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Abstract Results are presented for the momentum-depe-
ndent two-loop contributions of O(w; o) to the masses and
mixing effects in the Higgs sector of the MSSM. They
are obtained in the Feynman-diagrammatic approach using
a mixed on-shell/DR renormalization that can directly be
matched onto the higher-order corrections included in the
code FeynHiggs. The new two-loop diagrams are eval-
uated with the program SecDec. The combination of the
new momentum-dependent two-loop contribution with the
existing one- and two-loop corrections in the on-shell/DR
scheme leads to an improved prediction of the light MSSM
Higgs boson mass and a correspondingly reduced theoreti-
cal uncertainty. We find that the corresponding shifts in the
lightest Higgs-boson mass M), are below 1 GeV in all sce-
narios considered, but they can extend up to the level of the
current experimental uncertainty. The results are included in
the code FeynHiggs.

1 Introduction

The ATLAS and CMS experiments at CERN have recently
discovered a new boson with a mass around 125.6 GeV [1,2].
Within the present experimental uncertainties this new boson
behaves like the Higgs boson of the Standard Model (SM) [3—
6]. However, the newly discovered particle can also be inter-
preted as the Higgs boson of extended models. The Higgs sec-
tor of the Minimal Supersymmetric Standard Model (MSSM)
[7-9] with two scalar doublets accommodates five physi-
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cal Higgs bosons. In lowest order these are the light and
heavy CP-even h and H, the CP-odd A, and the charged
Higgs bosons H*. The measured mass value, having already
reached the level of a precision observable with an experi-
mental accuracy of about 500 MeV, plays an important role
in this context. In the MSSM the mass of the light CP-even
Higgs boson, M}, can directly be predicted from the other
parameters of the model. The accuracy of this prediction
should at least match the one of the experimental result.

The Higgs sector of the MSSM can be expressed at low-
est order in terms of the gauge couplings, the mass of the
C’P-odd Higgs boson, My, and tan 8 = vy /v, the ratio of
the two vacuum expectation values. All other masses and
mixing angles can therefore be predicted. Higher-order con-
tributions can give large corrections to the tree-level relations
[10-12]. An upper bound for the mass of the lightest MSSM
Higgs boson of M;, < 135 GeV was obtained [13], and the
remaining theoretical uncertainty in the calculation of Mj,
from unknown higher-order corrections, was estimated to be
up to 3 GeV, depending on the parameter region. Recent
improvements have lead to a somewhat smaller estimate of
up to ~2 GeV [14,15] (see below).

Experimental searches for the neutral MSSM Higgs
bosons have been performed at LEP [16, 17], placing impor-
tant restrictions on the parameter space. At Run II of the
Tevatron the search was continued but is now superseded
by the LHC Higgs searches. Besides the discovery of a SM
Higgs-like boson the LHC searches place stringent bounds,
in particular in the regions of small M 4 and large tan 8 [18].
At a future linear collider (ILC) a precise determination of
the Higgs boson properties (either of the light Higgs boson
at ~125.6 GeV or heavier MSSM Higgs bosons within the
kinematic reach) will be possible [19]. In particular a mass
measurement of the light Higgs boson with an accuracy
below ~0.05 GeV is anticipated [20]. The interplay of the
LHC and the ILC in the neutral MSSM Higgs sector has been
discussed in Refs. [21-23].
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For the MSSM! the status of higher-order corrections to
the masses and mixing angles in the neutral Higgs sector
is quite advanced. The complete one-loop result within the
MSSM is known [28-35]. The by far dominant one-loop
contribution is the O(«;) term due to top and stop loops
(o = h,2 /(4m), h; being the top-quark Yukawa coupling).
The computation of the two-loop corrections has meanwhile
reached a stage where all the presumably dominant contribu-
tions are available [36-53]. In particular, the O(«;ay) con-
tributions to the self-energies—evaluated in the Feynman-
diagrammatic (FD) as well as in the effective potential
(EP) method—as well as the O(a?), O(apa), O(asap) and
O(ag) contributions—evaluated in the EP approach—are
known for vanishing external momenta. An evaluation of
the momentum dependence at the two-loop level in a pure
DR calculation was presented in Ref. [54]. A (nearly) full
two-loop EP calculation, including even the leading three-
loop corrections, has also been published [55-62]. How-
ever, within the EP method all contributions are evaluated
at zero external momentum, in contrast to the FD method,
which in principle allows non-vanishing external momen-
tum. Further, the calculation presented in Refs. [55-62] is
not publicly available as a computer code for Higgs-mass
calculations. Subsequently, another leading three-loop cal-
culation of O(a,asz), depending on the various SUSY mass
hierarchies, has been performed [63—65], resulting in the
code H3m (which adds the three-loop corrections to the
FeynHiggs result). Most recently, a combination of the
full one-loop result, supplemented with leading and sub-
leading two-loop corrections evaluated in the Feynman-
diagrammatic/effective potential method and a resummation
of the leading and subleading logarithmic corrections from
the scalar-top sector has been published [14] in the latest ver-
sion of the code FeynHiggs [13,14,24,38,66,67]. While
previous to this combination the remaining theoretical uncer-
tainty on the lightest CP-even Higgs boson mass had been
estimated to be about 3 GeV [12,13], the combined result
was roughly estimated to yield an uncertainty of about2 GeV
[14,15]; however, more detailed analyses will be necessary
to yield a more solid result.

