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Abstract Recent Planck measurements show some CMB
anomalies on large angular scales, which confirms the early
observations by WMAP. We show that an inflationary model,
in which before the slow-roll inflation the Universe is in a
superinflationary phase, can generate a large-scale cutoff in
the primordial power spectrum, which may account for not
only the power suppression on large angular scales, but also
a large dipole power asymmetry in the CMB. We discuss an
implementation of our model in string theory.

1 Introduction

Recently, the Planck collaboration has reported a hemispher-
ical power asymmetry in the CMB [1], which conformed the
result of WMAP, but it has better precision. Such asymmetry
has also been found by estimating the power spectrum in the
two hemispheres by using the quadratic maximum likelihood
[2]. In addition, the Planck collaboration has also reported a
power deficit in the low-l CMB power spectrum at l � 40
[1] with the statistical significance 2.5 ∼ 3σ , which is not
concordant with the Planck best-fit model, although the data
points are still consistent well with the cosmic variance.

The Planck data have larger statistical significance than the
WMAP data, which makes it difficult to attribute the anoma-
lies to the foregrounds, e.g. [3,4]. Thus it seems that these
anomalies should have an underlying and common physical
origin, which deserves to be considered seriously.

The CMB power asymmetry might be modeled as a dipole
modulation of the power [5,6], see also [7], which results
from a superhorizon perturbation crossing the observable
Universe [8,9]. This modulation can be explained in light
of the spatial change of the spectrum of primordial curvature
perturbation R,
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P1/2
R (k, x) =

(
1 + A(k)

p̂ · x
xls

)
P1/2

R (k), (1)

where p̂ is the unit vector of the dipole modulation direction,
xls is the distance to the last scattering surface, PR(k) is the
power spectrum with index nR(k), and A(k) is the amplitude
of modulation, which is [9,10]

A(k) = |∇P1/2
R (k, x)|
P1/2

R
xls

= (1 − ε)

[
nR(k)− 1

2

]
kLxlsP1/2

R,L, (2)

where PR,L is the amplitude of the power spectrum of
the modulating mode kL, and ε = −Ḣ/H2. We have
(kL xls)P1/2

R,L � 0.1 [8,9,11,12].
In single field inflationary scenario, the spectrum ninf −

1 ∼ 0.04 is almost scale invariant. Thus on large angular
scales the amplitude of the modulation is too small to fit the
observation [8,9]. In addition, the almost scale invariance
of the inflationary spectrum also fails to explain the power
deficit on large angular scales.

However, it could be observed that a large amplitude of the
modulation consistent with the observations actually requires
the breaking of the scale invariance of power spectrum on
large angular scales, while simultaneously such a breaking
also helps to explain the power suppression on corresponding
scales, e.g. [10]. In this angle of view, the anomalies on large
angular scales may be a hint of the pre-inflationary physics,
which might be relevant with the initial singularity, e.g. [13–
16].

Here, we will show that an inflationary model, in which
before the slow-roll inflation the Universe is in a superin-
flationary phase, can generate a large-scale cutoff in the pri-
mordial power spectrum, which may account for not only the
power suppression on large angular scales, but also a large
dipole power asymmetry in the CMB.

It is generally thought that the pre-inflationary physics
ought to be controlled by a fundamental theory, e.g. string
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theory. How to embed the inflationary scenario into string
theory has been a significant issue, which has been stud-
ied intensively; see Reference [17]. Thus it is intriguing and
might be naturally expected that a stringy mechanism of infla-
tion could give rise to the CMB anomalies on large angular
scales, e.g. [4,18] with a string landscape, and also [19,20]
with a fast-roll phase in fiber inflation [21]. For how to involve
the degrees of freedom of the standard model; see e.g. Ref-
erence [22,23]. We will discuss an implementation of our
model in string theory, based on References [24,25].

2 The modulating mode from a superinflationary phase

We first will calculate the primordial perturbation generated
in such an inflationary model, and identify the corresponding
modulating mode from a superinflationary phase.

The equation of the curvature perturbation R in momen-
tum space is

u′′
k +

(
c2

s k2 − z′′

z

)
uk = 0, (3)

after uk ≡ zRk is defined, where ′ is for the derivative with

respect to the conformal time η = ∫
dt/a, z ≡ a

√
2M2

Pε/cs .

We have c2
s = 1 for a canonical scalar field.

