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Abstract We show that Abelian Higgs Models with a
dielectric function defined on the noncommutative plane
enjoy self-dual vorticial solutions. By choosing a partic-
ular form of the dielectric function, we provide a family
of solutions whose Higgs and magnetic fields interpolate
between the profiles of the noncommutative Nielsen–Olesen
and Chern–Simons vortices. This is done both for the usual
U (1) model and for the SU (2)×U (1) semilocal model with
a doublet of complex scalar fields. The variety of known
noncommutative self-dual vortices which display a regular
behavior when the noncommutativity parameter tends to zero
results in this way considerably enlarged.

1 Introduction

Although local quantum field theory has had an impressive
success as a framework for describing the dynamics of ele-
mentary particles at the current accessible energies, there are
indications that, at some stage in the route toward a more
fundamental theory, the idea of locality as a basic assump-
tion of physics should be given up. The exact way in which
nonlocality would arise in that underlying theory is not clear,
but a possibility that has often been considered by theorists
is that, for lengths below some scale

√
θ , spacetime has to

be replaced by a different, blurred entity, in which the coor-
dinates xμ become noncommuting quantities x̂μ with com-
mutators among them of order θ . The reasons for consider-
ing noncommutative quantum field theories formulated on
this arena are diverse. Originally, noncommutative QFT’s
appeared in an attempt to use the scale

√
θ as a cutoff for

ultraviolet divergences, but later they were seen as effective
theories on the spacetime foam resulting from the modified
uncertainty principle arising in quantum gravity, as some
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low-energy limits of the theory of open strings propagat-
ing on a constant Kalb–Ramond field or as describing the
low-energy quantum fluctuations of stacks of D-branes in
the context of the IIB matrix model. The noncommutativ-
ity of spatial coordinates emerges also in condensed matter
contexts, such as the motion of very light charged particles in
strong magnetic fields as happens in the quantum Hall effect.
For reviews of the formalism of noncommutative quantum
field theory and some of its motivations and uses or their
possible role in phenomenology; see [1–4].

The study of the different classes of solitons appearing in
field and string theory is an important topic, both because
they are stable objects with interesting dynamical behavior
and because their conserved charges allow an interpretation
of the solitons as supersymmetric BPS states, which can give
significant information on the nonperturbative regime of the
theory. In this respect, noncommutative QFT are especially
appealing, because they can accomodate regular solitonic
solutions in situations in which the usual commutative field
theory would give singularities. This happens because Der-
rick’s theorem, which is based on the scaling properties of the
lagrangian kinetic- and potential-energy terms under dilata-
tions of the coordinates, ceases to be valid in the noncom-
mutative case due to the presence of the fundamental length√

θ . As a consequence, it is possible to find noncommuta-
tive scalar solitons even in theories without kinetic terms,
and there is even a so-called solution generating technique
which can be used to construct scalar and gauge solitons
starting from trivial vacuum solutions [5]. This kind of soli-
tons, however, become singular when the noncommutativity
parameter θ is driven to zero.

In this paper we are going to study the self-dual vor-
tices arising in a class of noncommutative Abelian models in
which the kinetic Maxwell term incorporates a dielectric fac-
tor which is a function of the Higgs field. This dielectric con-
tribution to the action, which spoils renormalizability, is how-
ever, a common occurrence in the effective truncation to low
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energy of supersymmetric theories. In the commutative case,
self-dual vortices in Abelian models with dielectric function
have been studied in [6–8] or [9], and other related Higgs
models which arise from effective supersymmetric theories
are dealt with in [10,11] and [12]. Here, moving to the non-
commutative plane, we will consider two variants among this
kind of Abelian systems. First, we will pay attention to the
case where there is only one complex scalar field and the
local symmetry group is U (1); this is the simplest paradigm
for the Higgs mechanism and, from the phenomenological
side, has interest as a Ginzburg–Landau model for super-
conductivity (the scalar field is the order parameter between
type I and II superconductivities). Then we will extend the
treatment to consider a model with a doublet of scalar fields
enjoying a mixture of global SU (2) and local U (1) symme-
tries; this semilocal situation is a quite interesting limit of
the electroweak theory and has been a subject of research
in the field of cosmic strings. In both cases, we will focus
on self-dual solutions which continue to be regular when θ

goes to zero. For that, we follow closely the treatment given
in the articles [13] and [14] by Lozano, Moreno and Scha-
posnik. In these references, the authors solve the self-duality
equations for, respectively, noncommutative Nielsen–Olesen
and Chern–Simons–Higgs U (1) vortices by means of a very
convenient ansatz which leads to some discrete recurrence
relations. On the other hand, in [7] a specific form of the
dielectric function which interpolates between the commu-
tative Nielsen–Olesen and Chern–Simons energy densities
was proposed. We use this function (with a slightly dif-
ferent parametrization) to find the noncommutative vortices
interpolating between those found in [13] and [14], and also
between their semilocal counterparts. The main theme of this
paper is thus to combine the flexibility provided by a dielec-
tric function with the techniques to deal with the noncommu-
tative self-dual equations developed by the authors of [13,14]
to show how the spectrum of self-dual noncommutative vor-
tices with good behavior for θ → 0 can be considerably
enlarged.

2 The Abelian Higgs model with dielectric function and
its self-duality equations

We are working on a three-dimensional spacetime with coor-
dinates (x0, x1, x2) and metric ημν = diag(1,−1,−1), but
the spatial coordinates x1, x2 are not real numbers but fuzzy
variables with uncertainty relation

Δx1 Δx2 ≥ θ

2
(1)

where θ is some positive real number. In this setup, we shall
consider a dynamical model containing a complex scalar field
φ and a gauge field Aμ interacting through the action

S =
∫

d3x

{
−1

4
G ∗ Fμν ∗ G ∗ Fμν + Dμφ ∗ Dμφ

− 1

2
W ∗ W

}
,

where the star stands for the Groenewold–Moyal product

f (x) ∗ g(x) = exp

[
i

2
θ i j ∂

∂xi

∂

∂x j ′

]
f (x)g(x ′)

∣∣
x=x ′ . (2)

The formalism of noncommutative gauge field theories is
explained, for instance, in [15] or [16]. In this particular
model, the scalar field transforms with the fundamental rep-
resentation of the U∗(1) gauge group:

φ −→ Λ ∗ φ φ̄ −→ φ̄ ∗ Λ†,

while Aμ is a U∗(1) connection

Aμ −→ Λ ∗ Aμ ∗ Λ† + i

e
Λ ∗ ∂μΛ†,

such that the covariant derivative of the scalar field and the
gauge field strength are

Dμφ = ∂μφ − ieAμ ∗ φ

Fμν = ∂μ Aν − ∂ν Aμ − ie(Aμ ∗ Aν − Aν ∗ Aμ).

The field φ is self-interacting through a potential quadratic
in W , a function of the star product ofφ and φ̄, W = W (φ∗φ̄).
Also, we allow for a non-minimal scalar-gauge interaction
driven by the dielectric function G = G(φ ∗ φ̄). In this way,
G and W transforms under the adjoint representation of the
gauge group

G −→ Λ ∗ G ∗ Λ† W −→ Λ ∗ W ∗ Λ†

exactly as Fμν does, so that the gauge invariance of the action
is guaranteed. In the following, we will also assume that G is
positive definite and that W vanishes only when the product
φ ∗ φ̄ takes its vacuum expectation value, denoted v2.