In the present paper we calculate the two-loop O(o; )
corrections to the Higgs boson masses in a mixed on-
shell/DR scheme. Compared to previously known results
[36-38,44] we evaluate here corrections that are proportional
to the external momentum of the relevant Higgs boson self-
energies. These corrections can directly be added to the cor-
rections included in FeynHiggs. An overview of the rele-
vant sectors and the calculation is given in Sect. 2, whereas in
Sect. 3 we discuss the size and relevance of the new two-loop
corrections. Our conclusions are given in Sect. 4.

! We concentrate here on the case with real parameters. For the case of
complex parameters see Refs. [24-27] and references therein.
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2 Calculation
2.1 The Higgs-boson sector of the MSSM

The MSSM requires two scalar doublets, which are conven-
tionally written in terms of their components as follows:

H°> v+ = (@Y —ix?)
Hi=(,"1)= V2 !
: (Hl ( _¢1

(M b5
H2_<H°> (v2+%(¢2+1x2)> M)

The Higgs boson sector can be described with the help of two
independent parameters (besides the SM gauge couplings),
conventionally chosen as tan 8 = v, /vy, the ratio of the two
vacuum expectation values, and M i, the mass of the CP-odd
Higgs boson A. The bilinear part of the Higgs potential leads
to the tree-level mass matrix for the neutral CPP-even Higgs
boson,

2 2
2 tree My Mg,
Higgs — m2 m2

D162 (03]

B Mf‘ sin2,3 + M% coszﬂ — (Mi + M%) sin B cos B
—(Mf\ + M%) sin 8 cos 8 Mf\ coszﬁ + M% sinzﬂ

@

in the (@1, ¢2) basis and being expressed in terms of the
parameters Mz, M 4 and the angle 8. Diagonalization yields
the tree-level masses m, tree, M H tree-

The higher-order corrected CP-even Higgs boson masses
in the MSSM are obtained from the corresponding propa-
gators dressed by their self-energies. The inverse propagator
matrix in the (¢1, ¢») basis is given by

(AHiggs)_1

. (p _m¢1 +Z¢1(P )

m@+%m@>
My, + Lo100(P7)

pr—m3, + 34, (pH )’
)

where the 3( p?) denote the renormalized Higgs-boson self-
energies, p being the external momentum. The renormalized
self-energies can be expressed through the unrenormalized
self-energies, (p?), and counterterms involving renormal-
ization constants 8m> and 8 Z from parameter and field renor-
malization. With the self-energies expanded up to two-loop
order, $=35M4 2(2), one has for the CP-even part at the
i-loop level (i = 1, 2),

SDPH =597 +828) (p* —m3) —emiD . (da)
S0 (7 = 25 (pH) +825) (p* —m3) —sm ). (4b)

¢
(l) 2 (1) 2 (i) 2 2(i)
By (P7) = B0, (P7) =82y g, — By g (40)
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The counterterms are determined by appropriate renormal-
ization conditions and are given in the appendix.

The renormalized self-energies in the (¢, ¢) basis can
be rotated into the physical (h, H) basis where the tree-level
propagator matrix is diagonal, via

(?HH th>=D(a)(AZ¢] 2A"""jz)DT(oz) )
YhH Sk Loy

with the matrix

Ccos o

D(oz):( sinot>’ ©)

—sina cosa

which diagonalizes the tree-level mass matrix (2). The CP-
even Higgs boson masses are determined by the poles of the
(h, H)-propagator matrix. This is equivalent to solving the
equation

[pZ - m%,tree + 2A:hh(pz)] I:p2 - m%—[,tree + 2A:HH(pz):I
~[Bm™] =0 )

yielding the loop-corrected pole masses, M; and Mpg.
Here we use the implementation in the code FeynHiggs
[13,14,24,38,66,67], supplemented by the new momentum-
dependent O(a;ay) corrections, as described in Sect. 2.4.

