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Abstract In this paper we analyze two higher-derivative
theories, the generalized electrodynamics and the Alekseev–
Arbuzov–Baikov effective Lagrangian from the point of view
of the Faddeev–Jackiw symplectic approach. It is shown that
the full set of constraints is obtained directly from the zero-
mode eigenvectors, and that they are in accordance with well-
known results from Dirac’s theory, a recurrent issue in the
literature. The method shows to be rather economical in rela-
tion to the Dirac one, obviating thus unnecessary classifica-
tion and calculations. Afterwards, to conclude we construct
the transition amplitude of the non-Abelian theory following
a constrained BRST method.

1 Introduction

A standard classical treatment of constrained theories was
given originally by Dirac [1,2], it essentially analyzes the
canonical structure of any theory, and it has been widely
used in a great variety of quantum systems. However, it
should be realized that Dirac’s methodology is unnecessar-
ily cumbersome and can be streamlined. Within this context,
Faddeev and Jackiw [3] suggested a symplectic approach
for constrained systems based in a first-order Lagrangian.
This method has some very interesting properties of obviat-
ing the constraint classification, unnecessary calculations and
the hypothesis of Dirac’s conjecture as well. The Faddeev–
Jackiw (FJ) symplectic formalism has been studied in a sys-
tematic way in different scenarios, shedding new light on the
research of constrained dynamics.

The basic geometric structure of the Faddeev–Jackiw the-
ory can be read directly from the elements of the inverse
symplectic matrix, and they coincide with the correspondent
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Dirac brackets, providing thus a bridge to the commutators of
the quantized theory. On the other hand, the results obtained
from the Faddeev–Jackiw approach have been compared with
the corresponding results of the Dirac method in different sit-
uations, for unconstrained and constrained systems, but it is
still matter of study.

The method has as the key ingredient that these constraints
produce deformations in the two-form symplectic matrix in
such a way that, when all constraints are considered (by
means of a Darboux transformation), the symplectic matrix
is non-singular. As a result, one obtained the Dirac brackets.
Nevertheless, it is important to emphasize that sometimes it
happens that the (iteratively deformed1) two-form matrix is
singular and no new constraint is obtained from the corre-
sponding zero-mode. This is the case when one deals with
gauge theories. At this point one should introduce convenient
gauge (subsidiary) conditions, like a constraint; and the two-
form matrix becomes, therefore, invertible. This extension
was proposed and developed by Barcelos–Neto and Wotza-
sek [4,5] and by Montani and Wotzasek [6], and this was
studied in several models [7–10]. It basically is in the spirit
of Dirac’s work, with proposal works by imposing the stabil-
ity of the constraints under time evolution. So, constraints are
not solved but embedded in an extended phase space. This
is a more suitable approach when some relevant symmetries
must be preserved.

A subtle issue subsequent to the Faddeev–Jackiw method
is its equivalence to the Dirac method. Initially the equiva-
lence was discussed in cases when the systems have no con-
straints [11,12]; but, in a constrained system, the situation
was not completely clear, and some argumentation was pro-
vided earlier [13,14] as regards the equivalence between the
methods. However, recently was presented a proof [15] that

1 Actually the geometric role played by the constraints is to produce a
‘deformation’ in the original, singular, symplectic two-form matrix.
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the usual Faddeev–Jackiw method and Dirac method were
not completely equivalent; namely, one showed that some
constraints calculated in the Dirac formalism do not appear in
the calculation in the Faddeev–Jackiw formalism. Then these
would result in a contradiction between the usual Faddeev–
Jackiw quantization and the Dirac quantization [16,17].

Higher-derivative Lagrangian functions [18–20] are a
fairly interesting branch of the ongoing effective theories;
they were initially proposed as an attempt to enhance and
render a better ultraviolet behavior of physically relevant
models. It is well known that higher-derivative theories have,
as a field theory, better renormalization properties than the
conventional ones. These properties have shown to be quite
appealing in the attempts to have a quantized and renormaliz-
able theory of gravity [21–24]. The undesired features of the
higher-derivative theory is that they possess a Hamiltonian
that is not bounded from below and that the process of adding
such terms jeopardizes the unitarity of the theory [25,26].
Besides all these motivations we emphasize that, from a the-
oretical point of view, higher-derivative theories have many
interesting features that justify their study in itself.