Going to the temporal gauge A0 = 0 and after some con-
venient rescalings

Aμ → 1

e
Aμ φ → 1

e
φ v → 1

e
v,

the energy E of the static field configurations takes the form

e2 E =
∫

d2x

{
1

2
G ∗ B ∗ G ∗ B + Dkφ ∗ Dkφ

+ 1

2
W ∗ W

}

where B is the magnetic field

B = F12 = ∂1 A2 − ∂2 A2 − i (A1 ∗ A2 − A2 ∗ A1)

and the spatial covariant derivatives are now Dkφ = ∂kφ −
i Ak ∗ φ, k = 1, 2. This form of the energy functional is
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amenable to a Bogomolny splitting. The quadratic term in
the covariant derivatives of the Higgs field is written as [17]
∫

d2x Dkφ ∗ Dkφ

=
∫

d2x{(D1φ + i D2φ) ∗ (D1φ − i D2φ
)+ φ ∗ φ̄ ∗ B}

(3)

where an irrelevant contour term has been discarded, and the
other two terms can be arranged as
∫

d2x

{
1

2
G ∗ B ∗ G ∗ B + 1

2
W ∗ W

}

=
∫

d2x

{
1

2
(G ∗ B + W )2 − W ∗ G ∗ B

}
, (4)

where the square is in the sense of the ∗-operation and the
cyclic property
∫

d2x f (x) ∗ g(x) ∗ h(x) =
∫

d2x h(x) ∗ f (x) ∗ g(x)

of the Groenewold–Moyal product has been used. By com-
bining (3) and (4), we see that, if W is chosen in such a way
that

W ∗ G = φ ∗ φ̄ − v2, (5)

the energy of the field configurations which satisfy the self-
duality equations

G ∗ B = −W, (6)

D1φ + i D2φ = 0 (7)

is proportional to the magnetic flux

e2 E = v2
∫

d2x B,

which is indeed a boundary term by virtue of
∫

d2x A1(x) ∗ A2(x) =
∫

d2x A2(x) ∗ A1(x).

For finite-energy configurations, the fields at infinity depend
only on the polar angle. The derivatives entering in (2) are
therefore proportional to inverse powers of distance and then,
in the asymptotic region of the noncommutative plane, the
star product of fields converges to the ordinary product. This
means that the classification in topological sectors can be
directly taken over from the well-known results valid in the
commutative plane. In particular, the magnetic flux is quan-
tized. Hence, the solutions of (6)–(7) minimize the energy
in each topological sector and are, therefore, bona fide solu-
tions of the Euler–Lagrange equations. If we now denote by
1
G the inverse of G according to the star product and take into
account that W and G commute between themselves because

both are functions of φ ∗ φ̄, the use of the constraint (5) turns
the first self-duality equation into the more convenient form

B =
(

1

G

)2

∗ (v2 − φ ∗ φ̄), (8)

to be used in what follows.
Functions on the noncommutative plane can be traded by

operators on the Hilbert space H = L2(R2) by means of the
Weyl map

f (x1, x2) −→ Ô f (x̂1, x̂2) = 1

(2π)2

∫
d2kΔ̂(k) f̃ (k),

where the Weyl kernel is Δ̂(k) = exp
[−i(k1 x̂1 + k2 x̂2)

]
and

f̃ (k) = ∫
d2xeik·x f (x) is the Fourier transform of f (x); see

[5,15]. The transformation is consistent in the sense that the
star products are mapped to ordinary operator products on the
Hilbert space. The use of the operator side of the Weyl map is
very convenient for dealing with the self-duality equations,
especially if we express them in holomorphic coordinates

z = x1 + i x2

√
2

z̄ = x1 − i x2

√
2

and introduce the harmonic oscillator ladder operators

â = x̂1 + i x̂2

√
2θ

â† = x̂1 + i x̂2

√
2θ

with commutator
[
â, â†

] = 1 consistent with the uncertainty
relation (1). One can check [13,14] that, in terms of these
operators, the self-duality equations have the form

− 1√
θ

[
a†, Az̄

]
− 1√

θ

[
a, Az

]− i
[
Az, Az̄

]

=
(

i

G

)2

(v2 − φφ̄),

1√
θ

[a, φ] − i Az̄φ = 0

with φ, Az and Az̄ representing here the operators Ôφ , ÔAz

and ÔAz̄ arising by applying the Weyl map to the Higgs and
gauge fields of the original theory, but all hats have been
suppressed to alleviate notational cluttering. Also, the vortex
energy can be now computed as the trace

e2 E = 2πθv2TrHB

on the Hilbert space.

3 The interpolating model: noncommutative vortices

By choosing the dielectric function in different forms it
is possible to find self-dual noncommutative vortices with
gauge and scalar fields displaying a wide variety of profiles.
In particular, an interesting option proposed in [7] is to fix

123



3002 Page 4 of 16 Eur. Phys. J. C (2014) 74:3002

G(φ ∗ φ̄) in such a way that it can accommodate the profiles
of the two most prominent types of vortices from a phys-
ical point of view: the Nielsen–Olesen and Chern–Simons
vortices. This can be achieved by using

G = 1√
(1 − λ) + λβφ ∗ φ̄

where the square root should be understood in the sense of the
star product, λ is a non-dimensional parameter with values in
the interval [0, 1] and β is an arbitrary constant with inverse
mass squared dimension. Thus, the self-dual equations for
this model are

− 1√
θ

[
a†, Az̄

]
− 1√

θ

[
a, Az

]− i
[
Az, Az̄

]

= i
[
(1 − λ) + λβφφ̄

]
(v2 − φφ̄),

1√
θ

[a, φ] − i Az̄φ = 0.

For λ = 0, these equations are precisely the self-dual equa-
tions of the ordinary Abelian Higgs Model [13], while for
λ = 1 they coincide with those of the relativistic Chern–
Simons–Higgs model [14], with the Chern–Simons κ cou-
pling given by κ2 = 1

2β
. Thus, by continuously varying λ

between 0 and 1 we can find vortices with field profiles which
interpolate between the solutions arising in these two theo-
ries.

3.1 Solving the noncommutative vortex equation

Let us first consider, following [17] where more details can
be found, the case of very large noncommutative parameter
θ . By expanding in inverse powers of θ

φ = φ∞ + 1

θ
φ−1 + · · ·

Az̄ = 1√
θ

(
(Az̄)∞ + 1

θ
(Az̄)−1 + · · ·

)

the self-dual equations for general λ are, to leading order,
exactly the same that arise for Nielsen–Olesen vortices:

φ∞φ̄∞ = v2

i(Az̄)∞ = [a, φ∞] .