Our calculation is performed in the Feynman-diagra-
mmatic (FD) approach. To arrive at expressions for the
unrenormalized self-energies and tadpoles at O(; ), the
evaluation of genuine two-loop diagrams and one-loop
graphs with counterterm insertions is required. Example dia-
grams for the neutral Higgs-boson self-energies are shown
in Fig. 1, and for the tadpoles in Fig. 2. For the countert-
erm insertions, described in Sect. 2.2, one-loop diagrams
with external top quarks/squarks have to be evaluated as
well, as displayed in Fig. 3. The complete set of contribut-
ing Feynman diagrams has been generated with the program
FeynArts [68-71] (using the model file including countert-
erms from Ref. [72]), tensor reduction and the evaluation of
traces was done with support from the programs FormCalc
[73] and TwoCalc [74,75], yielding algebraic expressions
in terms of the scalar one-loop functions Ag, By [76], the
massive vacuum two-loop functions [77], and two-loop inte-
grals which depend on the external momentum. These inte-
grals have been evaluated with the program SecDec [78,79];
see Sect. 2.3.

2.2 The scalar-top sector of the MSSM

The bilinear part of the top-squark Lagrangian,

—+ 7]
’C’f,mass = (l‘L', lt;g) Mf (;;) ) (8)

contains the stop mass matrix M, given by

M2+ m? + M% cos 28 (T — 0r53) mi Xy
M; = ( t my Xy M[~2R+m,2+M%0052/3 QYS\%V),
)
with
X, =A; — i cot B. (10)

Q; and Tl3 denote the charge and isospin of the top quark,
A; is the trilinear coupling between the Higgs bosons and
the scalar tops, and u is the Higgsino mass parameter. Below
we use Msusy = M; = Mj, for our numerical evalua-
tion. However, the analytical calculation has been performed
for arbitrary M;, and M7,. M; can be diagonalized with the
help of a unitary transformation matrix U;, parametrized by
a mixing angle 6;, to provide the eigenvalues mtgl and ngz as
the squares of the two on-shell top-squark masses.

For the evaluation of the O(a; ;) two-loop contributions
to the self-energies and tadpoles of the Higgs sector, renor-
malization of the top/stop sector at O(«y) is required, giving
rise to the counterterms for one-loop subrenormalization (see
Figs. 1, 2). We follow the renormalization at the one-loop
level given in Refs. [40,80-82], where details can be found.
In the context of this paper, we only want to emphasize that
on-shell (OS) renormalization is performed for the top-quark
mass as well as for the scalar-top masses. This is differ-
ent from the approach pursued, for example, in Ref. [54],
where a DR renormalization has been employed. Using the
OS scheme allows us to consistently combine our new correc-
tion terms with the hitherto available self-energies included
in FeynHiggs.

Finally, at O(a;ay), gluinos appear as virtual particles
only at the two-loop level (hence, no renormalization for the
gluinos is needed). The corresponding soft-breaking gluino
mass parameter M3 determines the gluino mass, M; = M3.

2.3 The program SecDec

The calculation of the momentum-dependent two-loop cor-
rections to the Higgs-boson masses at order O (¢, o) involves
two-loop two-point functions with up to four different
masses, in addition to the mass scale given by the exter-
nal momentum p>. For two-loop diagrams of propagator
type, analytical results in four space-time dimensions are
known only sparsely if different masses are occurring in the
loops [77,83-90]. The integrals which are lacking analyt-
ical results can be classified into four different topologies,
shown in Fig. 4. We have calculated these integrals numeri-
cally using the program SecDec [78,79], where up to four
different masses in 34 different mass configurations needed
to be considered, with differences in the kinematic invariants
of several orders of magnitude.

The program SecDec is a publicly available tool [91]
to calculate multi-loop integrals numerically. Dimensionally
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Fig. 1 Generic two-loop
diagrams and diagrams with
counterterm insertions for the
Higgs-boson self-energies
(p=h,H,A)
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regulated poles are factorized by sector decomposition as
described in Refs. [92,93], while kinematic thresholds are
handled by a deformation of the integration contour into the
complex plane, as described e.g. in Ref. [79]. The numerical
integration is done using the CUBA library [94].