As it has been pointed out in several works [27–31] over
the years, it has been clear for a long time that Maxwell’s the-
ory is not the only one to describe the electromagnetic field.
One of the most successful generalizations is the generalized
electrodynamics [27–29]. Actually, Podolsky’s theory is the
only one that is a linear, Lorentz, and U (1) invariant general-
ization of Maxwell’s theory [31]. Another interesting feature
inherent to Podolsky’s theory is the existence of a gener-
alized gauge condition also, namely, the generalized Lorenz
condition: Ω[A] = (1+M−2�)∂μ Aμ; considered an impor-
tant issue, it is only through the choice of the correct gauge
condition that we can completely fix the gauge degrees of
freedom of a given gauge theory [30]. The relative success
of these achievements motivated some authors to propose
finite extensions of Quantum Chromodynamics (QCD) [32–
34] and also to advocate that higher order terms would be able
to explain quark confinement. Our main goal here would be
exactly to study both higher-derivative theories, Podolsky’s
electrodynamics and a non-Abelian [35,36] extension of the
model, also known as the Alekseev–Arbuzov–Baikov effec-
tive Lagrangian [37] in the framework of the Faddeev–Jackiw
symplectic approach. So far we have no knowledge of appli-
cation of the Faddeev–Jackiw method to higher-derivative
theories. Moreover, this study may also shed some new light
on the issue of whether the accordance between the Dirac
and Faddeev–Jackiw methods holds.

In this paper, we discuss the canonical structure of
the Podolsky electrodynamics and the SU (N ) Alekseev–
Arbuzov–Baikov effective Lagrangian in the light of the
Faddeev–Jackiw approach. In Sect. 2 we start by making a
brief review of both the FJ and (constrained) symplectic for-
malisms. As the generalized electrodynamics of Podolsky

has already been subject of analysis from the Dirac point of
view [30], we shall study the theory via the FJ method in order
to present an exercise of the methodology and also to check
its consistency. Next, in Sect. 3, we discuss and introduce
the Alekseev–Arbuzov–Baikov effective Lagrangian by dis-
cussing the generalized electrodynamics by making use of an
enlargement of the gauge group to non-Abelian ones. Having
defined the Lagrangian density we proceed by presenting the
methodology, and obtaining the full set of constraints of the
theory. Although an attempt of a path-integral formulation
based on the FJ method has been proposed [38,39], there
is no conclusive nor a clear argument to show the consis-
tence of the method. Therefore, by means of complementar-
ity of the previous discussion, we shall conclude the section
by constructing the transition amplitude for the non-Abelian
theory via the Batalin–Fradkin–Vilkovisky (BFV) method
[40–42], obtaining an important result for subsequent analy-
sis in the quantum level. In Sect. 4 we summarize the results,
and present our final remarks and prospects.

2 Generalized electrodynamics via Faddeev–Jackiw
formalism

2.1 Faddeev–Jackiw symplectic method

Let us start with a first-order in time derivative Lagrangian,
which may arise from a conventional second-order one after
introducing auxiliary fields. First, one can construct the sym-
plectic Lagrangian2

L = ai (ξ)ξ̇ i − V (ξ), (1)

with the arbitrary one-form components ai , with i =
1, . . . , N . The first-order system is characterized by a closed
two-form. If the two-form is non-degenerate, it defines a sym-
plectic structure on the phase space, described by the coordi-
nates ξi . On the other hand, if the two-form is singular, with
constant rank, it is called a pre-symplectic two-form. Thus,
in terms of components, the (pre)symplectic form is defined
by

fi j = ∂

∂ξ i
a j (ξ) − ∂

∂ξ j
ai (ξ). (2)

The Euler–Lagrange equations are given by

fi j ξ̇
j = ∂

∂ξ i
V (ξ). (3)

2 In this section we discuss a system with finite degrees of freedom.
However, an extension to the infinite degrees of freedom case can be
attained in a straightforward way.
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Now, when the two-form fi j is non-singular, it has an inverse
f i j , then

ξ̇ i = f i j ∂

∂ξ j
V (ξ), (4)

and the basic brackets are defined as {ξ i , ξ j } = f i j . How-
ever, in the case that the Lagrangian (1) describes a con-
strained system, the symplectic matrix is singular, and the
constraints hidden in the system need to be determined. Let
us suppose that the rank of fi j is 2n, so there is N −2n = M
zero-mode vectors vα , α = 1, . . . , M . The system is then
constrained by M equations in which no time-derivatives
appear. Then there will be constraints that reduce the num-
ber of degrees of freedom. Thus, multiplying (3) by the (left)
zero-modes vα of fi j we get the (symplectic) constraints in
the form of algebraic relations

Ωα ≡ vα
i

∂

∂ξ i
V (ξ) = 0. (5)

Then one can give the first-iterated Lagrangian by introduc-
ing corresponding Lagrange multipliers of the obtained con-
straints

L = a(1)
i (ξ)ξ̇ i + Ωαλα − V (1)(ξ). (6)

Hence, one may regard the introduced Lagrange multipliers
λ as symplectic variables and can extend the symplectic vari-
able set. This procedure reduces the number of ξ ’s. Then the
whole procedure can be repeated again until all constraints
are eliminated and we are left with a completely reduced,
unconstrained, and canonical system. However, it should be
remarked that in the case of gauge theories, the zero-mode
does not give any new constraint (it still does not give the
full rank matrix), and the symplectic matrix remains singu-
lar. Thus, we should consider that it is necessary to introduce
gauge condition(s) to obviate the singularity. So, the work can
be finished in expectation in terms of the original variables,
and the basic brackets can be determined.

