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Abstract In general relativity, gravitational collapse of
matter fields ends with the formation of a spacetime singular-
ity, where the matter density becomes infinite and standard
physics breaks down. According to the weak cosmic censor-
ship conjecture, singularities produced in the gravitational
collapse cannot be seen by distant observers and must be
hidden within black holes. The validity of this conjecture
is still controversial and at present we cannot exclude that
naked singularities can be created in our Universe from reg-
ular initial data. In this paper, we study the radiation emitted
by a collapsing cloud of dust and check whether it is possi-
ble to distinguish the birth of a black hole from the one of
a naked singularity. In our simple dust model, we find that
the properties of the radiation emitted in the two scenarios is
qualitatively similar. That suggests that observational tests of
the cosmic censorship conjecture may be very difficult, even
in principle.

1 Introduction

One of the most important open problems in gravitational
physics is that of the final fate of a heavy star after exhaust-
ing its nuclear fuel. For normal stars, the object contracts up
to when the quantum pressure of electrons or neutrons stops
the collapse and the outcome is either a white dwarf or a
neutron star. However, if the star is very massive, there is no
known mechanism capable of compensating the inward push
of its own gravitational force, and the body will undergo a
complete gravitational collapse. According to the theory of
general relativity, the final product of gravitational collapse
must be a spacetime singularity [1,2]. In principle, the sin-
gularity may either be hidden behind a horizon, and in this
case the result of the collapse is a black hole, or be naked, and
thus visible to distant observers. While the weak cosmic cen-
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sorship conjecture asserts that singularities created in grav-
itational collapse must be hidden within black holes [3,4],
today we know many physically relevant counterexamples in
which naked singularities are formed from regular initial data
(for a recent review, see e.g. Refs. [5] and [6] for a detailed
treatment). The possibility of detecting radiation from the
high curvature region where classically we would expect the
formation of a singularity would represent a unique oppor-
tunity to investigate strong gravity and observationally test
the region where quantum gravity phenomena are supposed
to show up [7–9].

The predictions of general relativity have been confirmed
by experiments in Earth’s gravitational field [10,11], by
spacecraft missions in the solar system [12], and by accu-
rate radio observations of binary pulsars [13,14] (for a gen-
eral review, see e.g. Ref. [15]). In all these environments, the
gravitational field is weak, in the sense that one can write
gtt = 1 + φ with |φ| � 1. In the last few years, there
have been made significant efforts and progress in testing
the theory in the strong field regime, where the approxi-
mation |φ| � 1 breaks down. The ideal laboratory to test
strong gravitational fields is the spacetime around astro-
physical black hole candidates (see e.g. Refs. [16–26]; for
a review see [27,28]). These studies have shown that the
properties of the electromagnetic radiation emitted by the
gas in the accretion disk can provide useful details about the
spacetime geometry around the compact object and available
radio and X-ray data can already be used to constrain new
physics.

While deviations from the predictions of general relativ-
ity in the spacetime around astrophysical black hole can-
didates are definitively possible, since current observations
can put only weak constraints, from purely theoretical argu-
ments new physics is not strictly necessary here (see, how-
ever, [29–32]). The black hole’s event horizon has indeed
no special properties for a freely falling observer. On the
contrary, the existence of spacetime singularities, where
observer-independent quantities like the scalar curvature or
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the Kretschmann scalar may diverge, is very likely a symp-
tom of the break down of general relativity and new physics,
presumably a quantum theory of gravity, is mandatory. Some
observational tests have already been proposed in the litera-
ture [33–37]. In this paper we study the question of principle
whether the high density region close to the formation of
the singularity can affect the outside universe by exploring
a toy model describing the radiation emitted from the high
curvature region of astrophysical collapsing bodies, where
classically we would expect the formation of a singularity.

More specifically, we want to figure out if—at least in
principle—we can observationally distinguish the case in
which the classical singularity that forms at the end of the
collapse is not covered by the horizon from the case in which
the horizon forms before the singularity. If this were to be
possible, we would in principle be able to experimentally test
the weak cosmic censorship conjecture.