The program has also been extended to be able to calculate
tensor integrals of any rank [95], and to process efficiently
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the evaluation of large ranges of kinematic points using the
“multinumerics”feature of the program, whichis of par-
ticular importance for the calculation presented here. This
feature allows one to produce input files for large sets of
kinematic points automatically, and to process the evalua-
tion of these points in parallel if several cores or a cluster are
available, without repeating the algebraic part of the sector
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Fig. 2 Generic two-loop I R ’,.?.\ P
diagrams and diagrams with B h 6 PNy .
. . 1) P \ é gl ' w ~
counterterm insertions for the ‘ . P : I I VPP PP q * .Y
L T T e 4 17 2R 4 g v [ '
Higgs-boson tadpoles | ; | U SAN K
;g n n e M .
(p=h,H;i, j,k=1,2) ‘t, ‘t, vl St

PPETION PR I
. i . /TN
. A . \
0] . \ ¢5 . \
1 f ‘v ' !
-------- X / SRRRRRER X
v ! ] A} L}
M ' Ay .
. . i ’
. - b
Se 4 S~ -
_____ -<-

Fig. 3 Generic one-loop
diagrams for subrenormalization
counterterms, involving top
quarks ¢, top squarks 7, gluons g
and gluinos g (i, j, k =1, 2)
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Fig. 4 Topologies which have been calculated numerically using SecDec
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decomposition, which can be done once and for all. The eval-
uation of a single phase space point for the most complicated
topology, to reach a relative accuracy of at least 107>, ranges
between 0.01 and 100 s on an Intel core i7 processor, where
the larger timings are for points very close to a kinematic
threshold.

2.4 Evaluation and implementation in the program
FeynHiggs

The resulting new contributions to the neutral CP-even
Higgs-boson self-energies, containing all momentum-depe-
ndent and additional constant terms, are assigned to the dif-
ferences

ASD =D (pH—£20), ab={(HH, hH, hh).

Y

Note the tilde (not hat) on £®(0) which signifies that
not only the self-energies are evaluated at zero external
momentum but also the corresponding counterterms, follow-
ing Refs. [36— 38] A finite shift Afl(z) (0) therefore remains
in the limit p> — 0 due to SM 2@ _ Re 2(2) (Mz) being
computed at p> = M7 in 2(2), but at p2 = 0 in £@; for
details see Eqs. (22) and (24) in the appendix.

The numerical evaluation to derive the physical masses
for h, H as the poles (real parts) of the dressed propagators
proceeds on the basis of Eq. (7) in an iterative way.

e In a first step, the squared masses M? 1.0 M? 1.0 are deter-
mined by solving Eq. (7) excluding the new terms
A E 2) b ( p?) from the self-energies.

e In a second step, the shifts AE(Z)(M,% o) = chb and

AE(Z) (M 0) b are calculated and added as con-

stants to the self-energies in Eq. (7), Eab(pz) —
2 h(H)
ab(p ) + Cab -

e In the third step, Eq. (7) is solved again, now including
the constant shifts C%H) in the self-energies, to deliver
the refined masses M}, (with cZ’b) and My (with cﬁy).

This procedure can be repeated for improving the accuracy;
numerically it turns out that going beyond the first iteration
yields only marginal changes.

The corrections of Eq. (11) are incorporated in
FeynHiggs by the following recipe, which is more general
and in principle applicable also to the case of the complex
MSSM with CP violation.

1. Determine Higgs masses My, o without the momentum-
dependent terms of Eq. (11); theindexi =1, ..., 4 enu-
merates the masses of h, H, A, HT in the real MSSM.
This is done by invoking the FeynHiggs mass-finder.

@ Springer

2. Compute the shifts /s = ASS) (M} o) witha, b, hy =
h, H.

3. Run FeynHiggs’ mass-finder again including the ! b
as constant shifts in the self-energies to determine the

refined Higgs masses M}, and Mpg.

This procedure could conceivably be iterated until full self-
consistency is reached; yet the resulting mass improvements
turn out to be too small to justify extra CPU time.

On the technical side we added an interface for an
external program to FeynHiggs which exports relevant
model parameters to the external program’s environment,
currently:

FHscalefactor ren. scale multiplicator, FHTB tan S,

FHAlfasMT o (my), FHGF Gr,
FHMHiggs2i M} g i=1...4, FHMSti mj;,i=12,
FH{Re, Im}UStli U;y,i=1,2, FHMGL  myg,

FH{Re, Im}MUE ", FHMAO My,

where the U; |; denote the elements of the stop mixing matrix,
o5 (m;) the running strong coupling at the scale m;, and
G r the Fermi constant. The renormalization scale is defined
within FeynHiggs as ug = m;-FHscalefactor. Invo-
cation of the external program is switched on by providing
its path in the environment variable FHEXTSE. The program
is executed from inside a temporary directory which is after-
wards removed.