2.2 Generalized electrodynamics

The purpose of the present study is to examine the FJ method-
ology applied in the analysis of a higher-derivative theory. It
is interesting to study first, as a simpler example, an Abelian
theory. Therefore, in order to keep things simple, we choose
the simplest but rather interesting Abelian electrodynamics
of Podolsky, whose Lagrangian density is given by

L = −1

4
Fμν Fμν + 1

2M2 ∂μFμν∂λFλν, (7)

where Fμν = ∂μ Aν − ∂ν Aμ and the spacetime metric ele-
ments are ημν = (1,−1,−1,−1). It should be mentioned

that we shall follow the Ostrogradski approach [18–20] to
deal with the higher-derivative terms. Hence, there should
be introduced another set of the canonical pair (Γ μ ≡
∂0 Aμ, φν) in order to have a correct expanded phase space to
thus proceed with the canonical analysis. With this thought
in mind one finds the following Lagrangian [30]:

L = 1

2
(
−→
Γ − ∇ A0)

2 + 1

2
(∇ × −→

A )2

+ 1

2M2 [(∇.
−→
Γ − ∇2 A0)

2

− (∂0
−→
Γ − ∇Γ0 − ∇ × (∇ × −→

A ))2]. (8)

To transform this Lagrangian from second to first order, we
shall use an auxiliary field, which is chosen to be the canoni-
cal momentum due to an algebraic simplification that it pro-
vides. In that case, we should recall that we have an additional
set of canonical pairs, in particular here, (A, π) and (Γ, φ):

φμ = ∂L

∂(∂0∂0 Aμ)
, (9)

and

πμ = ∂L

∂(∂0 Aμ)
− 2∂k

(
∂L

∂(∂0∂k Aμ)

)
− ∂0

(
∂L

∂(∂0∂0 Aμ)

)
,

(10)

resulting in the following expressions:

πμ = Fμ0 − M−2(ημk∂k∂λF0λ − ∂0∂λFμλ), (11)

and

M2φμ = (ημ0∂λF0λ − ∂λFμλ),

where

M2−→φ = ∂0
−→
Γ − ∇Γ 0 − (∇ × (∇ × −→

A )). (12)

In order to obtain the quadratic kinetic terms we may
make use of the equation of motion for φ (12) back into
the Lagrangian. Therefore, in this case one can cast the
Lagrangian density (8) in the form

L = −φk Γ̇k + πμ Ȧμ − V (0), (13)

where the potential density is

V (0) = πμΓ μ − 1

2
(
−→
Γ − ∇ A0)

2 − 1

2
(∇ × −→

A )2

− 1

2M2 (∇.
−→
Γ − ∇2 A0)

2

− M2

2
−→
φ 2 − −→

φ .(∇Γ0 + ∇ × (∇ × −→
A )). (14)
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The initial set of symplectic variables is seen to be ξ
(0)
α =

{Ak, πk, A0, π0, Γk, φk, Γ0}; this permits us to identify the
non-null canonical one-form

Γ a(0)
i = −φi ,

Aa(0)
i = −πi ,

A0 a(0) = π0. (15)

The previous results lead to the corresponding two-form
matrix

(0) fab(x, y) =
[

Ai j 04×3

03×4 Bi j

]
δ(x, y), (16)

with

Ai j =

⎡
⎢⎢⎣

0 δi j 0 0
−δi j 0 0 0

0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ , Bi j =

⎡
⎣ 0 δi j 0

−δi j 0 0
0 0 0

⎤
⎦ ,

(17)

and it is not difficult to see that the matrix is singular. More-
over, it is easy to determine that the eigenvector with zero
eigenvalue is

να =
(

0, 0, 0, 0, 0, 0, ν7
)

, (18)

where ν7 is arbitrary and associated to Γ0. Therefore, from
the eigenvector να (18) we can evaluate the consistence con-
dition as

∫
dxdyν7 δ

δΓ0(x)
V (0)(y) =

∫
dxν7(π0 + ∇.