During the collapse, the density and the temperature of
the object increase. Subnuclear reactions, otherwise strongly
suppressed, become important and the collapsing star can
emit a large amount of energy in several forms of radiation.
The luminosity curve of this radiation clearly depends on the
evolution of the gravitational collapse, setting the evolution
of the increase in density and temperature at any layer of the
body. For instance, the detection of neutrinos from super-
novae may be used to probe the equation of state of matter at
supernuclear densities [38,39]. Experiments to detect neu-
trinos from supernovae already exist and they are simply
waiting for the explosion of a nearby supernova. In 1987,
neutrinos from the supernova SN1987A in the Large Mag-
ellanic Cloud were detected by experiments searching the
proton decay (Kamiokane II, IMB, Baksan detected together
24 events). With the sensitivity of present experiments, a
supernova explosion in our Galaxy could produce thousands
of events in a detector like Super-Kamiokande and even mil-
lions of events in one like IceCube. In the same way, some
weakly interacting radiation may be used to track the gravita-
tional collapse of an astrophysical body and observationally
test if the collapse follows the pattern expected for the for-
mation of a black hole, for the creation of a naked singularity,
or another one.

The simplest exact solution for gravitational collapse in
which the outcome can be either a black hole or a naked singu-
larity is the Lemaitre–Tolman–Bondi (LTB) dust model [40–
44]. The system has spherical symmetry and, depending
on the initial density and velocity profile, it may behave
in two different ways. Either the horizon develops first and
the subsequent singularity is always covered or, vice versa,
a singularity visible to distant observers forms before the
formation of the horizon [45–49]. If we consider a distant
observer and we integrate backwards in time the photons’
trajectories, from the observer to the collapsing object, we
can obtain the luminosity image at any time. Integrating

over the whole image, we can find the curve luminosity
produced by the collapsing object. As the evolution of the
emissivity of the matter in the star depends on the gravi-
tational collapse, the curve luminosity provide information
on the collapse itself. In particular, one may expect that
the formation of an event horizon and of a naked singu-
larity can be characterized by qualitatively different light
curves.

Unfortunately, this does not seem to be the case. Assum-
ing two different emissivity functions, we find that both the
black hole and the naked singularity case show very sim-
ilar luminosity spectrum. This would leave the distinction
undetermined even once a more realistic scenario is con-
sidered. While the results shown here are based on a very
simple analytical toy model, they definitely suggest that any
observational test of the weak cosmic censorship conjecture
through the analysis of the emitted spectrum of a collaps-
ing astrophysical body may be extremely challenging unless
some effects coming from new physics at high densities do
not intervene to completely change the picture.

The content of our manuscript is organized as follows. In
Sect. 2, we briefly review the LTB dust collapse model. In
Sect. 3, we describe how our code computes the luminosity
of the collapsing object seen by a distant observer. In Sect. 4,
we present the results of our numerical calculations. At first
we consider the homogeneous case, the well-known Oppen-
heimer and Snyder model [50], in which the final product of
the collapse is always a black hole. Then we extend the study
to the inhomogeneous case, in which the collapse can cre-
ate either a black hole or a naked singularity, depending on
the initial matter density profile. We then compare the curve
luminosity of the two scenarios. Summary and conclusions
are reported in Sect. 5. Throughout the paper, we use units
in which GN = c = 1.