The output (stdout) is scanned for lines of the form
‘se@m c, c¢;” which specify the correction ¢, + ic; [with
¢ = Re(cZZ), ci = Im(cZ,’;)] to self-energy se in the com-
putation of mass m, where m is one of Mh0, MHH, MAO, MHp,
and se is one of hOh0, HHHH, A0AQ, HmHp, hOHH, h0AO,
HHAO, GOGO, h0G0, HHGO, A0GO, GmGp, HmGp, F1F1,
F2F2, F1F2. The latter three, if given, substitute

HHHH = cos?a F1F1 + sina F2F2 + sin2a F1F2,

(12a)
hOhO = sin> @ F1F1 + cos® @ F2F2 — sin 2« F1F2,

(12b)
hOHH = cos 2o F1F2 + § sin2« (F2F2 — F1F1), (12¢)

where « is the tree-level 2 x 2 neutral-Higgs mixing angle
in Eq. (6). Self-energies not given are assumed zero.

The zero-momentum contributions 2(2) 0),ab ={HH,
hH, hh}, are subtracted if the output of the external pro-
gram contains one or more of ‘sub asat’, ‘sub atat’,
‘sub asab’, ‘sub atab’ forthe o oy, atz,asab, and o, op
contributions, respectively. All other lines in the output are
ignored.
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Fig. 5 Momentum dependence of the real (left column) and
imaginary (right column) parts of the two-loop self-energies
AXpn, AXpp, AXy g, within scenario 1, for tan 8 = 5 (red squares)

3 Numerical results

We show results for the subtracted two-loop self-energies
AEﬁ) (p2) given in Eq. (11), as well as for the mass shifts

AMy = My — Mpo, AMpg =My —Mpuyo (13)
i.e. the difference in the physical Higgs-boson masses evalu-
ated including and excluding the newly obtained momentum-
dependent two-loop corrections. This quantity, in particular
AMy, for the light CP-even Higgs boson, can directly be
compared with the current experimental uncertainty as well
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andtan 8 = 20 (blue crosses) and M4 = 250 GeV. One can see that the
self-energies change substantially beyond the threshold at p = (2m;)?

as with the anticipated future ILC accuracy of [20],

sMPP'C < 0.05 Gev. (14)
The results are obtained for two different scenarios, vary-
ing parameters like tan 8, M 4, Mz, and illustrate the impact
of these parameters via the new two-loop corrections on the
neutral CP-even Higgs boson masses, M, and My . The cor-
responding renormalization scale, upg, 1S set to upg = m;
in all numerical evaluations. The scale uncertainties are
expected to be much smaller than the parametric uncertain-
ties due to variations of parameters like tan 8, M, Mgz, m;.
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Fig. 6 Momentum dependence of the real part of the two-loop self-
energies AX,,, AXpy, AXyy, within scenario 1, for two different
values of tan B and a range of M, values

3.1 Scenario 1: mj'**

Scenario 1 is oriented at the m '™ scenario described in
Ref. [96]. We use the following parameters:

m; = 173.2 GeV, Msuysy =1 TeV, X, =2 Msusy,
Mz = 1500 GeV, un =200 GeV, (15)

@ Springer

the inverse propagator matrix of the Higgs bosons. There-
fore it is interesting to study the behavior of the real and
imaginary parts of the self-energies. In Fig. 5 we show the
momentum-dependent parts of the renormalized two-loop
self-energies in the physical basis, Eq. (11) for two differ-
ent values of tan 8, tan 8 = 5 and tan 8§ = 20, at a fixed
A-boson mass M4 = 250 GeV. The data points are not
connected by a line in order to show that each numerical
point is obtained from a calculation of the 34 analytically
unknown integrals with the program SecDec. The inlays in
Fig. 5 magnify the region p> < (125 GeV)?, where one can
observe that for p2 — 0, the subtracted self-energies are not
exactly zero. As mentioned in Sect. 2.4, this is due to the fact
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Fig. 8 Variation of the mass shifts AM),, AMy with the gluino mass,
within scenario 1, for two different values of tan 8 = 5,20 and M4 =
250 GeV

that the on-shell renormalization condition for the A-boson
self-energy is defined differently with regard to the calcula-
tion without momentum dependence. The resulting constant
contributions are additionally suppressed by factors sin’p,

sin B cos B and cos” 8 appearing in the counter terms sm>2?

¢
Smé(fgz and (Smégz), respectively, according to Eqgs. (24) in

the appendix.

The imaginary part is independent of the A-boson mass, as
this mass parameter solely appears in the counterterms of DR
renormalized quantities and the SMi(z) counterterm, where
only the real part contributes. Therefore, the imaginary parts
displayed in Fig. 5 do not contain additional constant terms.
As to be expected, the imaginary parts are zero below the
tt production threshold at p = 2 m,, which results from the
fact that the top mass is the smallest mass appearing in the
loops. Beyond this threshold, the imaginary parts are growing
substantially with increasing p2. From these observations,
the mass shifts in the region below the first threshold at p =
2 m; are expected not to be large.