−→
φ ) = 0;

(19)

since ν7 (x) is an arbitrary function, we obtain the constraint

Ω(x) ≡ π0(x) + ∇.
−→
φ (x) = 0. (20)

Introducing this constraint back into the Lagrangian by
means of a Lagrange multiplier λ3 we have

L = −φk Γ̇k + πμ Ȧμ + λ̇(π0 + ∇.
−→
φ ) − V (1), (21)

where the first-iterated potential density is V (1) = V (0)
∣∣
Ω=0

with

3 It should be noted that when the constraint Ω is imposed the depen-
dence in Γ0 naturally disappears.

V (1) = − πkΓk − 1

2
(
−→
Γ − ∇ A0)

2 − 1

2
(∇ × −→

A )2

− 1

2M2 (∇.
−→
Γ − ∇2 A0)

2

− M2

2
−→
φ 2 − −→

φ .(∇ × (∇ × −→
A )). (22)

From the above Lagrangian we have the following vectors:

Γ a(1)
i = −φi ,

Aa(1)
i = −πi ,

A0 a(1) = π0,

λa(1) = π0 + ∇.
−→
φ , (23)

and these results lead to the corresponding two-form matrix,

(1) fab(x, y) =
[

Ai j D j

−DT
i Ci j

]
δ(x, y), (24)

with C(x, y) and D(x, y) being the Abelian version of the
non-Abelian expressions Cab(x, y) and Dab(x, y), (63). We
obtain once again a singular matrix. From that, we can deter-
mine its eigenvector with zero eigenvalue,

να = (0, 0, ν3, 0, ν5
i , 0, ν7). (25)

Therefore, following the outlined routine, from this eigen-
vector να (25) we can evaluate the consistence condition

∫
dx

[
ν3 δ

δA0(x)
+ ν5

i
δ

δΓ i (x)

] ∫
dyV (1)(y)

=
∫

dxν3(∇.−→π )(x) = 0, (26)

where in the last equality we have made use of the relation
ν5

i − ∂iν
3 = 0. Once again, as ν3 is an arbitrary function, we

obtain a new constraint relation (Gauss’ law)

Ω̄(x) ≡ (∇.−→π )(x) = 0. (27)

Now, following the methodology, the second-iterated
Lagrangian reads

L = −φk Γ̇k + πμ Ȧμ + λ̇(π0 + ∇.
−→
φ ) + η̇(∇.−→π ) − V (2),

(28)

whereas the second-iterated potential density is

V (2) = V (1)
∣∣∣
Ω̄=0

= V (1). (29)

From the above Lagrangian one finds the following vectors:

Γ a(2)
i = −φi ,

Aa(2)
i = −πi ,

A0 a(2) = π0,

λa(2) = π0 + ∇.
−→
φ , ηa(2) = ∇.−→π , (30)
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these results lead to the corresponding two-form matrix

(2) fab(x, y) =
[

Ai j E j,x

−ET
i,y Fi j

]
δ(x, y), (31)

with

Ei,x =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 −∂x

i
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ , Fi j =

⎡
⎢⎢⎣

0 δi j 0 0
−δi j 0 −∂x

i 0
0 −∂x

i 0 0
0 0 0 0

⎤
⎥⎥⎦ .

(32)

It follows that the second-iterated matrix (2) fab(x, y) is also
singular. Thus one obtains two zero-mode vectors,

ν̃α = (ν̃1
i , 0, 0, 0, 0, 0, 0, ν̃8) (33)

and

να = (0, 0, ν
3
, 0, ν

5
i , 0, ν

7
, 0). (34)

However, the vector να generates the constraint (∇.−→π ) = 0.
Therefore, only the vector ν̃α is of interest. Consequently, the
consistence condition results in
∫

dxdy

[
ν̃1

i (x)
δ

δAi (x)
+ ν̃8(x)

δ

δη(x)

]
V (2)(y) = 0. (35)

Thus, the zero mode does not generate any new constraints
and, consequently, the symplectic matrix remains singular.
This is an imprint characteristic of gauge theories, therefore,
the gauge degrees of freedom have to be fixed. We choose
to do the work here with the generalized Coulomb gauge:
A0 = 0 and (1+ M−2�)(∇.

−→
A ) = 0.4 We then obtain a new

Lagrangian density,

L = − φk Γ̇k + πk Ȧk + λ̇(π0 + ∇.
−→
φ ) + η̇(∇.−→π )

+ χ̇ (1 − M−2∇2)∇.
−→
A − V (3), (36)

where the third-iterated potential density isV (3) = V (2)
∣∣
Ω̄=0

with

V (3) = − πkΓk − 1

2
−→
Γ 2 + 1

2
−→
A .(∇2−→A )

− 1

2M2 (∇.
−→
Γ )2 − M2

2
−→
φ 2 − −→

φ .(∇2−→A ). (37)

We have absorbed the (∇.
−→
A ) terms into the new constraint.

It is worth to emphasize that from the expression for the

4 It is worth to mention that the complete generalized Coulomb gauge
has in addition the condition: Γ0 = 0, but as it has already disappeared
in the Lagrangian, it is not necessary to impose it.

potential V (3) one may read off which are the dynamical
variables; for instance, here, it consists of the canonical set
{Ak, π

m} and {Γk, φ
m}.

Nevertheless, from the above Lagrangian follow the vec-
tors:

Γ a(3)
i = −φi ,

Aa(3)
i = −πi ,

λa(3) = π0 + ∇.
−→
φ ,

ηa(3) = ∇.−→π , χa(3) = ∇2
P∇.