The Universe initially is in a superinflationary phase with
εPre−inf ∼ −O(1); hereafter, it will get into an inflationary
phase with εinf � 1. We will neglect the matching details for
simplicity. Thus in conformal time, after adopting an instan-
taneous matching, we have

a � a0√
1 − 2H0η

, for the superinflation

a0

1 − H0η
, for the inflation, (4)

where η < 0 in the superinflationary phase and η > 0 in
the inflationary phase, respectively, and a = a0 for η = 0
is set, H0 is the comoving Hubble length at matching time
η = 0, which sets the inflationary energy scale by Hinf =
H0/a0. Here, εPre−inf = −1 is applied. In principle, another
value with |εPre−inf | � 1 may also be used, which, however,
hardly would alter the result qualitatively. The evolution of
the superinflationary phase with arbitrary ε < 0 and the
primordial perturbation generated have been studied earlier
in Reference [26]. The case with ε � −1 corresponds to the
slow expansion scenario of the primordial universe, which
has been proposed earlier in Reference [27] and investigated
in detail in Reference [28–30].

When k2 	 z′′
z , the perturbation is deep inside its horizon,

we have uk ∼ 1√
2k

e−ikη. In the superinflationary phase,

z′′

z
� 3H2

0

(1 − 2H0η)2
. (5)

When k2 � z′′
z , the solution of Eq. (3) is

uk =
√
π(1 − 2H0η)

8H0
H (1)

1

(
−kη + k

2H0

)
, (6)

where H (1)
1 is the first-order Hankel function of the first kind.

In the inflationary phase,

z′′

z
� 2H2

0

(1 − H0η)2
. (7)

When k2 � z′′
z , i.e. −kη + k/H0 � 1, the solution of

Eq. (3) is

uk = √−kη

√
1 − 1

H0η

×
(

C1 H (1)
3/2

(
−kη + k

H0

)
+ C2 H (2)

3/2

(
−kη + k

H0

))
,

(8)

where H (1)
3/2 is the 3/2th-order Hankel function of the first

kind, H (2)
3/2 is the 3/2th-order Hankel function of the second

kind, C1, C2 ∼ 1/
√H0 are only dependent on k.

We require that all physical quantities continuously pass
through the matching surface. The continuity of the curvature
perturbation gives

C1 = iπe−ik/H0

16
√H0

(
1 − H0

k
i

)[
H (1)

0

(
k

2H0

)
− H (1)

2

(
k

2H0

)]

−πe−ik/H0

8
√H0

(
1 − 2H2

0

k2 − 2H0

k
i

)
H (1)

1

(
k

2H0

)
, (9)

C2 = − iπeik/H0

16
√H0

(
1 + H0

k
i

)[
H (1)

0

(
k

2H0

)
− H (1)

2

(
k

2H0

)]

−πeik/H0

8
√H0

(
1 − 2H2

0

k2 + 2H0

k
i

)
H (1)

1

(
k

2H0

)
, (10)

where H (1)
0 is the zeroth-order Hankel function of the first

kind and H (1)
2 is the second-order Hankel function of the first

kind.
Thus the power spectrum of R is

PR = k3

2π2

∣∣∣∣uk

z

∣∣∣∣
2

= P inf
R

2

π
k |C1 − C2|2 , (11)

where P inf
R = H2

inf
4π2 M2

P εinf
is that of the standard slow-roll

inflation, which may has a slight red spectrum consistent
with the observation, and C1 and C2 are determined by Eqs.
(9) and (10), respectively. The spectrum index of R is nR =
ninf + d ln (k|C1−C2|2)

d ln k .
In Reference [31], the perturbation from a superinfla-

tionary phase was also calculated. However, it is assumed
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that before the superinflationary phase a nonsingular bounce
appears, which is not required here.

Here, H0 is the comoving Hubble length at matching sur-
face η = 0. The modulating mode corresponds to that on
large scales k � H0, which is generated during the superin-
flationary evolution.

We may expand the Hankel functions in terms of k � H0

and have

Pk<H0
R � P inf

R
2k

πH0

(
1 + k2

12H2
0

ln
k

H0

)2

∼ k

H0
. (12)

The details of the calculations are given in the appendix. Thus
the spectrum is strongly blue tilt.