Similar results, now including a variation of M4 are shown
in Fig. 6. In the upper plot for A3, and in the middle plot
for A3y, the solid lines depict M4 ~ 100 GeV, while the

182 TB= 5, My -~ - -
8= 5,M° —
TB=20, My

130 | -~

128

126

124

Mo and My, (GeV)

122

120

118 . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M (GeV)

Fig. 9 Variation of M;, and M, ¢ as a function of M3 within scenario
1, fortan B = 5,20 and M4 = 250 GeV

dashed lines are for M4 ~ 900 GeV. In these plots the light
shading covers the range for tan 8 = 5, while the dark shad-
ing for tan 8 = 20. In the lower plot for AYpyy we show
results for M4 ~ 100, 250, 600, 900 GeV as solid, dotted,
dot-dashed, dashed lines, respectively (and shading has been
omitted). For Aflhh at low p values only a small variation
with M4 can be observed. For p and M4 large, the contri-
butions to the self-energy are bigger. In A She larger effects
are observed at smaller M4 for both small and large p val-
ues. For A3 HH, on the other hand, at low p values, large
effects can be observed for large M4 due to the aforemen-
tioned counterterm contribution ~8Mi(2) = Re Eﬁa (fo)'
At large p, as before, small M4 values give a more sizable
contribution.

We now turn to the effects of our newly computed
momentum-dependent two-loop corrections on the Higgs-
boson masses M, p via the mass shifts AM;, and AMg. In
Fig. 7 we show AM), (upper plot) and AMy (lower plot)
as a function of M4 for tan 8 = 5 (blue) and tan 8 = 20
(red). In the m;'™ scenario for Ms 2 200 GeV we find
AM) ~ —60 MeV, i.e. of the size of the future experimen-
tal precision; see Eq. (14). The contribution to the heavy
CP-even Higgs-boson is suppressed with tan 8. While the
size of AMp becomes negligible for M4 = 150 GeV for
tan § = 20, its variation is more pronounced for tan 8 = 5.
A My canreach about —60 MeV for very small or intermedi-
ate values of M4 and steadily decreases for M4 2 500 GeV.
The peak in AMpy for tan 8 = 5 originates from a threshold
at 2 my.

Finally, in scenario 1, we analyze the dependence of M),
and My on the gluino mass, M. The results are shown
in Fig. 8 for AM}, (upper plot) and AMpg (lower plot) for
M4 = 250 GeV, with the same color coding as in Fig. 7.
In the upper plot one can observe that the effects are par-
ticularly small for the default value of M; in scenario 1.
More sizeable shifts occur for larger gluino masses, by more

@ Springer
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Fig. 10 Momentum dependence of the real and imaginary parts of the two-loop self-energies Aihh, Afih H, AS g Within scenario 2, with
tan B = 5,20 and M4 = 250 GeV with the same color coding as in Fig. 5

than —400 MeV for M 2 4 TeV, reaching thus the level of
the current experimental accuracy in the Higgs-boson mass
determination. The corrections to Mg, for the given value of
M4 = 250 GeV do not exceed —50 MeV in the considered
Mj; range.

The dependence of the light CP-even Higgs-boson mass
on M; is analyzed in Fig. 9 for tan 8 = 5,20 and M, =
250 GeV. Here we show as dashed lines the results for M}, ¢
(i.e. without the newly obtained momentum-dependent two-
loop corrections) and as solid lines the results for M} (i.e.
including the new corrections). While a maximum of the
Higgs-boson mass can be observed around Mz ~ 800 GeV,

@ Springer

X sce-

in agreement with the original definition of the m)"
nario [97], a downward shift by more than 4 GeV is found
for Mz ~ 5 TeV. Such a strong effect is due to a (squared)
logarithmic dependence of the O(a;a5) corrections evaluated
at p? = 0, as given in Eq. (73) of Ref. [38]. In Fig. 9 it can
be seen that the size of the momentum-dependent two-loop
corrections similarly grows with M3, reaching ~400 MeV,
as was shown above in Fig. 8. Consequently, the logarithmic
dependence of the light CP-even Higgs-boson mass on the
gluino mass that was found analytically for the O (o, ;) cor-
rections at p2 = 0, is now also found numerically for the
momentum-dependent two-loop corrections.
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Fig. 11 Momentum dependence of the real parts of the two-loop self-
energies AX,,, AXyy, AX gy in scenario 2 for two different values
of tan B and various values of M4 (see text)

3.2 Scenario 2: light stops

Scenario 2 is oriented at the “light-stop scenario” of
Ref. [96].> We use the following parameters:

2 While the original scenario in Ref. [96] is challenged by recent scalar-
top searches at ATLAS and CMS, a small modification in the gaugino-
mass parameters (which play no or only a very minor role here) to
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TB=20 X

