations.
We already have all the solutions of this model, including
the scattering wave functions [99,100], and this allows us to
immediately calculate ηi s for any set of parameters {θ0, μ,
k}, where E = ±√

k2 + M2. The initial conditions can be
alternatively obtained by solving Eqs. (5–8) for x � l where
φ(x) = θ0.

Since the set of Eq. (4) is a linear set for the Fermi field, any
linear combination of its solutions is also a solution. We take
advantage of this fact to find the continuum parity eigen-
functions. We denote the independent scattering solutions
where the “incident” wave is on the left (right) by ξ scat.

k (x, t)
(ξ scat.−k (x, t)). We combine linearly these two solutions and
determine the coefficients such that the combined solutions
are simultaneous eigenstates of the Hamiltonian and the par-
ity operators. The results are

ξ±
k (x, t) = ξ scat.

k (x, t)± ξ scat.−k (x, t)

= e−i Et

(
η±

1 (x)± iη±
2 (x)

η±
3 (x)± iη±

4 (x)

)
= e−i Etξ±

k (x), (9)

where the ± superscript denotes the parity. From the struc-
ture of this equation we can conclude that ξ scat.−k (x, t) =
Pξ scat.

k (x, t), and a simple check verifies that this is indeed
the case. For an alternative method of constructing the par-
ity eigenstates see [59,60]. We can draw some interesting
conclusions from these findings, once we factor out eikx

which is the common factor for the incoming and outgoing
waves. Then the oscillatory factor for reflected wave would
be e−2ikx . That is we define new variables as follows:

y(x) = e−ikxξ(x) =
(

y1(x)+ iy2(x)

y3(x)+ iy4(x)

)
.

The yi (x)s are shown in Fig. 3 whence we can immedi-
ately conclude that the sine-Gordon soliton, being completely
reflectionless for elementary bosons, is almost reflectionless
for the fermions. This property is also true for the kink [62].

Fig. 3 The graphs of yi (x)s as
functions of the spatial variable
x , for the parameters θ0 = π ,
μ = 10, k = 3 and
E = +√

k2 + M2. Solid and
dashed lines show yi (x)s for our
model and SESM, respectively.
Note that the sine-Gordon
model is almost reflectionless
for the fermions
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4 The calculation of the Casimir energy using the phase
shift method

Now, having the whole spectrum of the system, we can cal-
culate the Casimir energy and its parity decomposition and
explore them in detail. We shall use the phase shift method
derived from the second part of Eq. (2) to calculate these
energies.

4.1 The phase shift method

Our starting point is the following relation which holds for
each of the positive and negative continua separately:

ρ(k)− ρ0(k) = 1

π

d

dk
δ(k). (10)

The quantity ρ(k)−ρ0(k) is the difference between the den-
sity of the continuum states in the free and interacting cases
and δ(k) denotes the scattering phase shift in the correspond-
ing continuum. Moreover, if the system possesses the parity
symmetry, Eq. (10) holds for each parity channel in each of
the continua, separately. Substituting Eq. (10) into the second
term of the second expression for the Casimir energy given
in Eq. (2) and integrating by parts, we obtain

−
∫ +∞

0
dk

√
k2 + M2

[
ρsea(k)− ρsea

0 (k)
]

= −
∫ +∞

0

dk

π

√
k2 + M2 d

dk

[
δsea(k)− δsea(∞)

]

=
∫ +∞

0

dk

π

k√
k2 + M2

[
δsea(k)− δsea(∞)

]

+ 1

π
M

[
δsea(0)− δsea(∞)

]
. (11)

In the first equality we have subtracted a zero term( d
dk δ

sea(+∞)
)

from the original one. Now we can compute
the second term in the expression of the Casimir energy using
the phase shifts.

Comparing the coefficients of eikx on the left- and right-
hand sides of the scattering region, we can obtain the scatter-
ing matrix element, which is related to the scattering phase
shift as S(k) = eiδ(k). An analogous relation holds for each
parity channel, separately, i.e. S±(k) = e2iδ±(k). However, it
is well known that the phase shifts of the upper and lower
components are generically not equal, and this is indeed the
case when the Fermi field is coupled to a topologically non-
trivial configuration. We have devised a simple prescription
to define a unique phase shift for the Dirac spinor [100] and
have tested its validity using both the strong and the weak
forms of the Levinson theorem [62,100,101]. We shall use
this prescription in this paper, and this will be yet another test.
In Fig. 4 we plot the phase shifts for our system as a func-
tion of k, for the parameters θ0 = π and μ = 10. The right

graphs show the δsky(k) and δsea(k), i.e. the phase shift for
the scattering states with the positive and negative energies
±√

k2 + M2 and the left graphs show δ
sky
± (k) and δsea± (k),

i.e. the phase shift for both parity eigenstates with the posi-
tive and negative energies. In these graphs we also depict the
phase shift of SESM and the kink with the same parameters,
for comparison.