As is well known [17,18], these equations have a solution
for each positive integer n which can be expressed in terms
of the shift operators | k〉〈k + n| for the harmonic oscillator:

φ∞ = v

∞∑
k=0

| k〉〈k + n |, (9)

(Az̄)∞ = i
∞∑

k=0

(√
k + 1 + n − √

k + 1
)
| k〉〈k + 1| (10)

Because

an | k + n〉 = √
(k + n)(k + n − 1) · · · (k + 1) | k〉,

the scalar field operator can be recast as

φ∞ = v√
an(a†)n

an

and, in this way, the vorticial character of the solution is
apparent through the factor an (which is the noncommuta-
tive guise of the familiar angular dependence of type zn for
commutative vortices). This character can be corroborated
by computing the magnetic field, which is proportional to
the projector onto the | 0〉 state,

B∞ = −i Fzz̄ = i

θ

[
a†, (Az̄)∞

]
+ i

θ

[
a, (Az)∞

]

−1

θ

[
(Az)∞, (Az̄)∞

] = n

θ
| 0〉〈0 |,

and thus checking that the solution contains n quanta of the
magnetic flux

ΦM = 2πθTrHB∞ = 2πn,

as is appropriate for a vortex.
However, the presence of θ in the denominator of the mag-

netic field shows that these solutions will become singular if
we try to extend them to the commutative θ = 0 case. In
order to obtain a solution valid for all values of θ , it is natural
to modify the solution (9)–(10) for the θ = ∞ case by trying
an ansatz with a different coefficient for each shift operator,

φ = v

∞∑
k=0

fk | k〉〈k + n|, (11)

Az̄ = − i√
θ

∞∑
k=0

dk | k〉〈k + 1|, (12)

which was proposed for the Abelian Higgs Models in [13] and
for the Chern–Simons–Higgs Model in [14]. By substitution
in the self-dual equations, one finds a system of algebraic
equations for the fk and dk coefficients,

dk fk+1 = √
k + 1 fk+1 − √

k + n + 1 fk

2
√

kdk−1 − 2
√

k + 1dk + d2
k − d2

k−1

= θv2(1 − λ + λβv2 f 2
k )(1 − f 2

k )

which can be solved along the lines explained in these ref-
erences. By writing dk as dk = √

k + 1 − √
k + n + 1 + ek

the first equation gives the new coefficient ek in terms of the
f j coefficients as

ek = √
k + n + 1

(
1 − fk

fk+1

)
(13)
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and, with this expression for ek , the second equation yields
a three term recurrence relation for the fk ,

f 2
k+1[(k + n) f 2

k−1 + f 2
k (1 + θv2(1 − λ + λβv2 f 2

k )

×(1 − f 2
k ))] = (k + n + 1) f 4

k ,

which gives fk+1 in terms of fk and fk−1. As, on the other
hand, f−1 = 0, f1 is only a function of f0,

f 2
1 = (n + 1) f 2

0

1 + θv2(1 − λ + λβv2 f 2
0 )(1 − f 2

0 )
.

Thus, once f0 is chosen and f1 determined, all the remaining
coefficients can be recursively found. The task is to find the
value of f0 which matches the boundary condition for k →
∞: in this limit, the fk have to approach unity, which is the
only fixed point of the recurrence relation, and to accomplish
it a simple bisection method can be used: we try first with
f 2
0 = 0.5; if we find that fk grows over unity before fk <

fk−1, f0 is too large and we change f0 to f 2
0 = 0.25; if,

instead, fk < fk−1 before fk > 1, f0 is too small and we
try with f 2

0 = 0.75. We repeat this procedure until a good
matching with the boundary condition is attained. Once f0

and all the fk coefficients are known, the magnetic field can
be calculated from the self-duality equations as

B = v2
∞∑

k=0

[
1 − λ + λβv2 f 2

k

]
(1 − f 2

k ) | k〉〈k|

and, thus, the magnetic flux and energy are

ΦM = 2πθTrHB

= 2πθv2
∞∑

k=0

[
1 − λ + λβv2 f 2

k

]
(1 − f 2

k ) (14)

and

E = v2

e2 ΦM .

In fact, for topological reasons, we expect that ΦM = 2πn,
irrespective of the values of θ, λ, β or v, for any solution of
the self-duality equations.

We have computed the correct value of f0 for several val-
ues of the parameters in the dielectric function and for topo-
logical number n = 1. For the case λ = 0, β disappears
form the action and only the non-dimensional combination
θv2 matters. The results are shown in Table 1. For the other
extreme case λ = 1, the parameters merge in a global fac-
tor βθv4 and the results appear in Table 2. The numbers in
Tables 1 and 2 are in good agreement with those obtained in
[13,14]. In the Tables 3, 4, 5 and 6, we present the results for
f 2
0 for some values of λ interpolating between the Nielsen–

Olesen and Chern–Simons cases. In these tables, the rows
and columns correspond, respectively, to the constant values
of θv2 and βv2 given in the margins.

3.2 Comparison with the commutative vortices

For all cases shown in the previous subsection, we have
checked using (14) that the magnetic flux takes the value
ΦM = 2π , as it should. As was done in [13], it is also inter-
esting to check if the vortices of the noncommutative model
converge to those of the commutative one when the parameter
θ goes to zero. Using the ansatz

φ = vg(r)einϕ

Aθ = n − α(r)

with r and ϕ the standard polar coordinates, the self-duality
equations of the commutative model are [6–8]

1

r

dα

dr
=
(

1 − λ + λβv2g2
)

(g2 − 1)

dg

dr
= αg

r
,

and the boundary conditions take the form

g(0) = 0 g(∞) = 1
α(0) = n α(∞) = 0.

For r 
 0, the solution is

g(r) 
 g0rn

α(r) 
 n + λ − 1

2
r2

and starting with this asymptotics, the equations can be inte-
grated numerically to find the value of g0 which matches the
boundary conditions at infinity. We have done this with a
fourth-order Runge–Kutta method for different values of λ

and βv2 and found the results for g2
0 appearing in Table 7. We

have, on the other hand, computed f 2
0 for very small θ for the

diverse values of βv2 and λ shown in the table and we find a
perfect agreement between g2

0 in the commutative model and
f 2
0

2θv2 in the noncommutative one, exactly as was established
for the case G = 1 in [13]. To understand this coincidence,
let us write the scalar field of the noncommutative n = 1
vortex as

φ = v√
aa†

f (a†a)a with f (a†a) |k〉 = fk | k〉

and compute the expected value on the coherent state | w〉 =
e− |w|2

2 ewa† | 0〉, which satisfies

〈w | x1 + i x2 | w〉 = √
2θ (Re w + i Im w)

and represents a minimal wavepacket which is centered
around the point

√
2θ w of the noncommutative plane and

has spread Δx1 = Δx2 =
√

θ
2 [17]. Now, using

〈w | φ | w〉
= 〈0 | v√

(a + w)(a† + w̄)
f ((a† + w̄)(a + w))(a + w) | 0〉

123
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Table 1 Values of f 2
0 for the

case λ = 0
θv2 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
f 2
0 0.2572165 0.4006888 0.4940118 0.5602955 0.6101472 0.6491837 0.6806831 0.7066985

Table 2 Values of f 2
0 for the

case λ = 1
βθv4 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

f 2
0 0.1082514 0.2168143 0.3170487 0.4037747 0.4758857 0.5348773 0.5831093 0.6228436

Table 3 Values of f 2
0 for the case λ = 0.2

βv2 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25 0.2225542 0.3578602 0.4500099 0.5173522 0.5689932 0.6100056 0.6434570 0.6713201

0.50 0.2267165 0.3642712 0.4576113 0.5255624 0.5774821 0.6185802 0.6520019 0.6797658

0.75 0.2308680 0.3706328 0.4651091 0.5336139 0.5857629 0.6269045 0.6602619 0.6878986