A M, (MeV)

0 100 200 300 400 500 600 700 800 900 1000
M, (GeV)
800 T T
TB=5 +
600 | TB=20 X
400
< 200
[
= 0K %
I L
= -200 .
< 400 ¢ ‘ ‘
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-600 -40 m
-800 [0
-80 : :
-1000 | 0 100 200 300 i

0 100 200 300 400 500 600 700 800 900 1000
M, (GeV)

Fig. 12 Variation of the mass shifts AM;, AMy with the A-boson
mass M 4 within scenario 2, for two different values of tan 8 = 5, 20

m; = 173.2 GeV, Msysy = 0.5 TeV, X; =2 Msysy,
Mz = 1600 GeV, n =200 GeV, (16)

leading to stop mass values of
mj, = 326.8 GeV, mj; =673.2 GeV.

Scenario 2 is analyzed with the same set of plots shown for
scenario 1 in the previous subsection. The effects of the new
momentum-dependent two-loop contributions on the renor-
malized Higgs-boson self-energies, Af)ab(pz), are shown
in Fig. 10. As before, we show the results separately for
the real and imaginary parts of the self-energies. An addi-
tional threshold beyond the top-mass threshold appears at
p = 2m,~l, where the discontinuity stems from the deriva-
tive of the imaginary part of the By function(s). Analogously
to scenario 1, the largest contributions in the region below
200 GeV arise in the real part of A amounting to about
15 GeV? at p = 125 GeV, where the dependence on the
value of tan § is rather weak.

Footnote 2 continued
M = 340 GeV, My = u = 400 GeV leads to a SUSY spectrum that
is very difficult to test at the LHC.
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Fig. 13 Variation of the mass shifts AMj,, AMpy with the gluino mass,
within scenario 2, for two different values of tan 8 = 5,20 and M4 =
250 GeV

The dependence of A f)ab (pz) on My is shown in Fig. 11,
using the same line styles as in Fig. 6. The curves show the
same qualitative behavior as in Fig. 10, exhibiting again the
new threshold at p = 2m i In general, outside the threshold
region the effects in scenario 2 are slightly smaller than in
scenario 1.

‘We now turn to the effects on the physical neutral CP-even
Higgs boson masses. In Fig. 12 we show the results for A M},
(upper plot) and AM g (lower plot) as a function of M 4 (with
the same line styles as in Fig. 7). As can be expected from
the previous figures, the effects on Mj and My are in general
slightly smaller in scenario 2 than in scenario 1, where A M},
still reaches the anticipated ILC accuracy; see Eq. (14). For
AMpy around the threshold p = 2mj, the largest shift of
~—1 GeV can be observed. However, this shift is still below
the anticipated mass resolution at the LHC [98].

Finally we analyze the dependence on Mj; in Fig. 13. In
the upper plot we show AMj, for tan § = 5 and tan g = 20,
where both values yield very similar results. As in sce-
nario 1, “accidentally” small values of A M}, are found around
Mgz ~ 1600 GeV. For larger gluino mass values the shifts
induced by the new momentum-dependent two-loop correc-
tions exceed —500 MeV and are thus larger than the current

@ Springer

experimental uncertainty. The results for AM g are shown in
the lower plot. While they are roughly twice as large as in
scenario 1, they do not exceed —100 MeV.

4 Conclusions

We have presented results for the leading momentum-
dependent O(w;a5) contributions to the masses of neutral
C'P-even Higgs bosons in the MSSM. They are obtained by
calculating the corresponding contributions to the dressed
Higgs-boson propagators obtained in the Feynman-diagra-
mmatic approach using a mixed on-shell/DR renormaliza-
tion scheme. In the Higgs sector a two-loop renormaliza-
tion has to be carried out for the mass of the neutral Higgs
bosons and the tadpole contributions. Furthermore, renor-
malization of the top/stop sector at O(w) is needed entering
at the two-loop level via one-loop subrenormalization. The
diagrams were generated with FeynArts and reduced to
a set of basic integrals with the help of FormCalc and
TwoCalc. The two-loop integrals which are analytically
unknown have been calculated numerically with the program
SecDec.

We have analyzed numerically the effect of the new
momentum-dependent two-loop corrections on the predic-
tions for the CP-even Higgs boson masses. This is partic-
ularly important for the interpretation of the scalar boson
discovered at the LHC as the light CP-even Higgs state of
the MSSM. While currently a precision below the level of
~500 MeV is reached, a reduction by about an order of mag-
nitude can be expected at the future e e~ International Linear
Collider (ILC).