−→
A , (38)

where ∇2
P = (1 − M−2∇2); these lead to the corresponding

third-iterated symplectic matrix,5

(3) fab(x, y) =
[

Bi j G j,x

−GT
i,y F̃i j,x

]
δ(x, y), (39)

with

Gi,x =
⎡
⎣ 0 0 0 0 −∇2

P∂x
i

0 0 0 −∂x
i 0

0 0 1 0 0

⎤
⎦ . (40)

This (3) fab(x, y) is clearly a non-singular matrix and the
corresponding inverse is easily obtained by a simple but
rather lengthy calculation. Moreover, we may relabel λ = φ0,
η = Γ0, and χ = A0. Therefore, the generalized brackets
between the dynamical variables, the corresponding Dirac
brackets in the generalized radiation gauge, are just the ele-
ments of the inverse of such a matrix, and they read

{Ak(x), πm(y)}� = δm
k δ(x, y) − ∇2

P∂k∂
m G(x, y), (41)

{Γk(x), φm(y)}� = δm
k δ(x, y), (42)

where we have introduced the Green function

∇2
P∇2G(x, y) = δ(3)(x, y). (43)

These results are in accordance to those obtained previously
through an analysis à la Dirac in [30]. Though we have
obtained the correct brackets to the dynamic variables, we
are left with the whole canonical variables (including the
kinematical ones) without any trace of which variables are in
fact dynamical and that, therefore, should be submitted to the
quantization (a natural outcome of the Dirac theory). Nev-
ertheless, the analysis of this particular theory showed that
the outcomes of both theories match, although both present
pros and cons, especially those involving unnecessary calcu-
lations and tedious algebraic work.

5 F̃i j,x is equal to the expression of Fi j,x , (32), but with an additional
fifth null line and column.
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3 SU(N) higher-derivative Yang–Mills–Utiyama theory

In this section we will go a step further from the previous dis-
cussion and consider a non-Abelian extension of the Podol-
sky theory, also known as the Alekseev–Arbuzov–Baikov
effective Lagrangian [37]. This theory was originally pro-
posed as an attempt to eliminate the infrared divergences
in SU (N ) theories [32–34]. In order to introduce some
concepts, let us consider the U (1) electrodynamics in four
dimensions, see (7),

L = −1

4
Fμν Fμν + 1

2M2 ∂μFμν∂λFλν. (44)

Moreover, to make contact with the non-Abelian theory [35,
36], it is interesting to discuss an additional point. It is not
difficult to see that it is still possible to add a second higher-
derivative term in (44), but in order to preserve the original
dispersion relation we have

k2(k2 − M2)Aμ(k) = 0, (45)

when the generalized condition (k2 − M2)kμ Aμ(k) = 0
holds. Hence, the Lagrangian should be rewritten as

L =−1

4
Fμν Fμν+ 1

6M2 ∂μFμν∂λFλν+ 1

6M2 ∂λFμν∂λFμν,

(46)

since (∂λFμν)2 = 2(∂λFλν)2. Therefore, the starting point
of our analysis would be the Lagrangian density (46). Thus,
to input an internal symmetry group, the original field must
change as Aμ → Aa

μ, where a = 1, . . . , (N 2−1), denotes an
index belonging to some internal symmetry group introduced
into the original theory, in our case SU (N ). Assuming that
X = Xaτ a , where τ a are the generators of the corresponding
Lie algebra, [τ a, τ b] = i f abcτ c, and that it transforms as an
adjoint representation of the symmetry group, we rewrite the
original Lagrangian density:

LAAB = − 1

4
W a

μνW aμν + 1

6M2 (DμW μν)b(Dσ Wσν)
b

+ 1

6M2 (Dσ W μν)a(Dσ Wμν)
a

− g

18M2 f abcW a
μνW bνλW c

λαηαμ, (47)

where W a
μν is a non-Abelian stress tensor with the following

form:

W a
μν = Fa

μν + gGa
μν, (48)

where g is a group parameter and Ga
μν = f abc Ab

μ Ac
ν , and

we also see that the covariant derivative is given by Dac
μ ≡

δac∂μ + g f abc Ab
μ, with (τ a)bc = −i f abc.