1.00 0.2350088 0.3769440 0.4725019 0.5415063 0.5938368 0.6349824 0.6682435 0.6957276

1.25 0.2391388 0.3832038 0.4797885 0.5492392 0.6017055 0.6428179 0.6759534 0.7032625

1.50 0.2432580 0.3894111 0.4869678 0.5568126 0.6093711 0.6504157 0.6833991 0.7105131

1.75 0.2473662 0.3955651 0.4940389 0.5642271 0.6168360 0.6577808 0.6905881 0.7174894

2.00 0.2514633 0.4016646 0.5010010 0.5714831 0.6241032 0.6649185 0.6975281 0.7242017

Table 4 Values of f 2
0 for the case λ = 0.4

βv2 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25 0.1834747 0.3064902 0.3952554 0.4626214 0.5156652 0.5586206 0.5941838 0.6241573

0.50 0.1923526 0.3208740 0.4129240 0.4821936 0.5362822 0.5797419 0.6154649 0.6453767

0.75 0.2011923 0.3350540 0.4301225 0.5010010 0.5558540 0.5995703 0.6352428 0.6649185

1.00 0.2099940 0.3490185 0.4468313 0.5190293 0.5743853 0.6181386 0.6535835 0.6828842

1.25 0.2187571 0.3627553 0.4630337 0.5362727 0.5918931 0.6354940 0.6705672 0.6993862

1.50 0.2274800 0.3762523 0.4787170 0.5527332 0.6084050 0.6516942 0.6862819 0.7145411

1.75 0.2361604 0.3894982 0.4938726 0.5684202 0.6239571 0.6668039 0.7008194 0.7284646

2.00 0.2447957 0.4024825 0.5084961 0.5833496 0.6385915 0.6808915 0.7142714 0.7412679

Table 5 Values of f 2
0 for the case λ = 0.6

βv2 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25 0.1389372 0.2432580 0.3244385 0.3894111 0.4426027 0.4869678 0.5245515 0.5568126

0.50 0.1531621 0.2677365 0.3559161 0.4255004 0.4816218 0.5277492 0.5662879 0.5989462

0.75 0.1673229 0.2917726 0.3862109 0.4594802 0.5175747 0.5645702 0.6032743 0.6356563

1.00 0.1814214 0.3153038 0.4151959 0.4912258 0.5504218 0.5975425 0.6358143 0.6674566

1.25 0.1954515 0.3382635 0.4427719 0.5206897 0.5802441 0.6269188 0.6643456 0.6949639

1.50 0.2094023 0.3605889 0.4688750 0.5478960 0.6072109 0.6530306 0.6893532 0.7187975

1.75 0.2232606 0.3822249 0.4934771 0.5729255 0.6315447 0.6762369 0.7113119 0.7395235

2.00 0.2370120 0.4031266 0.5165834 0.5958987 0.6534912 0.6968901 0.7306554 0.7576340
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Table 6 Values of f 2
0 for the case λ = 0.8

βv2 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25 0.0874802 0.1626094 0.2274800 0.2838134 0.3330198 0.3762523 0.4144539 0.4483972

0.50 0.1077297 0.2001111 0.2788254 0.3457787 0.4028276 0.4516387 0.4936371 0.5300064

0.75 0.1279574 0.2370120 0.3279805 0.4031266 0.4651461 0.5165834 0.5595923 0.5958986

1.00 0.1481567 0.2730445 0.3743037 0.4550554 0.5194259 0.5711959 0.6133762 0.6482294

1.25 0.1682918 0.3079312 0.4173346 0.5013053 0.5660076 0.6166414 0.6570262 0.6898471

1.50 0.1883157 0.3414295 0.4568418 0.5420656 0.6057372 0.6544386 0.6926365 0.7232946

1.75 0.2081774 0.3733515 0.4928022 0.5778005 0.6396228 0.6860415 0.7219792 0.7505531

2.00 0.2278258 0.4035707 0.5253498 0.6090921 0.6686338 0.7126815 0.7464413 0.7730916

Table 7 Values of g2
0 for

commutative vortices λ ↓ /βv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0 0.7279 0.7279 0.7279 0.7279 0.7279 0.7279 0.7279 0.7279

0.2 0.5933 0.6042 0.6152 0.6260 0.6369 0.6478 0.6586 0.6695

0.4 0.4586 0.4804 0.5021 0.5237 0.5453 0.5668 0.5882 0.6096

0.6 0.3239 0.3563 0.3886 0.4207 0.4527 0.4846 0.5164 0.5482

0.8 0.1889 0.2317 0.2741 0.3164 0.3586 0.4008 0.4429 0.4850

1.0 0.0524 0.1049 0.1573 0.2098 0.2622 0.3147 0.3671 0.4195

we see that for w → 0 and in the limit θ → 0 we have

〈w | φ | w〉 → v f0w = v f0√
2θ

(x1 + i x2)

and this should be interpreted as the value of φ near the origin.
On the other hand, for the commutative model φ 
 g0v

2reϕ ,

so one should expect g2
0 = f 2

0
2θv2 , as indeed occurs.

3.3 Noncommutative vortex profiles

Once the scalar and magnetic field operators are known in
Hilbert space, it is not difficult to invert the Weyl map and
find the functional form of these vortex fields in the non-
commutative coordinates. For that, we only have to take into
account that the function f j,k(x) with the Weyl transform
| j〉〈k | is [5]

f j,k(x)

= 2(−1) j

√
j !
k! e− r2

θ

(
2

r2

θ

) j−k
k

Lk− j
j

(
2

r2

θ

)
ei(k− j)ϕ

where z = r√
2

exp iϕ and the Lq
p(y) are generalized Laguerre

polynomials. In particular, as

φφ̄ = v2
∞∑

k=0

f 2
k |k〉〈k |

and the magnetic field is (14), one finds

φ(x) ∗ φ̄(x) = v2
∞∑

k=0

f 2
k fk,k(x)

B(x) = v2
∞∑

k=0

(1 − λ + λβv2 f 2
k )(1 − f 2

k ) fk,k(x).

Figures 1, 2, 3, 4, 5 and 6 show the profiles of φ ∗ φ̄ (in
red) and B (in green) as a function of r for several values of
the non-dimensional parameters θv2 and βv2. In each figure,
the curves are for λ = 0, 0.2, 0.4, 0.6, 0.8 and 1, and one can
distinguish among these values because in all cases both φ∗φ̄

and B at the origin decrease with λ. A few comments about
the figures:

– As one can see, the profile of the magnetic field exhibits
a maximum at the center of the Nielsen–Olesen vortex,
which is more and more flat as λ increases, and becomes
finally a minimum for the Chern–Simons case. Thus, the
magnetic field concentrates at a peak for small λ and is
more disperse, forming a ring around the core of the vor-
tex, as λ approaches one. The effect is more noticeable
when the parameter θ measuring the noncommutativity
of the plane is small; in particular, in Fig. 4, which has
the larger value of θv2, the magnetic field at the center of
λ = 1 case looks more like a plateau than like a ring.