2 LTB dust collapse model

The LTB model describes a spherically symmetric system
composed of non interacting particles (dust) that undergoes
complete gravitational collapse. The most general spherically
symmetric line element can be written in comoving coordi-
nates (namely coordinates attached to the in-falling particles)
as

ds2 = −e2νdt2 + ρ′2

G
dr2 + ρ2

(
dθ2 + sin2 θdφ2

)
, (2.1)

where ν, ρ, and G are functions of the comoving time t and
radius r . Here and in what follows, the prime (′) denotes a
derivative with respect to r . If we impose the requirement
that ν, ρ, and G are independent of the t coordinate, we find
the class of static interior Schwarzschild solutions that was
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originally studied by Tolman [51]. As we are using comoving
coordinates, the energy momentum tensor of a relativistic
fluid is diagonal and can be written as

T μ
ν = diag{ε(r, t), pr (r, t), pθ (r, t), pθ (r, t)}, (2.2)

where ε is the energy density and pr and pθ are, respectively,
the radial and tangential pressure of the cloud. Einstein’s
equations then take the form

ε = F ′

ρ2ρ′ , (2.3)

pr = − Ḟ

ρ2ρ̇
, (2.4)

ν′ = 2
pθ − pr

ε + pr

ρ′

ρ
− p′

r

ε + pr
, (2.5)

Ġ = 2ν′

ρ′ ρ̇G, (2.6)

where the dot (˙) denotes a derivative with respect to t and
F is the Misner–Sharp mass, defined by

F = ρ(1 − G + e−2ν ρ̇2) . (2.7)

F is proportional to the “gravitational mass” enclosed within
the shell of radial coordinate r at the time t . Eventually, we
have a set of five coupled first order differential equations in
seven unknown functions of r and t . In general, it may be
hard or impossible to solve the system. The usual approach is
to look for simplifications that, while preserving the physical
features of interest, allow us to solve the equations and say
something about the nature of the collapse.

The dust case is obtained for particles that carry no self-
interacting energy and can be described imposing the require-
ment that pr = pθ = 0. It turns out that this case is a par-
ticularly simple model where the set of Einstein’s equations
can be solved explicitly. From Eq. (2.5), we get ν = ν(t) and
we can change the time gauge in order to have a t coordi-
nate for which ν = 0. Then Eq. (2.4) reduces to Ḟ = 0,
which implies F = F(r); that is, the amount of matter
enclosed within the shell labeled by r is conserved during
the collapse. This, in turn, means that there is no inflow
or outflow of matter/energy during the collapse and there-
fore, given the spherical symmetry of the system, the match-
ing with the exterior geometry can be done with the simple
and well-known Schwarzschild spacetime [52,53]. Further-
more, given the absence of pressures, the boundary radius
rb, which corresponds to the shrinking boundary area radius
ρb(t) = ρ(rb, t), can be chosen at will. From the matching
conditions, it is easy to see that F(rb) = 2MSch, where MSch

is the mass parameter in the exterior Schwarzschild metric.
From Eq. (2.6), which for dust reads Ġ = 0, we can obtain
G = G(r) as a free function, which is convenient to write in
the form G(r) = 1 + f (r). Finally, Eq. (2.7) becomes the
equation of motion of the system

ρ̇ = −
√

F

ρ
+ f , (2.8)

with the minus sign necessary to describe collapse. Given a
certain mass profile F , after choosing the free function f , we
can integrate Eq. (2.8) to get ρ(t, r). Plugging this solution
into Eq. (2.3), we obtain ε(r, t), thus completely solving the
system.

The free function f coming from the integration of
Eq. (2.6) is related to the velocity of the in-falling particles.
The collapse is said to be bound if f < 0, marginally bound
if f = 0, and unbound if f > 0. In the rest of the manuscript,
we will restrict our attention on the marginally bound case
f = 0, which represents particles that would have zero initial
velocity at spatial infinity. The line element for the collapsing
interior reduces to

ds2
int = −dt2 + ρ′2dr2 + ρ2

(
dθ2 + sin2 θdφ2

)
. (2.9)

The collapse process leads eventually to the formation of a
black hole when all the matter passes the threshold of trapping
surfaces located at the event horizon in the Schwarzschild
exterior. The condition for the formation of trapped surfaces
for the collapsing cloud is given by 1 − F/ρ = 0, and it
reduces to 1 − 2MSch/R = 0, where R is the Schwarzschild
radial coordinate, in the static case in vacuum. All the matter
falls into the spacetime singularity that forms at r = 0 and it
is easy to check, for instance by evaluating the Kretschmann
scalar, that this is a true curvature singularity. A factor of
crucial importance for black hole physics is to determine
whether the singularity always forms at a later time with
respect to the formation of the horizon, thus being hidden to
far away observers at all times, or if other possibilities are
allowed.