Meanwhile, at intermediate and small angular scales, i.e.
k 	 H0, we have

Pk>H0
R � P inf

R
(

1 − 3H0

8k
sin

(
2k

H0

))
. (13)

Thus the spectrum is almost scale invariant but modulated
with a small oscillation, which is the standard result of slow-
roll inflationary evolution. We plot PR in Eq. (11) in Fig. 1,
which is consistent with our analytical result. Here, it is just
the superinflationary evolution that brings the modulating
mode with 1−εPre−inf � 1 and nR −1 � 1 on large angular
scales.

In Reference [10], a slightly similar spectrum has been
found for a bouncing inflation model, in which before the
slow-roll inflation the Universe is in a contracting phase; see
Reference [13,14] for an earlier study.
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Fig. 1 Best-fit primordial power spectrum of curvature perturbations
for the pure power law (dashed) and our model (solid) using Planck+WP
data

3 The CMB angular power spectrum with Planck

We will show the fit of our model to the CMB TT spectrum,
and also the corresponding signals in the TE and EE power
spectra.

The slow-roll inflationary spectrum P inf
R in Eq. (11) may

be parameterized as a power law withP inf
R = Ainf(k/k0)

ninf−1,
where Ainf is the amplitude of perturbation; see [32] for pos-
sible features in the primordial power spectrum and [33–
35] for the general shape reconstructed from the CMB data.
We follow Reference [1] and choose the pivot scale to be
k0 = 0.05 Mpc−1, roughly in the middle of the logarithmic
range of scales probed by Planck.

We assume that the late-time cosmology is the standard flat
�CDM model described by four free cosmological param-
eters: �bh2, �ch2, �s and τ . Here h is the dimensionless
Hubble parameter such that H0 = 100 h km s−1 Mpc−1 (not-
ing that here H0 is not related with the cutoff scale H0),�bh2

and �ch2 are the physical baryon and dark matter densities
relative to the critical density at the present day, respectively,
�s is the ratio of the sound horizon to the angular diame-
ter distance at the photon decoupling, and τ is the Thomson
scattering optical depth due to reionization.

We modify the numerical Boltzmann code CAMB [36]
to calculate the lensed TT, TE, EE power spectra and two-
point correlation function, and show the results in Fig. 2.
The blue dashed curves show the pure power law while the
black solid curves show our model (11) with the best-fit
value of ln(H0/Mpc−1) = −7.47. We see that the TT, TE,
and EE spectra for our model are suppressed in the range
l < 6, compared to the pure power law. Since the corre-
sponding signals are induced in the TE and EE spectra, the
ongoing Planck polarization data are expected to improve
the constraints on the model parameter H0. As shown in
[37], the polarization data can be used to test the parity
asymmetry of the CMB pattern. Note that there is a small
bump around l ∼ 10 in the TT spectrum due to oscilla-
tions of the primordial power spectrum at large scales. The
predicted two-point correlation function at θ > 50◦ fits the
Planck data much better than the pure power-law spectrum
[38,39].

We use the Planck CMB temperature likelihood [1] sup-
plemented by the WMAP large-scale polarization likelihood
[40] (Planck+WP). The Planck temperature likelihood con-
sists of the high-l TT data (50 ≤ l ≤ 2,500) and the low-l
TT data (2 ≤ l ≤ 49). Because of contributions to the multi-
frequency spectra from unresolved radio point sources, cos-
mic infrared background, Sunyaev–Zeldovich effects, and
calibration and beam uncertainties, the Planck high-l like-
lihood includes 14 nuisance parameters, which should be
marginalized in the analysis. As discussed in [1], the large-
scale E-mode polarization data is important for constraining
reionization. Hence we also use the 9-year WMAP large-
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Fig. 2 Best-fit TT (upper left), TE (lower left), EE (lower right) power spectra, and two-point correlation function (upper right) for the pure power
law (dashed) and our model (solid) using Planck+WP data. The red points show the Planck data with 1σ errors

scale polarization likelihood including the TE, EE, and BB
spectra in the range 2 ≤ l ≤ 23.