– The first four figures have βv2 fixed and a increasing
degree of noncommutativity, with parameter varying from
θv2 = 0.25 to θv2 = 1.5. Looking at these, we see that, as
θv2 increases, the value of B(0) decreases for the Nielsen–

123



3002 Page 8 of 16 Eur. Phys. J. C (2014) 74:3002

2 4 6 8

0.2

0.4

0.6

0.8

1

Fig. 1 The cases θv2 = 0.25, βv2 = 1

2 4 6 8

0.2

0.4

0.6

0.8

1

Fig. 2 The cases θv2 = 0.5, βv2 = 1

Olesen vortices, but increases for the Chern–Simons ones.
Thus, while for small noncommutativity the magnetic field
at the center of the vortex shows a wide variation with λ,
for higher θv2 the range of this variation is of lesser extent.

– In the same four figures, we can see that the profiles of
φ ∗ φ̄ with distance are quite similar for all the values of λ,
but φ(0) ∗ φ̄(0) increases with θv2. This is as it should be
expected, given that for commutative vortices the scalar
field vanishes at the origin.

– Figure 5 is for small noncommutativity and large βv2,
which corresponds to small Chern–Simons parameter κ .
There is in this case a very important variation of the mag-
netic field with λ, and the ring-like shape of the core of the
vortex is evident for quite low values of the interpolating

2 4 6 8

0.2

0.4

0.6

0.8

1

Fig. 3 The cases θv2 = 1, βv2 = 1

2 4 6 8

0.2

0.4

0.6

0.8

1

Fig. 4 The cases θv2 = 1.5, βv2 = 1

parameter. Instead, the dependence of the profile of φ ∗ φ̄

with λ is completely negligible.
– That behavior is in contrast with Fig. 6, which has more

amount of noncommutativity and a smaller βv2. In this
case, both the magnetic field B and the scalar field mag-
nitude φ ∗ φ̄ show substantial variations as we interpo-
late between the Nielsen–Olesen and Chern–Simons solu-
tions.

4 The semilocal model with dielectric function

Unlike the AHM, the Standard Model of particle physics
does not admit topologically stable vortices. The reason is
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Fig. 5 The cases θv2 = 0.25, βv2 = 2
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Fig. 6 The cases θv2 = 1, βv2 = 0.5

that, in this case, the pattern of gauge symmetry breaking is
G = SU (2) × U (1) → H = U (1) and the fundamental
group of the quotient G/H is trivial, π1(G/H) = 1. There
is, however, an interesting exception to this general state-
ment: if the Weinberg angle is θW = π

2 , the weak isospin
gauge bosons decouple, the SU (2) factor becomes a global
symmetry and stable flux lines appear in the spectrum [19].
Being the consequence of the mixing of the global SU (2)

and gauge U (1) symmetries, these solutions are known as
semilocal vortices. Although the Higgs field is a SU (2) dou-
blet

Φ =
(

φ+
φ0

)

and thus the vacuum orbit is S3, the stability of semilocal vor-
tices is guaranteed because, to ensure the vanishing of their
covariant derivatives at long distances, the asymptotic scalar
field has to be given by a map from the spatial S1 border to
one S1 fiber of the Hopf fibration S3 → S2 [20,21]. Hence,
the effective fundamental group which classifies the finite-
energy configurations is π1(S1) = Z, the winding number
corresponding, as usual, to the magnetic flux. In each topo-
logical sector, the axially symmetric semilocal vortices form
a family which is parametrized by a complex number and
interpolates between standard Nielsen–Olesen vortices and
CP1-lumps. Although all the defects in the family are stable
[22], the fields decay exponentially at infinity only for the
Nielsen–Olesen vortices. For the other cases the magnetic
flux is more spread and the fields reach their asymptotic val-
ues as inverse powers of the distance.

4.1 Semilocal self-dual noncommutative vortices

Our aim in this section is to study the self-dual vortex solu-
tions arising in a noncommutative semilocal model with
dielectric function. With the rescalings seen in Sect. 2, the
action of the model is

S =
∫

d3x

{
−1

4
G ∗ Fμν ∗ G ∗ Fμν

+
∑

a=+,0

Dμφa ∗ Dμφa − 1

2
W ∗ W

}
.

where G and W are positive functions which, to be covariant
under both the global SU (2) and the gauge U (1) symmetries,
have the structure:

G = G

⎛
⎝ ∑

a=0,+
φa φ̄a

⎞
⎠ , W = W

⎛
⎝ ∑

a=0,+
φa φ̄a

⎞
⎠ .

The energy for static configurations is

e2 E =
∫

d2x

{
1

2
G ∗ B ∗ G ∗ B

+
∑

a=0,+
Dkφ

a ∗ Dkφa + 1

2
W ∗ W

⎫⎬
⎭

and, as in the previous section, one can perform a Bogomolny
splitting such that if

W ∗ G =
∑

a=+,0

φa ∗ φ̄a − v2, (15)

the field configurations which satisfy the self-duality equa-
tions

G ∗ B = −W

D1φ
+ + i D2φ

+ = 0,

D1φ
0 + i D2φ

0 = 0
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saturate the Bogomolny bound

e2 E ≥ v2
∫

d2x B.

As before, we choose a dielectric function

G = 1√
(1 − λ) + λβ

∑
a=+,0 φa ∗ φ̄a

,

which is suitable to interpolate between semilocal vortices
of Maxwell type and semilocal Chern–Simons vortices; for
the latter, see [23].1 Then the Bogomolny equations are

− 1√
θ

[
a†, Az̄

]
− 1√

θ

[
a, Az

]− i
[
Az, Az̄

]

= i

⎡
⎣(1 − λ) + λβ

∑
a=+,0

φa φ̄a

⎤
⎦
⎛
⎝v2 −

∑
a=+,0

φa φ̄a

⎞
⎠

1√
θ

[
a, φ+]− i Az̄φ

+ = 0, (16)

1√
θ

[
a, φ0

]
− i Az̄φ

0 = 0. (17)

and a convenient ansatz to solve them in the sector of mag-
netic flux ΦM = 2πn is a direct extension of (11)–(12):

φ+ = v

∞∑
k=0

fk | k〉〈k + n|, (18)

φ0 = v

∞∑
k=0

ηk | k〉〈k + l|, (19)

Az̄ = − i√
θ

∞∑
k=0

dk | k〉〈k + 1|, (20)

in which we have used the global SU (2) symmetry to put the
topological vorticity in the φ+ component, i.e. we will use
boundary conditions fk → 1, ηk → 0 for k → ∞, but we
also allow for a behavior of type al for the other component.
This mimics the angular dependence of the solutions found
for the commutative model, see [20,22], and the analysis of
that case suggests that, in order to have well-behaved finite-
energy solutions, we have to take 0 ≤ l ≤ n − 1.

Using this ansatz in (16) and (17), we can relate the coef-
ficients ηk and fk through

ηk+1 =
√

k + l + 1

k + n + 1

fk+1

fk
ηk

and then, iterating this relation and using the same arguments
of the previous section, we see that, once some initial values

1 Here we abide by the notation of [14]. To compare with [23],
Aμ, ∂μ, φ, κ and η in that paper have to be rescaled according to

Aμ → Aμ

η
, xμ → ηxμ, φ →

√
2φ
η

, κ → 2κ
η

, η → √
2η.

for f0 and η0 are given, all remaining coefficients follow
from

ηk =
√

(k + l)! n!
(k + n)! l!

fk

f0
η0,

the recurrence relation

(k + n + 1) f 4
k =

[
(k + n) f 2

k−1 + f 2
k (1 + θv2(1 − λ

+ λβv2( f 2
k + η2

k ))(1 − f 2
k − η2

k ))
]

f 2
k+1,

and (13). Thus, the problem is to find, for each η0, the value
of f 2

0 which gives the correct behavior for k → ∞. Using
the bisection method, we have found f 2

0 for n = 1, l = 0
and the cases given in the Tables 8, 9, 10, 11, 12, 13, 14 and
15.