Now, in order to carry out the second step of the method we
should first rewrite the Lagrangian density (47) in its first-
order form. To accomplish that, we may use the canonical
momenta due to an algebraic simplification in this choice.
Therefore, from the definition (10) one may evaluate

3M2φaμ = (Dσ W σμ)a − η0μ(Dσ W σ0)a + 2(D0W 0μ)a,

(49)

and it follows that

3M2φan = (Dm W mn)a + 3(D0W 0n)a . (50)

With the above results in hands we may now rewrite the
Lagrangian (47) in its first-order form in terms of the time
derivatives of the field potential,6 and one then obtains the
first-order Lagrangian

L = −φa
k Γ̇ a

k + πa
μ Ȧaμ − V (0), (51)

whereas the potential density is

V (0) = πa
μΓ aμ − M2

2
φa

k φa
k + φa

k

(
1

3
(Dm Wmk)

a

− ∂kΓ
a

0 + g f abc(Γ b
0 Ac

k + Ab
0Γ

c
k ) + g f abc Ab

0W c
0k

)

− 1

6M2 (D0W nm)a(D0Wnm)a

+ 1

4
W a

km W akm − 1

2
(Γ a

k − ∂k Aa
0 + g f abc Ab

0 Ac
k)

2

− 1

6M2

[
(Dr W nm)a(Dr Wnm)a +(Dr W r0)a(Dm Wm0)

a

+2

3
(Dm W mn)a(Dr Wrn)a + 2(Dm W 0r )a(Dm W0r )

a
]

+ g

18M2 f abc[3W a
0m W b

mk W c
k0 − W a

km W b
mj W c

jk]. (52)

From the above expression (51) for the Lagrangian density
one may read off the initial set of symplectic variables,

ξ (0)
α = {Aa

k , πa
k , Aa

0, πa
0 , Γ a

k , φa
k , Γ a

0 }, (53)

moreover, from (51) we can identify the non-null canonical
one-form

Γ a(0)
i = −φa

i , Aa(0)
i = −πa

i , A0 a(0) = πa
0 . (54)

From these results, we can compute the elements of the sym-
plectic matrix, leading to the corresponding two-form matrix,

6 We follow again the Ostrogradski formalism to deal with the higher-
derivative terms.
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(0) fab(x, y) =
[

Aab
i j 04×3

03×4 Bab
i j

]
δ(x, y), (55)

with Aab(x, y) and Bab(x, y) having the same expression to
the A(x, y) and B(x, y), (17), with an additional non-Abelian
indexing δab. The matrix (0) fab(x, y) is obviously singular.
The eigenvector with zero eigenvalue is

να = (0, 0, 0, 0, 0, 0, νa
7 ), (56)

where ν7 is an arbitrary function, associated with Γ a
0 . Hence,

from the eigenvector (56) we can calculate the consistence
condition

∫
dxνa

7 (x)[πa
0 + Dab

k φb
k ](x) = 0, (57)

and, since νa
7 is an arbitrary function, we obtain the constraint

χa(x) ≡ πa
0 + Dab

k φb
k = 0. (58)

Following the methodology, we should now introduce this
constraint back into the Lagrangian by means of a Lagrange
multiplier λ; one then gets

L = −φa
k Γ̇ a

k + πa
μ Ȧaμ + λ̇a(πa

0 + Dab
k φb

k ) − V (1), (59)

where the first-iterated potential density is V (1) = V (0)
∣∣
χ=0.

From the above Lagrangian we may notice that the field Γ0

naturally disappears when the constraint is taken as a strong
relation. Now, in the first-iterate case, the symplectic vari-
ables are ξ

(1)
α = {Aa

k , πa
k , Aa

0, πa
0 , Γ a

k , φa
k , λa}, and we have

the following one-form:

Γ a(1)
i = −φa

i , Aa(1)
i = −πa

i , A0 a(1) = πa
0 ,

λa(1) = πa
0 + Dab

k φb
k . (60)

By evaluating the corresponding matrix elements, the sym-
plectic two-form matrix reads

(1) f (x, y) =
[

Aab
i j Dab

j
−(DT )ba

i Cab
i j

]
δ(x, y), (61)

with

Cab
i j =

⎡
⎣ 0 δabδi j 0

−δabδi j 0 (Dy)
ba
i

0 (Dx )
ab
i 0

⎤
⎦ , (62)

Dab
i =

⎡
⎢⎢⎣

0 0 −g f abcφc
i

0 0 0
0 0 0
0 0 δab

⎤
⎥⎥⎦ . (63)

Again, we see that the first-iterated symplectic is singular. In
the next step we should determine its eigenvector with zero
eigenvalue. From that it follows that

να = (0, (ν2)
a
k , (ν3)

a, 0, (ν5)
a
k , 0, (ν7)

a). (64)

Therefore, from the eigenvector να (64) we can evaluate the
consistence condition and get

∫
dxνb

7 (x)[(Dk)
bc(πck − g f cdeφdk Ae

0)

+ g f bdcφd
k W c

0k](x) = 0, (65)

and, since νa
7 is an arbitrary function, we obtain the constraint

χ̄b ≡ (Dk)
bc(πck −g f cdeφdk Ae

0)+g f bdcφd
k W c

0k = 0, (66)

which is nothing more than the non-Abelian version of the
Gauss law. Proceeding, we should introduce it back to the
Lagrangian as a strong relation; thus the second-iterated
Lagrangian reads