It is easy to check that the phase shifts depicted in Fig. 4
are consistent with both the weak [102] and the strong [100]
forms of the Levinson theorem. Moreover, δsea(k → +∞) =
−θ0 and δsea± (k → +∞) = −θ0/2, which are consistent
with the results of the adiabatic method of Goldstone and
Wilczek [81].

4.2 The Casimir energy

We now use Eqs. (2) and (11) and the information as regards
the bound states shown in Fig. 2 to calculate the Casimir
energy and its parity decomposition for different values of the
parameters of the prescribed sine-Gordon soliton. In Fig. 5
we present the Casimir energy as a function of θ0 forμ = 10
for the model with the sine-Gordon soliton, SESM and the
kink, by the solid, dashed, and dot-dashed lines, respectively.
As before, the left and right graphs in this figure show the
Casimir energy for each parity channel and the total Casimir
energy, respectively. As can be seen, the total Casimir energy
is on the average an increasing function of θ0, i.e. the cumu-
lative moving average of the slope is always positive, for all
three models and there are two mild maxima in the form of
cusps in each graph in the range of θ0 shown. Comparing
these graphs with the left graph of Fig. 2, we conclude that
these maxima occur when the bound state energies cross the
line of E = 0. For our model in the interval 0 � θ0 � 2π
a positive-parity bound state crosses E = 0 at θ0 ≈ 0.625π
and a negative-parity one crosses E = 0 at θ0 ≈ 1.875π . The
corresponding values for the SESM are θ0 ≈ 0.576π and
θ0 ≈ 1.596π . From the left graph of Fig. 5 it can be seen that
the Casimir energy for both parities has a mild cusp occurring
where the levels with the corresponding parity cross the line
of E = 0, as expected. As before, the total Casimir energy in
the right graph is the sum of the Casimir energies for ± par-
ities in the left graph. Notice that the Casimir energy in each
parity channel for the SESM contains small amplitude oscil-
lations, while those of the sine-Gordon soliton are smooth.
These oscillations are repercussions of the sharp edges of
the pseudoscalar field of the SESM model shown in Fig. 1.
We have checked this conjecture by plotting these graphs for
the same value of θ0 (=π ) but for a smaller value of μ, thus
reducing the sharpness of the edges. In that case the ampli-
tude of oscillations becomes smaller and their “wavelength”
becomes longer. It is interesting to note that in either case the
total Casimir energy is devoid of such oscillations.
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Fig. 4 The graphical representation of phase shifts of the continuum
states with positive and negative energies, for μ = 10 and θ0 = π .
The left graphs: the phase shift of the ± parity eigenstates, δsky

± (k)
and δsea± (k). The right graphs: the phase shifts of the scattering states,
δsky(k) and δsea(k). The ± signs in the left graphs indicate the parity of

the corresponding eigenstates. In these graphs the results for the models
with the sine-Gordon soliton, SESM, and the kink are shown by solid,
dashed, and dot-dashed lines, respectively. The phase shifts for the kink
are available only for the scattering states, and as is apparent from the
right graphs, they are very close to those of the sine-Gordon model

Fig. 5 The graphical representation of the Casimir energy as a function
of θ0, the value of the soliton at spatial infinity, atμ = 10. The left graph
shows the Casimir energy for the ± parity channels separately for the
models with the sine-Gordon soliton and SESM with solid and dashed

lines, respectively. The right graph shows the total Casimir energy for
the models with the sine-Gordon soliton, SESM, and the kink with solid,
dashed, and dot-dashed lines, respectively

In Fig. 6 we plot the Casimir energy as a function of μ
at θ0 = π , i.e. a soliton with winding number 1, for our
model, SESM, and the kink by the solid, dashed, and dot-
dashed lines, respectively. The left and right graphs of this
figure show the Casimir energy for each parity and the total
Casimir energy, respectively. The parity of states in the left
graph is denoted by the ± signs. As can be seen from the

right graph, in all three models, there is a sharp maximum
occurring when the bound state energy crosses the line of
E = 0. From the right part of Fig. 2 we can see that for our
model the positive-parity bound state energy crosses the line
of E = 0 atμ ≈ 4.000, while for SESM this crossing occurs
at a lower value of the slope, i.e.μ ≈ 2.957. The left graph of
Fig. 6 confirms the fact that these bound states have positive
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Fig. 6 The graphical representation of the Casimir energy as a function
ofμ, the slope of the soliton profile at x = 0, for θ0 = π . The left graph
shows the Casimir energy for the ± parity channels separately for the
models with the sine-Gordon soliton and SESM with solid and dashed
lines, respectively. The right graph shows the total Casimir energy for