4.2 Comparison with the semilocal commutative vortices

Let us now compare with the commutative semilocal model.
With the radial ansatz

φ+ = vg(r)einϕ,

φ0 = vh(r)eilϕ,

Aθ = n − α(r)

the commutative Bogomolny equations are

1

r

dα

dr
=
[
1 − λ + λβv2

(
g2 + h2

)]
(g2 + h2 − 1), (21)

dg

dr
= αg

r
, (22)

dh

dr
= α − n + l

r
h, (23)

to be solved with the boundary conditions

g(0) = 0 h(0) = h0δl,0 α(0) = n,

g(∞) = 0 h(∞) = 0 α(∞) = 0.

Let us concentrate in the case n = 1, l = 0. From (22) and
(23), it follows that h(r) = ρ

r g(r) with ρ = h0
g′(0)

. Using this
in (21) one can see that the solution has the form

g(r) 
 g0r

α(r) 
 1 + 1

2

(
1 + λβv2|h0|2 − λ

) (
|h0|2 − 1

)
r2

when r 
 0. The integration of the equations by the Runge–
Kutta method shows that the values of g2

0 compatible with
the boundary conditions at infinity are those appearing in
Table 16. We have checked that these are precisely the values

of
f 2
0

2θv2 obtained in the noncommutative model when we take
the limit θ → 0, as they should.
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Table 8 Values of f 2
0 for the case λ = 0

η0 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.2542716 0.3962479 0.4886493 0.5543005 0.6036871 0.6423652 0.6735785 0.6993595

0.2 0.2454721 0.3829659 0.4726012 0.5363519 0.5843404 0.6219402 0.6522926 0.6773681

0.3 0.2309262 0.3609669 0.4459876 0.5065611 0.5522091 0.5880020 0.6169109 0.6408026

0.4 0.2108201 0.3304652 0.4090162 0.4651210 0.5074699 0.5407120 0.5675811 0.5897986

0.5 0.1854286 0.2917786 0.3619958 0.4123184 0.4503856 0.4803106 0.5045229 0.5245576

0.6 0.1551343 0.2453514 0.3053590 0.3485556 0.3813253 0.4071348 0.4280443 0.4453617

Table 9 Values of f 2
0 for the case λ = 1

η0 ↓ /θβv4 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.1090283 0.2173627 0.3166714 0.4021973 0.4731451 0.5311410 0.5785618 0.6176438

0.2 0.1109311 0.2183089 0.3147740 0.3967814 0.4643727 0.5195071 0.5645938 0.6017931

0.3 0.1128118 0.2178051 0.3093577 0.3857451 0.4481253 0.4988503 0.5403345 0.5746132

0.4 0.1131022 0.2134202 0.2978589 0.3668159 0.4225433 0.4676949 0.5046197 0.5351800

0.5 0.1101025 0.2026902 0.2777854 0.3378061 0.3858145 0.4245707 0.4562607 0.4825283

0.6 0.1021902 0.1834874 0.2471040 0.2969560 0.3364634 0.3682520 0.3942401 0.4158104

Table 10 Values of f 2
0 for the case λ = 0.2, βv2 = 0.25

η0 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.2200395 0.3539169 0.4451356 0.5118180 0.5629637 0.6035890 0.6367285 0.6643341

0.2 0.2125212 0.3421194 0.4305462 0.4952475 0.5449058 0.5843679 0.6165695 0.6434008

0.3 0.2000783 0.3225674 0.4063440 0.4677398 0.5149130 0.5524300 0.5830621 0.6085969

0.4 0.1828486 0.2954343 0.3727072 0.4294674 0.4731484 0.5079279 0.5363488 0.5600553

0.5 0.1610389 0.2609806 0.3299035 0.3806889 0.4198565 0.4510904 0.4766430 0.4979747

0.6 0.1349428 0.2195764 0.2783132 0.3217720 0.3553841 0.3822418 0.4042464 0.4226362

Table 11 Values of f 2
0 for the case λ = 0.2, βv2 = 1.75

η0 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.2448837 0.3915553 0.4890137 0.5584838 0.6105600 0.6510941 0.6835752 0.7102112

0.2 0.2374215 0.3795154 0.4739330 0.5412533 0.5917339 0.6310380 0.6625417 0.6883821

0.3 0.2249399 0.3594183 0.4487860 0.5125366 0.5603667 0.5976261 0.6275043 0.6520206

0.4 0.2073859 0.3312331 0.4135669 0.4723459 0.5164819 0.5508890 0.5784973 0.6011628

0.5 0.1847135 0.2949476 0.3682952 0.4207213 0.4601320 0.4908856 0.5155825 0.5358716

0.6 0.1569152 0.2506022 0.3130459 0.3577574 0.3914206 0.4177226 0.4388662 0.4562506

4.3 Field profiles of the semilocal noncommutative vortices

Finally, by applying the inverse Weyl transform we can find
the profiles of the semilocal vortices for different values of
the parameters. The formulas are

φ+(x) ∗ φ̄+(x) = v2
∞∑

k=0

f 2
k fk,k(x),

φ0(x) ∗ φ̄0(x) = v2
∞∑

k=0

η2
k fk,k(x),
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Table 12 Values of f 2
0 for the case λ = 0.5, βv2 = 0.25

η0 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.1602409 0.2737020 0.3585048 0.4244411 0.4772755 0.5206269 0.5568846 0.5876912

0.2 0.1550665 0.2649169 0.3470589 0.4109533 0.4621707 0.5042094 0.5393793 0.5692690

0.3 0.1464564 0.2503017 0.3280186 0.3885166 0.4370436 0.4768968 0.5102548 0.5386168

0.4 0.1344382 0.2299062 0.3014492 0.3572060 0.4019748 0.4387729 0.4695963 0.4958196

0.5 0.1190664 0.2038210 0.2674641 0.3171484 0.3570982 0.3899747 0.4175409 0.4410131

0.6 0.1004407 0.1722034 0.2262524 0.2685494 0.3026267 0.3307163 0.3543005 0.3744046

Table 13 Values of f 2
0 for the case λ = 0.5, βv2 = 1.75

η0 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.2283353 0.3828428 0.4892865 0.5653020 0.6216879 0.6649564 0.6991253 0.7267608

0.2 0.2233610 0.3731310 0.4759154 0.5492336 0.6036180 0.6453673 0.6783533 0.7050458

0.3 0.2146406 0.3564993 0.4532769 0.5221908 0.5733087 0.6125753 0.6436251 0.6687711

0.4 0.2015959 0.3323599 0.4209074 0.4838293 0.5305060 0.5663915 0.5947978 0.6178272

0.5 0.1835371 0.3000318 0.3782747 0.4337543 0.4749187 0.5065990 0.5317079 0.5520893

0.6 0.1597608 0.2588504 0.3248680 0.3715902 0.4062713 0.4329942 0.4542035 0.4714428