L = η̇b((Dk)
bc(πck − g f cdeφdk Ae

0) + g f bdcφd
k W c

0k)

− φk Γ̇k + πμ Ȧμ + λ̇(πa
0 + (Dkφk)

a) − V (2), (67)

whereas the second-iterated potential density is given by
V (2) = V (1)

∣∣
χ̄=0 with

V (2) = −πa
k Γ a

k − M2

2
φa

k φa
k − 1

6M2 (D0W nm)a(D0Wnm)a

+ φa
k

(
1

3
(Dm Wmk)

a + g f abc Ab
0Γ

c
k + g f abc Ab

0W c
0k

)

+ 1

4
W a

km W akm − 1

2
(Γ a

k − ∂k Aa
0 + g f abc Ab

0 Ac
k)

2

− 1

6M2

[
(Dr W nm)a(Dr Wmm)a +(Dr W r0)a(Dm Wm0)

a

+2(Dm W 0n)a(Dm W0n)a + 2

3
(Dm W mn)a(Dr Wrn)a

]

+ g

18M2 f abc[3W a
0m W b

mk W c
k0 − W a

km W b
mj W c

jk]. (68)

From the above second-iterated Lagrangian we read off the
following vectors:

Γ a(2)
i = −φi ,

Aa(2)
i = −πi ,

A0 a(2) = π0,

λa(2) = πa
0 + (Dkφk)

a,

ηa(2) = (Dk)
bc(πck − g f cdeφdk Ae

0) + g f bdcφd
k W c

0k; (69)

these results lead to the corresponding two-form matrix for
ξ

(2)
α = {Aa

k , πa
k , Aa

0, πa
0 , Γ a

k , φa
k , λ, η}:

(2) f (x, y) =
[

Aab
i j Eab

j,x
−(ET )ba

i,y Fab
i j

]
δ(x, y), (70)
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with

Eab
i,x =

⎡
⎢⎢⎣

0 0 −g f abcφc
i

(2)(A,η) f ab

0 0 0 (Di
x )

ba

0 0 0 (2)(A0,η) f ab

0 0 δab 0

⎤
⎥⎥⎦ , (71)

Fab
i j =

⎡
⎢⎢⎣

0 δabδi j 0 g f adbφd
i

−δabδi j 0 (Dy)ba
i

(2)(φ,η) f ab

0 −(Dx
i )ab 0 0

−g f adbφd
i

(2)(η,φ) f ab 0 0

⎤
⎥⎥⎦ .

(72)

We have again obtained a singular matrix, now the second-
iterated one (2) f (x, y). Next, we determine the zero-mode
vectors, which now consist in a set of two vectors,

ν̃α = ((ν1)
a
k , 0, 0, (ν4)

a, 0, (ν6)
a
k , 0, (ν8)

a) (73)

and

να = (0, (ν2)
a
k , (ν3)

a, 0, (ν5)
a
k , 0, (ν7)

a, 0). (74)

However, the vector να generates the constraint Ω̄b(x) ≡
(Dk)

bc(πck − g f cdeφdk Ae
0)+ g f bdcφd

k W c
0k = 0. Therefore,

the vector ν̃α only is of our interest; but this zero mode does
not generate any new constraints and, consequently, the sym-
plectic matrix remains singular. Therefore, there are gauge
degrees of freedom to be fixed. A suitable choice here is the
generalized Coulomb gauge (1+ M−2�)∂k Aa

k = 0, Γ a
0 = 0

and Aa
0 = 0. The same set of constraints obtained here was

previously found in [43] through an analysis à la Dirac, where
the generator of the gauge symmetry was also discussed. This
shows again the agreement between the Dirac and Faddeev–
Jackiw methods.

3.1 Transition amplitude via BFV

Instead of evaluating the inverse of the third-iterated two-
form matrix, and then determine the generalized brackets
between the dynamical fields, and proceed to the quantization
by the correspondence principle, we shall rather work in a
path-integral framework. Therefore, we shall now compute
the transition amplitude through the BFV formalism [40–
42], because, though there is a proposal relating the path-
integral to the FJ method [38,39], it is not clear that the
method works and is consistent with a gauge theory. We see
that the transition amplitude in our case is written

Z =
∫

D Aa
k Dπa

k DΓ b
m Dφb

m Dλc Dbc Dc̄d Dcd D P̄e D Pe

× exp

[
i
∫

d4x{πa
k Ȧak +φa

k Γ̇ ak +ċa P̄a +(∂0c̄)d Pd

+ λ̇aba − V (3)} + i
∫

dx0{Ψ, Q B RST }
]
, (75)

where V (3) is recognized as being the canonical Hamiltonian
in the first-order approach, and it is given by (68); we have

V (3) = V (2)
∣∣∣
Ω=0

. (76)

Ω consists in the generalized Coulomb gauge

(1 + M−2�)∂k Aa
k = 0, Γ a

0 = 0, Aa
0 = 0. (77)