the models with the sine-Gordon soliton, SESM, and the kink with
solid, dashed, and dot-dashed lines, respectively. In the zoomed box
we focus on small values of μ to show the details of the maximum and
the differences between the results of all the three models

parity. Also, the value of the total Casimir energy is lower in
the case of the sine-Gordon soliton as compared to SESM.
The largest difference between the graphs of these two mod-
els in the total Casimir energy occurs around the maximum,
as is shown in the zoomed box of the right graph. In all these
models when the slope of φ(x) at x = 0 decreases to zero,
all of the Casimir energies approach zero, despite the resid-
ual nontrivial boundary conditions. Also, the total Casimir
energy for all three models has the same limit when the slope
of the pseudoscalar field tends to infinity. This limit is zero
at θ0 = π , i.e. when we have a proper soliton with wind-
ing number one. However, for other values of θ0 the Casimir
energy is in general nonzero, whenμ → ∞ in all three mod-
els (see Eq. (3.9) in [61]). One can indeed calculate the total
Casimir energy by using the scattering phase shift and the
whole set of bound states of the fermion, or equivalently by
adding the Casimir energy obtained for each parity using the
phase shift of the parity eigenstates and the corresponding
bound states.

We now explain the behavior of the Casimir energy in
each parity channel, separately. At θ0 = 0, i.e. the free
case, there is a threshold bound state with positive parity at
E = +M and one with negative parity at E = −M . There-
fore, at this point the spectral density in the Dirac sky (sea)
is formally deficient by 1/2 unit with positive (negative) par-
ity. As θ0 increases infinitesimally, one full positive-parity
bound state separates from the Dirac sky, and the negative-
parity half-bound state sinks into the Dirac sea (see Fig. 2).
As a result, for an infinitesimal value of θ0, the Dirac sky
has one unit of spectral deficiency with positive parity and
the Dirac sea has no spectral deficiency. As θ0 increases,
Goldstone and Wilczek [81] showed that one unit of spectral
deficiency develops in the Dirac sea when θ0 → π due to
the ever-present adiabatic contribution to the vacuum polar-
ization. This one unit of spectral deficiency is comprised
of 1/2 positive-parity and 1/2 negative-parity contributions.

Analogously, one unit of adiabatic spectral surplus develops
in the Dirac sky [99] as θ0 → π , alongside the 1/2 unit
of positive-parity spectral deficiency already present. Now
let us concentrate on the positive-parity contribution to the
Casimir energy shown in the left part of Fig. 5. As θ0 → π

half a unit of positive-parity spectral deficiency develops in
the Dirac sea and the corresponding Casimir energy increases
from zero. At θ0 = 0.625π the positive-parity bound state
crosses E = 0 and starts reducing the Casimir energy. This
explains the cusp in Fig. 5. As θ0 increases further toward
π , these two contributions continue to produce counteract-
ing effects, and the negative slope after the cusp indicates
that the effect of the full bound state descending domi-
nates the developing 1/2 unit of spectral deficiency. Next,
we analyze the behavior of the negative-parity contribution
to the Casimir energy. As shown in reference [48], when a
bound state enters a continuum, the spectral distortion that
is produces on the average ascends in the momentum space.
This explains the initial negative slope of the negative-parity
Casimir energy. On the other hand the negative-parity adia-
batic spectral deficiency developing in the Dirac sea produces
a positive contribution to the Casimir energy. The graph of
the Casimir energy shows that this effect dominates the for-
mer for θ0 � π/2. Close to θ0 = 2π a second bound state
with negative parity crosses the line E = 0, producing a
cusp in the graph. The total Casimir energy shown on the
right part of Fig. 5 is the sum of two parity contributions.
Analogous explanations can be made for the results shown
in Fig. 6, using the fact that the positive-parity bound state
which joins the Dirac sea for θ0 � π and the negative-
parity bound state which separates from the Dirac sky for
θ0 � π when μ = 10, both become threshold bound states
at θ0 = π , as μ → ∞. An interesting conclusion which can
be observed in Fig. 6 is that although the total Casimir energy
goes to zero as μ → ∞, the individual parity contributions
do not.
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Fig. 7 The left graph shows the total energy (the sum of the energy
of a valence fermion in the lowest bound state and the Casimir energy)
for positive and negative parities, separately, as a function of θ0 when
μ = 10. The right graph shows the total energy. Notice that the system

attains its lowest energy at θ0 = π . Solid, dashed, and dot-dashed lines
represent the results for the model with the sine-Gordon soliton, SESM
and the kink, respectively