We use the Markov Chain Monte Carlo sampler as imple-
mented in the CosmoMC package [41] to construct the pos-
terior parameter probabilities. Since the Planck high-l like-
lihood includes many nuisance parameters which are fast
parameters, a new sampling method for decorrelating fast
and slow parameters is adopted in our analysis to efficiently
scan the parameter space [42]. We impose a flat prior on the
logarithm of H0 in the range [−12,−4]. For the other cosmo-
logical parameters, prior ranges are chosen to be much larger
than the posterior. For the Planck+WP likelihood we find the
best-fit value of ln(H0/Mpc−1)=−7.47 with −2 ln Lmax =
9,803.0. This means that our model can improve the fit to the
data with −2� ln Lmax = −4.8 with respect to the standard
power-law model. However, a two-parameter exponential-
form cutoff of the primordial power spectrum improves the fit
only with −2� ln Lmax = −2.9 reported in [43]. The reason
is that the small bump in the temperature spectrum induced
by oscillation of primordial power spectrum improves the fit
to the data. Figure 3 shows the marginalized posterior distri-
butions for H0 from the Planck+WP data, which illustrates
the asymmetric shape of the likelihood functions.
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Fig. 3 Marginalized posterior distributions for H0 from the
Planck+WP data

Here, since nR − 1 � 1 on large angular scales and
nR −1 � 0 on small angular scales, the running dnR/d ln k
of nR is negligible on corresponding scales. The strongly
blue-tilt spectrum on large angular scales implies a large-
scale cutoff in the primordial power spectrum. However, due
to the integrated Sachs–Wolfe effect, the CMB TT angular
power spectrum does not show a sharp cutoff on correspond-
ing scales; see the upper-left panel in Fig. 2.

The strongly blue tilt on large angular scales will bring
about a large dipole power asymmetry on corresponding
scale. In light of Eq. (2), since nR−1 � 1 and εPre−inf � −1,
we have A(k) < 0.1 for (kL xls)P1/2

R,L � 0.1, which may
explain the hemispherical power asymmetry in the CMB,
reported by the Planck collaboration. While since on small
angular scales nR − 1 � −0.04, which is that in the slow-
roll inflationary phase, we have A(k) < 0.001, which may
be consistent with the constraint from the SDSS sample of
quasars [44] and also [45]. Thus our scenario accounts not
only for the power suppression on large angular scales, but
also for a large dipole power asymmetry in the CMB.

Recently, some explanations appeared which attempted to
provide a mechanism to the anomalies, [9,11,12,18,46–51]
and also [52]. However, most of them involved only the dipole
power asymmetry in CMB, not the lack of power on large
angular scales. By contrast, our model not only generates
the power asymmetry but also a suppression of power on
large angular scales; see also [10] for a bouncing inflationary
model.

The power suppression on large angular scales has also
been implemented in fiber inflation [19–21], and also [15,16]
for brane SUSY breaking models [53–55], and [56,57] for
the punctuated inflation. However, how to explain the dipole
power asymmetry in the CMB was not illustrated in these
studies.

4 An implementation in string theory

How to embed such an inflationary model into string the-
ory is interesting. We will discuss an implementation of our
model in string theory. In warped compactifications with the
brane/flux annihilation [58], the effective potential control-
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ling the relevant evolution may potentially support a cosmo-
logical inflation [24,25]. However, we find that there may be
a superinflationary phase before the slow-roll inflation.

In a ten dimensional CY manifold with a warped KS
throat, the metric of the warped throat is

ds2 = 1√
f (r)

ds2
(4) +√

f (r)(dr2 + r2ds2
(5)) (14)

for r < r∗, where r is the proper distance to the tip of the
throat, ds2

(5) is the angular part of the internal metric, and
f (r) is the warp factor, which has a minimal value at r0

and is determined by β ≡ r0
R ∼ e− 2πK

3gsM , in which R4 =
27π

4 gs Nα′2, N equals the product of the fluxes M and K for
the RR and NSNS three-forms, respectively, gs is the string
coupling and α′ is set by the string scale. When r > r∗, this
metric can be glued to the metric of the bulk of the compact
space, which is usually taken to be a CY manifold. When
r0 < r < r∗, f (r) is approximately f (r) = ( R

r )
4.

We follow Reference [58]. When p(� M) D3-branes sit
at the tip of KS throat, the system is a nonsupersymmetric
NS5-brane “giant graviton” configuration, in which the NS5-
brane warps a S2 in S3, and carries p unites flux, which
induces the D3-charge. S2 is inclined to expand as a spherical
shell in S3, which may be parameterized by an angle 0 �
ψ � π , in which ψ = 0 corresponds to the north pole of
S3 and ψ = π is the south pole. The angular position may
be regarded as a scalar in the world volume action, which
describes the motion of the NS5-brane across the S3. The
effective potential controlling the relevant evolution is

Veff(ψ) = Mβ4T3

⎛
⎝
√

b2
0 sin4 ψ

π2 + Ṽ 2(ψ)+ Ṽ (ψ)

⎞
⎠ (15)

with b0 � 0.9, where Ṽ (ψ) = p
M − ψ− sin (2ψ)

2
π

and T3 is
the D3-brane tension. This potential is plotted in Fig. 4 with
respect to ψ .