Table 14 Values of f 2
0 for the case λ = 0.8, βv2 = 0.25

η0 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.0867972 0.1612771 0.2255448 0.2813263 0.3300317 0.3728119 0.4106060 0.4441825

0.2 0.0847113 0.1572219 0.2196691 0.2737899 0.3209924 0.3624182 0.3989940 0.4314747

0.3 0.0811168 0.1502752 0.2096520 0.2609908 0.3056882 0.3448651 0.3794237 0.4100937

0.4 0.0758505 0.1401799 0.1951888 0.2426072 0.2837994 0.3198458 0.3516071 0.3797730

0.5 0.0687112 0.1266240 0.1759151 0.2182588 0.2549512 0.2870036 0.3152118 0.3402070

0.6 0.0594862 0.1092859 0.1514638 0.1875696 0.2187798 0.2459975 0.2699244 0.2911117

Table 15 Values of f 2
0 for the case λ = 0.8, βv2 = 1.75

η0 ↓ /θv2 → 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.1 0.2077608 0.3713083 0.4891521 0.5729292 0.6338726 0.6796519 0.7151113 0.7433168

0.2 0.2061466 0.3647761 0.4778972 0.5581057 0.6164778 0.6603812 0.6944332 0.7215522

0.3 0.2023295 0.3526599 0.4582084 0.5327548 0.5870391 0.6279448 0.6597363 0.6851018

0.4 0.1948819 0.3334512 0.4289408 0.4960701 0.5449875 0.5819318 0.6107156 0.6337338

0.5 0.1822157 0.3055486 0.3888778 0.4471780 0.4896931 0.5218790 0.5470224 0.5671795

0.6 0.1628170 0.2675205 0.3369334 0.3852825 0.4205688 0.4473456 0.4683193 0.4851761

B(x) = v2
∞∑

k=0

(1 − λ + λβv2( f 2
k + η2

k ))

×(1 − f 2
k − η2

k ) fk,k(x).

We illustrate the results for several cases in Figs. 7, 8, 9, 10,
11 and 12, where φ+(x) ∗ φ̄+(x), φ0(x) ∗ φ̄0(x) and B(x)

are plotted, respectively, in red, blue, and green. In these
examples we have chosen an intermediate value for η0 and
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Table 16 Values of g2
0 for

commutative semilocal vortices
Parameter values ↓ η0

0.1 0.2 0.3 0.4 0.5 0.6

λ = 0 0.7191 0.6928 0.6494 0.5898 0.5151 0.4269

λ = 0.2, βv2 = 0.25 0.5863 0.5655 0.5311 0.4836 0.4238 0.3527

λ = 0.2, βv2 = 1.75 0.6522 0.6328 0.6002 0.5541 0.4942 0.4201

λ = 0.8, βv2 = 0.25 0.1875 0.1833 0.1759 0.1650 0.1500 0.1304

λ = 0.8, βv2 = 1.75 0.4444 0.4478 0.4501 0.4469 0.4327 0.4015

λ = 1, βv2 = 0.25 0.0531 0.0548 0.0570 0.0587 0.0590 0.0566

λ = 1, βv2 = 1.75 0.3717 0.3838 0.3991 0.4111 0.4126 0.3958

2 4 6 8

0.2

0.4

0.6

0.8

1

Fig. 7 The cases λ = 0, η0 = 0.4, θv2 = 0.25

three values for the interpolating parameter, corresponding to
semilocal Nielsen–Olesen vortices, semilocal Chern–Simons
vortices, and a third case just in the middle of the range
of λ. We have fixed the β parameter to a value βv2 = 1
and present, for each value of λ, solutions for both small
(θv2 = 0.25) and large (θv2 = 1.75) noncommutativities.
Some features that we can appreciate looking at the figures
are the following:

– In the case of small θv2 the profile of the magnetic field
has a maximum at the center of the Nielsen–Olesen vortex,
but it is ring-shaped for the Chern–Simons case; for the
intermediate λ = 0.5 solution the maximum is still there,
although flatter.

– This pattern changes when the noncommutativity is large.
In this case, the magnetic field profiles for λ = 0 and
λ = 0.5 are nearly the same and, although with a slightly
flatter maximum, the magnetic field remains concentrated
at the core of the vortex also for λ = 1.
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0.8

1

Fig. 8 The cases λ = 0, η0 = 0.4, θv2 = 1.75
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Fig. 9 The cases λ = 0.5, η0 = 0.4, θv2 = 0.25, βv2 = 1
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Fig. 10 The cases λ = 0.5, η0 = 0.4, θv2 = 1.75, βv2 = 1
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Fig. 11 The cases λ = 1, η0 = 0.4, θv2 = 0.25, βv2 = 1

– The magnitude of the upper component of the scalar field
is minimum at the origin. The value of φ+(0) ∗ φ̄+(0)

decreases with λ, both for small and large θ .
– For the three values of λ, φ+(0)∗φ̄+(0) is higher for larger

noncommutativity. Accordingly, the growth with distance
of φ+(x) ∗ φ̄+(x) is less steep in that case.

– The magnitude of the lower component of the scalar field
has a maximum at the vortex core. There is, for the three
values of λ, some increase of the value of φ0(0) ∗ φ̄0(0)

when θv2 = 1.75 as compared with θv2 = 0.25, but
the effect is small. In all cases, φ0(x) ∗ φ̄0(x) converges
quite slowly to its asymptotic value, and the higher the
noncommutativity, the slower the convergence.

2 4 6 8

0.2

0.4
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Fig. 12 The cases λ = 1, η0 = 0.4, θv2 = 1.75, βv2 = 1

5 Conclusions and outlook

In this paper we have studied the standard and semilocal
noncommutative generalized AHM with dielectric function,
showing that they admit a Bogomolny splitting and have,
therefore, stable vorticial solutions whose energy is propor-
tional to the magnetic flux. By changing the dielectric func-
tion it is possible to model the vortices in a variety of shapes.
For the U (1) model, we have focused in the case of unit
vorticity and provided a number of solutions with differ-
ent values of the non-dimensional parameters θv2 and βv2,
finding vorticial profiles which interpolate between those
of the noncommutative Nielsen–Olesen and Chern–Simons–
Higgs cases. We have checked numerically that, for the case
of θ → 0, regular solutions exist which converge to the
vortices of the commutative model. The noncommutative
SU (2) × U (1) semilocal model with dielectric function has
also been investigated along the same lines, and their self-
duality equations have been solved numerically for a variety
of values of the above mentioned parameters and also of
the coefficient η0 which measures the degree of departure
between standard and semilocal vortices.

Finally, let us make a couple of comments on some pos-
sible directions to extend this work in future research. Here
we have concentrated in the case of a single vortex but, as
is well known [24], the commutative self-duality equations
admit multivortex solutions spanning a moduli space which
has dimension 2n in the topological sector of winding number
n [25]. It would be interesting to elaborate on the generaliza-
tion of this result to the noncommutative cases with dielectric
function that we have been studying. For the U (1) case, for
instance, if we shift the scalar and gauge fields of a vortex
under the condition that the self-duality equations continue
to be satisfied to linear order in the deformations δφ, δAk ,
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we arrive at an equation of the form DΨ = 0 where

D =

⎛
⎜⎜⎝

D1 + i D2 0 −i Rφ Rφ

0 D̄1 + i D̄2 i L φ̄ L φ̄

∇2 −∇1 URφ̄
ULφ

∇1 ∇2 i Rφ̄ −i Lφ

⎞
⎟⎟⎠

and

Ψ =

⎛
⎜⎜⎝

δφ

δφ̄

δA1

δA2

⎞
⎟⎟⎠ .