Fig. 8 The left graph shows the total energy (the sum of the energy
of a valence fermion in the lowest bound state and the Casimir energy)
for positive and negative parities, separately, as a function of μ when

θ0 = π . The right graph shows the total energy. Solid, dashed, and dot-
dashed lines represent the results for the model with the sine-Gordon
soliton, SESM and the kink, respectively

5 Stability of the solutions

In this section we consider a system consisting of a valence
fermion in the ground state and explore the effect of the
Casimir energy on its total energy. The total energy for such
a system is the sum of the Casimir energy and the energy of
the valence fermion. Notice that the energy of the valence
fermion should not be added when this energy is negative,
since it has already been taken into account in the Casimir
energy. In Fig. 7 we plot the total energies along with their
parity decomposition as a function of θ0 for fixed μ = 10.
Also, Fig. 8 shows the total energies along with their par-
ity decomposition as a function of the slope μ of the pseu-
doscalar fields while their asymptotic values are fixed at
θ0 = π . In both figures solid, dashed, and dot-dashed lines
refer to the results for the model with the sine-Gordon soliton,
SESM, and the kink, respectively. Using the total Casimir
energy shown in the right graphs of Figs. 7 and 8, we are
able to explore the stability of this system. It should be men-
tioned that since the ground state of the fermion has posi-

tive parity, the total energy for the negative parity has only
one contribution coming from the Casimir energy for the
negative-parity eigenstates. As can be seen from Fig. 7, all
three models have minima occurring at θ0 ≈ π , which cor-
responds to a soliton with winding number one. This means
that not only this configuration is energetically favorable, but
also it is stable against small fluctuations in the parameters
of the background field when this field is a soliton with a
proper winding number, as expected. Note that this stability
is due to the combined effects of both parities. The graphs
of the total energies as a function of μ show no particular
preference of the system for that parameter.

6 Conclusion

In this paper we have computed the Casimir energy of a Fermi
field in the presence of a sine-Gordon soliton which is treated
as a prescribed background field. This model is not exactly
solvable and we have used numerical methods to obtain the
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bound as well as the continuum scattering states. We have
presented and used a very simple procedure to construct the
continuum parity eigenstates from the scattering states. We
have then used a prescription we had introduced earlier to
calculate unique values for the phase shifts of the scattering
as well as parity eigenstates, and to ascertain the resulting
phase shifts, we have checked their validity using both the
weak and the strong forms of the Levinson theorem. Having
the complete spectrum of the system, we have used the phase
shift method to compute the total Casimir energy, as well as
the Casimir energy for each parity channel separately, and
plotted them as functions of the parameters of the model.
These parameters include the value of the background field
at spatial infinity (θ0) and its slope at x = 0 (μ) which can also
be considered as a measure of the inverse scale of variation of
the background field. The total Casimir energy is the sum of
the Casimir energy for each parity channel. Throughout the
paper we have compared our results with those of SESM and
a system with the kink of the λφ4 model instead of the sine-
Gordon soliton, although for the kink only the results for total
quantities are available and not their parity decomposition.

Our specific findings and conclusions are as follows. The
graphs of the total and positive-parity Casimir energy as a
function of μ have sharp maxima at the value of μ where
the Fermi field has a positive-parity zero mode, and all of the
Casimir energies go to zero for μ → 0. However, although
the total Casimir energy goes to zero for μ → ∞ (extreme
nonadiabatic regime) when θ0 = nπ , the parity decomposed
ones do not, in compliance with the vacuum polarization
results [62]. The total Casimir energy in all three models is
always positive and is on the average an increasing func-
tion of θ0. In the graphs of the total and parity decomposed
Casimir energies as a function of θ0, there are cusps when-
ever a bound state energy level with the corresponding parity
crosses the line E = 0. The parity decomposed graphs for
the SESM show oscillations which are absent in all other
graphs including the total Casimir energy for the SESM.
These oscillations are repercussions of the sharp edges of
the background profile and indicate the sensitivity of only
the parity decomposed Casimir energies to such fine details.
Moreover, we have studied the stability of the system in the
presence of a valence electron in the ground state. We have
shown that the total energy has a minimum for a winding
number one configuration in all three models. However, the
individual parity channels do not have this property and only
their sum does. We have also found that the sine-Gordon soli-
ton, being completely reflectionless to elementary bosons, is
almost reflectionless to elementary fermions, and this is a
property it shares with the kink. Comparing the effects of the
three background fields, we conclude that the distortion of
the spectrum of the Fermi field in ascending order is due to
the sine-Gordon soliton, the kink, and the SESM, although
the first two are very close.
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