Furthermore, (ca, P̄a) and (c̄a, Pa), are the pairs of ghost
fields and their respective momenta, while (λa, ba) is a
Lagrange multiplier and its momentum, all satisfying the fol-
lowing Berezin brackets:

{c̄a(z), Pb(w)}B = δabδ(z, w),

{P̄a(z), cb(w)}B = −δabδ(z, w),

{λa(z), bb(w)}B = δabδ(z, w). (78)

In the expression (75) it remains to define two quantities. The
first is the BRST charge, which with the full set of constraints
is written

QBRST =
∫

d3x

[
cb((Dkπ

k)b + g f bdcφd
k Γ c

k )

− i Paba + 1

2
P

a
f abccbcc

]
, (79)

whereas we see that the gauge-fixing function Ψ , in the gen-
eralized Coulomb gauge, reads

Ψ =
∫

d3z

[
iξ

2
bac̄a + i c̄a(1 + M−2�)∂k Aa

k

− λa(1 + M−2�)−1 P̄a
]
. (80)

From the above expressions, it is not difficult to evaluate

{Ψ, QBRST}
=

∫
d3z

{
ξ

2
baba + i∂k c̄e(1 + M−2�)(Dkc)e

+ ba(1 + M−2�)∂k Aa
k + i(1 + M−2�)−1 P

a
Pa

+ f abc(1 + M−2�)−1 P
a
λbcc

+ (1 + M−2�)−1λa((Dkπ
k)b + g f bdcφd

k Γ c
k )

}
. (81)

Thus, substituting the result (81) into the transition-amplitude
expression (75), and performing the variables integration and
after some algebraic manipulation, one finds
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Z =
∫

D Aa
μDc̄d Dcd

× exp

[
i
∫

d4z

{
LAAB + i∂μc̄e(1 + M−2�)(Dμc)e

− 1

2ξ
[(1 + M−2�)∂μ Aa

μ]2
}]

. (82)

Hence, from the BFV formalism we have obtained directly
the desirable covariant expression for the transition ampli-
tude. Furthermore, we see that the ghosts fields are coupled
from the gauge fields, and matter fields may also be included.

4 Concluding remarks

In this paper we have presented a canonical study of
higher-derivative theories, the Podolsky electrodynamics and
its non-Abelian extension, the Alekseev–Arbuzov–Baikov
effective Lagrangian, in the point of view of the symplec-
tic Faddeev–Jackiw approach. Although the Dirac method
remains as the standard method to deal with constrained sys-
tems, it has been recognized that some calculation is unneces-
sarily cumbersome there, and then it is exactly in this point
where the FJ method shows to be an economical and rich
framework for first-order Lagrangian functions, obviating
mainly unnecessary calculations.

At the beginning we have reviewed briefly the main
aspects of the symplectic FJ method. Subsequently, we
applied the method to studying the generalized electrody-
namics. The full set of the known constraints [30] was
obtained, and afterwards it was showed that the third zero-
mode vector does not generate any new constraint, how-
ever, the symplectic matrix remained singular, an imprint
characteristic of gauge theories. Therefore, the gauge had
to be fixed; to attain that we have chosen to work with the
generalized Coulomb gauge. From all that we were able to
obtain a non-singular symplectic matrix, and by evaluating
the inverse of such a matrix, we obtained the generalized
brackets between the dynamical fields, in accordance with the
previous results of Dirac’s approach in [30]. Moreover, next
we introduced the AAB’s effective Lagrangian. The lines in
studying this non-Abelian theory followed those presented
to the generalized electrodynamics. Again, the known full
set of constraints was obtained to be in accordance with the
result from the Dirac approach [43]. As happens in gauge
theories, the third zero-mode vector does not generate any
new constraint and the symplectic matrix remained singular.
However, instead of using the usual prescription and intro-
duce new constraints, in order to fix the gauge degrees of free-
dom, we had chosen to quantize the theory via path-integral
methods. Although there is a proposal of the FJ method in
the path-integral framework, its content it is not clear for

gauge theories. Therefore, we followed the well-known BFV
method to construct the transition amplitude.

It was successfully showed here that the symplectic
approach of Faddeev–Jackiw works perfectly well also for
higher-derivative theories, and that all the obtained results
were in accordance with previous ones when the Dirac
methodology was applied. This is somehow in contrast with
the assertion [15] that the FJ method produces constraints
that do not exist in the Dirac theory. Furthermore, this empha-
sizes that in fact the FJ method can be considered as a good
candidate of a framework where a deeper analysis may be
performed, especially in more intriguing theories, such as
General Relativity and renormalizable higher-derivative pro-
posals of a quantum theory of Gravity, in different dimen-
sionality, where the constraint analysis is not always easy to
accomplish and is not always clear within the Dirac method-
ology. These issues and others will be further elaborated,
investigated, and reported elsewhere.
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