The first three rows in D come form the linearization of (6)–
(7), whereas the fourth one is a background gauge condition
suitable to remove the spurious deformations which amount
only to a change of gauge. The elements of D are operators
whose action on the deformations is as follows:

DkδX = ∂kδX − i Ak ∗ δX

D̄kδX = ∂kδX + iδX ∗ Ak

∇kδX = ∂kδX − i Ak ∗ δX + iδX ∗ Ak

RY δX = δX ∗ Y LY δX = Y ∗ δX

UKY δX = λβ(KY δX) ∗ (v2 − φ ∗ φ̄)

−[(1 − λ) + λβφ ∗ φ̄] ∗ (KY δX).

In the commutative case, the dimension of the vortex moduli
space M is given by the index of D [25]

dim M = indD = dim kerD − dim kerD†

and, given that this is a topological quantity, and the noncom-
mutative self-duality equations are continuous deformations
in the θ parameter of the commutative ones, we expect on
general grounds that the result valid for commutative vor-
tices is still valid for any θ . Nevertheless, all the details of
the computation, such as to establish a vanishing theorem
for the kernel of D† or to evaluate the heat-kernel traces of
the superpartner Laplacians D†D and DD†, seem to be quite
intricate for objects involving the Groenewold–Moyal prod-
uct; see [26,27]. In particular, the coefficients of the asymp-
totic expansions of these heat-kernel traces split into three
terms:

an(O) = aL
n (O) + aR

n (O) + amix
n (O)

for O = D†D or O = DD†, where aL
n (O) involves only

the fields entering in O as left Moyal multipliers, aR
n (O)

includes only right Moyal multipliers, and amix
n (O) is given

by a combination of fields of both types. Furthermore, this
last term is divergent as θ−1 when the commutativity of the
plane is restored. Thus, an issue to be clarified is if the good
behavior in the limit θ → 0 of the solutions reported here
is enough to ensure that the coefficients amix

n coming from
the deformation operator D effectively vanish. On the other
hand, the heat-kernel coefficients are interesting also from the

point of view of computing the quantum corrections to the
semiclassical energy of vortices. In fact, the main part of this
correction comes from the trace of D†D once a convenient
regularization scheme, based for instance on zeta-function
methods [21], is stipulated. For the commutative U (1) and
semilocal vortices, the computation of the leading an(D†D)

needeed for the quantum corrections has been performed in
[28,29]. We think that it would be a worthwhile project to
study the precise way in which the methods described there
can be generalized in order to be applied to the case of non-
commutative solutions.
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reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)
2. R.J. Szabo, Phys. Rep. 378, 207 (2003)
3. R. Jackiw, Nucl Phys B Proc Suppl 127, 53–62 (2004).

hep-th/0305027
4. T.C. Adorno, D.M. Gitman, A.E. Shabad, D.V. Vassilevich, Phys.

Rev. D 84, 085031 (2011)
5. J.A Harvey, Komaba Lectures on Noncommutative Solitons and

D-Branes. hep-th/0102076
6. J. Lee, S. Nam, Phys. Lett. B 261, 437 (1991)
7. D. Bazeia, Phys. Rev. D 46, 1879 (1992)
8. W. García Fuertes, J. Mateos Guilarte, Eur. Phys. J. C 9, 535 (1999)
9. W. García Fuertes, J. Mateos Guilarte, Eur. Phys. J. C 9, 167 (1999)

10. W. García Fuertes, J. Mateos Guilarte. J. Math. Phys. 38, 6214
(1996)

11. D. Bazeia, E. da Hora, C. dos Santos, R. Menezes, Eur. Phys. J. C
71, 1833 (2011)

12. D. Bazeia, R. Casana, E. da Hora, R. Menezes, Phys. Rev. D 85,
125028 (2012)

13. G.S. Lozano, E.F. Moreno, F.A. Schaposnik, Phys. Lett. B 504,
117 (2001)

14. G.S. Lozano, E.F. Moreno, F.A. Schaposnik, JHEP 0102, 036
(2001)

15. F. Schaposnik, Three Lectures on Noncommutative Field Theories.
hep-th/0408132

16. L. Álvarez-Gaumé, S.R. Wadia, Phys. Lett. B 501, 319 (2001)
17. D.P. Jatkar, G. Mandal, S.R. Wadia, JHEP 0009, 018 (2000)
18. E. Witten, Noncommutative Tachyons and String Field Theory.

hep-th/0006071
19. T. Vachaspati, A. Achúcarro, Phys. Rev. D 44, 3067 (1991)
20. G.W. Gibbons, M.E. Ortiz, F. Ruiz, T.M. Samols, Nucl. Phys. B

385, 127 (1992)
21. J. Mateos Guilarte, A. Alonso Izquierdo, W. García Fuertes, M.

de la Torre Mayado, M.J. Senosiain, in Proceedings of the 5th
International School on Field Theory and Gravitation (Cuiabá,
Brazil, PoS (ISFTG), 2009)

22. M. Hindmarsh, Phys. Rev. Lett. 68, 1263 (1992)
23. W. García Fuertes, J. Mateos Guilarte. J. Math. Phys. 37, 554 (1996)
24. A. Jaffe, C. Taubes, Vortices and Monopoles, Structure of Static

Gauge Theories (Birkhäuser, Basel, 1980)
25. E.J. Weinberg, Phys. Rev. D 19, 3008 (1979)

123

http://arxiv.org/abs/hep-th/0305027
http://arxiv.org/abs/hep-th/0102076
http://arxiv.org/abs/hep-th/0408132
http://arxiv.org/abs/hep-th/0006071


3002 Page 16 of 16 Eur. Phys. J. C (2014) 74:3002

26. D.V. Vassilevich, SIGMA 3, 093 (2007). hep-th/07084209
27. R.A. Konoplya, D.V. Vassilevich, JHEP 0801, 068 (2008)
28. A. Alonso Izquierdo, W. García Fuertes, J. Mateos Guilarte, M. de

la Torre Mayado, Phys. Rev. D 71, 125010 (2005)

29. A. Alonso Izquierdo, W. García Fuertes, J. Mateos Guilarte, M. de
la Torre Mayado, Nucl. Phys. B 797, 431463 (2008)

123

http://arxiv.org/abs/hep-th/07084209

	Self-dual vortices in Abelian Higgs models with dielectric function on the noncommutative plane
	Abstract 
	1 Introduction
	2 The Abelian Higgs model with dielectric function and its self-duality equations
	3 The interpolating model: noncommutative vortices
	3.1 Solving the noncommutative vortex equation
	3.2 Comparison with the commutative vortices
	3.3 Noncommutative vortex profiles

	4 The semilocal model with dielectric function
	4.1 Semilocal self-dual noncommutative vortices
	4.2 Comparison with the semilocal commutative vortices
	4.3 Field profiles of the semilocal noncommutative vortices

	5 Conclusions and outlook
	References