In our numerical analysis we found that the effects on the
light CP-even Higgs boson mass, M}, depend strongly on the
value of the gluino mass, M;. For values of Mz ~ 1.5 TeV
corrections to My, of about —50 MeV are found, at the level
of the anticipated future ILC accuracy. For very large gluino
masses, M; 2 4 TeV, on the other hand, substantially larger
corrections are found, at the level of the current experimental
accuracy. Consequently, this type of momentum-dependent
two-loop corrections should be taken into account in preci-
sion analyses interpreting the discovered Higgs boson in the
MSSM.

For the heavy C’P-even Higgs boson mass, My, the effects
are mostly below current and future anticipated accuracies.
Only close to thresholds, e.g. around p = 2mj,, larger cor-
rections to My around ~1 GeV are found.

The new results of O(w;o5) have been implemented into
the program FeynHiggs. A detailed description of our cal-
culation will be presented in a forthcoming publication [99].
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Appendix: Renormalization and counterterms

Renormalization and calculation of the renormalized self-
energies is performed in the (¢1, ¢) basis, which has the
advantage that the mixing angle « does not appear and
expressions are in general simpler.

Field renormalization is performed by assigning one

renormalization constant for each doublet,
Hi— (1+ 58Zp ) Hi, Ho — (14 38Z3p)Ha,  (17)

which can be expanded to one- and two-loop order according

to
87w, =8Zy) +38Z5). 87w, =52 +525).  (18)

The field renormalization constants appearing in (4) are then
given by

(i) _ () @ _ (1)

5Z = SZH], SZ¢2 = SZHZ, (19)
(z) _ 1 (1) )

SZ¢1¢2 - 5<5ZH1 +SZH2)'

The mass counterterms sz(') in (4) are derived from

the Higgs potential, including the tadpoles, by the follow-
ing parameter renormalization:

M% — M3+ M3 +sM3®,

Ty — T+ 87" + 612, (20)
M% — Mm%+ M)+ smP,

Ty — Ty + 8T +8T\2,

tan 8 — tan (1 + § tan /3(1) + § tan ,6(2)) .

The parameters 77 and 7> are the terms linear in ¢ and ¢,
in the Higgs potential. The renormalization of the Z mass
M does not contribute to the O(a ;) corrections we are
pursuing here; it is listed, however, for completeness.

The basic renormalization constants for parameters and
fields have to be fixed by renormalization conditions accord-
ing to a renormalization scheme. Here we choose the on-shell
scheme for the parameters and the DR scheme for field renor-
malization and give the expressions for the two-loop part.

The tadpole coefficients are chosen to vanish at all orders;
hence their two-loop counterterms follow from

13 +6T\ 2 =0, ie. o17=-17, 1,7 =-T,7,

21

where T](z), T2(2) are obtained from the two-loop tapole dia-
grams. The two-loop renormalization constant of the A-
boson mass reads

sMi? =Re =0 (M), (22)
in terms of the A-boson unrenormalized self-energy 4.
The appearance of a non-zero momentum in the self-energy
goes beyond the O(a; ;) corrections evaluated in Refs. [36—
38,44].

For the renormalization constants § Z3¢,, 8 Z3, and § tan
several choices are possible; see the discussion in [100-102].
As shown there, the most convenient choice is a DR renor-
malization of étan 8, §Z, and §Z7,, which reads at the
two-loop level

div
622 = 523"% = —[Re x? : (23a)

@1 2

[p==0
5 div
() _ 5, @DR _ )

828 =87 [R e X ]|pzzo’ (23b)
stan B = stan pOOR = 1 (5252 _ 525_?1) . (230

The term in Eq. (23c) is in general not the proper expres-
sion beyond one-loop order even in the DR scheme. For our
approximation, however, with only the top Yukawa coupling
at the two-loop level, it is the correct DR form [103,104].

The two-loop mass counterterms in the self-energies (4)
are now expressed in terms of the parameter renormalization
constants determined above as follows:

8m§5(2) (SMZ(Z) cos ,3 + SMZ(Z) s1n2,3
—57? cos B(1 + sinpB)
2My sw
+6 T2(2) cos2ﬂ sin 8
2M W W
+28tan 8P cos’Bsin’g (M3 — M2),  (24a)
smy s = —(6M5;> +8M;P)sin B cos B
@) @ 3
—8T sin 8T, ———— cos
gy PO Sy <P
—j tan ,3(2) cos S sin B cos 2/3(MA+MZ), (24b)
8m2(2) 8M2(2) sin ,B + (SMZ(Z) coszﬂ
) .
+6T, sin“f cos
! 2My sy 13 p
8T2(2)2 sin B(1 + cos?p)
My sy
—28tan B cos’Bsin’B (M5 — M3).  (24c)

Note that the Z-mass counterterm is kept for completeness;
it does not contribute in the approximation of O () con-
sidered here.
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