In the regime with p/M < 0.08, the metastable bound
state forms, which corresponds to a static NS5-brane wrap-
ping a S2 in S3.

This metastable bound state corresponds to ψ = 0 and
Veff(0) = 2pβ4T3; see Fig. 4. The true minimum is atψ = π ,
in which the potential energy is 0.

In the regime p/M � 0.08, this metastable state disap-
pears, which implies that the nonsupersymmetric configura-
tion of p D3-branes becomes classically unstable and will
relax to a supersymmetric minimum by a classical rolling
of ψ along its potential. This classical rolling may lead to a
slow-roll inflation, which has been studied in detail in Refer-
ence [25]. When ψ = π , in which the potential energy is 0,
the inflation will end. The result of this evolution is M − p
D3-branes instead of the original p D3-branes appearing at

p
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Fig. 4 The figure of the potential Eq. (15). When D3-branes are pulled
into the throat continuously, the metastable minimum will rise inch by
inch

the tip of the throat, while the three-form flux K is changed
to K − 1, i.e. we have brane/flux annihilation [58].

During the period before the slow-roll inflation, in which
p/M < 0.08, the Hubble expansion of the Universe is given
by

H2 = 2pβ4T3

3
, (16)

where 8π/M2
P = 1. When D3-branes are pulled into the

throat continuously, the metastable minimum will increase
[59], see Fig. 4, which implies that H will increase rapidly
during this period.

Thus the parameter ε is

εPre−inf = − Ḣ

H2 ∼ −
(

ṗ

2H p

)
. (17)

Thus in units of �t = 1/H , we approximately have
|εPre−inf | ∼ �p

2p , where �p is the change of p in unit of
1/H .

We assume �p
2p � 1, which may be consistent with M ∼

104 and pI ∼ O(1), where pI is the initial number of D3-
branes at the tip of the KS throat. Here, all the moduli is
assumed to be fixed, and the interaction between D3-branes
has been also neglected for simplicity.

Thus in this model the Universe initially is in a super-
inflationary phase with εPre−inf ∼ −O(1), during which the
number of D3-branes at the tip of throat will increase rapidly.
After a sufficient number of D3-branes enter into the throat,
which makes p reaching its critical value, ψ will slowly roll
down to its real minimum at ψ = π , during which the Uni-
verse is in a slow-roll inflationary phase. Thus as has been
argued, it is just the stringy physics before the slow-roll infla-
tion that results in a large-scale cutoff in the primordial power
spectrum.

We conclude that a stringy model of inflation in which
initially the Universe is in a superinflationary phase can gen-
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erate a large-scale cutoff in the primordial power spectrum,
which may account for not only the power suppression on
large angular scales, but also a large dipole power asymme-
try in the CMB. In the meantime this model also predicts
distinct signals in TE and EE power spectra, which may be
falsified by the observation of CMB polarization.
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5 Appendix

We rewrite C1 − C2 as, with Eqs. (9) and (10),

C1 − C2 = π

8i
√H0

(
H (1)

0

(
k̃

2

)
− H (1)

2

(
k̃

2

))(
sin k̃

k̃
− cos k̃

)

− π

4i
√H0

H (1)
1

(
k̃

2

)(
sin k̃ − 2 sin k̃

k̃2
+ 2 cos k̃

k̃

)
, (18)

where k̃ = k/H0 is defined for simplicity. When k̃ � 1,

H (1)
0

(
k̃

2

)
� −i

2

π
ln

4

k̃
, (19)

H (1)
1

(
k̃

2

)
� −i

4

k̃π
, (20)

H (1)
2

(
k̃

2

)
� −i

16

k̃2π
. (21)

Thus C1 − C2 is approximately

C1 − C2 � 1√H0

(
−1

4
ln

4

k̃
+ 2

k̃2

)(
sin k̃

k̃
− cos k̃

)

+ 1√H0k̃

(
sin k̃ − 2

sin k̃

k̃2
+ 2

cos k̃

k̃

)

� 1√H0

(
1 + k̃2

12
ln k̃

)
. (22)

Thus Eq. (12) is obtained.
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