The whole system has a gauge degree of freedom that can
be fixed by setting the scale at a certain time. In models of
collapse, one usually sets the area radius ρ(t, r) equal to the
comoving radius r at the initial time ti ; that is, ρ(ti , r) = r .
We can then introduce a scale function a as

ρ(t, r) = ra(t, r), (2.10)

with the initial condition a(ti , r) = 1. Further one wishes
to impose certain regularity conditions to ensure the physi-
cal validity of the model. For example, one wishes to have
a density profile that is regular at the center at the initial
time and that presents no cusps in r = 0 at all times. In
order to have such regularity conditions, we can impose the
requirement that the mass function near the center behaves
in a suitable way. Therefore we can define a function M(r)

such that

F(r) = r3 M(r). (2.11)
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We can rewrite the whole system of equations in terms of M
and a and it is immediately found that the form of Eq. (2.8)
with f = 0 is invariant under the substitution of F with M
and ρ with a. The energy density can now be written as

ε(r, t) = 3M + r M ′

a2(a + ra′)
, (2.12)

and it is easy to check that the singularity occurs for a = 0,
while values of the central shell r = 0 with a �= 0 are regular.
This solves the problem of the divergence of ε at ρ = 0 at
all times coming from Eq. (2.3).

Note from Eq. (2.12) that the density diverges also when
ρ′ = a + ra′ goes to zero. This is related to the occurrence
of so-called “shell crossing” singularities [54–57]. These
are singularities that arise from a breakdown of the coordi-
nate system rather than true gravitational singularities and
they can generally be avoided by a suitable change of coor-
dinates. Nevertheless it is important to check under what
circumstances they can arise in the model in order to impose
some prescription to rule them out. It is not difficult to see
that for dust collapse, if one imposes a decreasing energy
profile, then no shell crossing occurs. With the new scaling,
together with the requirement of avoidance of shell crossing,
the density diverges only when the singularity is achieved.

2.1 Oppenheimer–Snyder collapse

If, for simplicity, we want to describe homogeneous collapse
where ε = ε(t), we need to take M(r) = M0, which implies
a = a(t). Then ε = 3M0/a3 and the equation of motion
reduces to

ȧ = −
√

M0

a
. (2.13)

Equation (2.13) can easily be integrated. The solution is given
by

a(t) =
(

1 − 3

2

√
M0t

)2/3

, (2.14)

with initial time ti = 0. The singularity forms at the time
ts = 2/3

√
M0. Here all the shells become singular at the

same time and the horizon forms at the boundary before the
formation of the singularity, therefore leaving the singularity
always covered.

The boundary of the cloud collapses along the curve
ρb(t) = ρ(rb, t) = rba(t) and the whole cloud becomes
trapped inside the event horizon at the time ttr < ts for which
ρb(ttr ) = 2MSch = r3

b M0, so

ttr = ts−4MSch

3
. (2.15)

For the homogeneous dust collapse we thus have the forma-
tion of a spacelike simultaneous singularity that is always
covered by the horizon. This means that the region of
extremely high density at the center of the collapsing cloud
close to the formation of the singularity is causally discon-
nected from the outside universe.

2.2 Inhomogeneous collapse

If we wish to analyze a more general case, still within the
dust scenario, we can take M(r) to be written as an expansion
close to the center as

M(r) = M0 + M1r + M2r2 + · · ·. (2.16)

In this case, the density profile ε(r, t) is not homogeneous
any more and the mass profile M(r) will determine its form.
It is easy to see that the behavior of trapped surfaces and
the structure of formation of the singularity can change dras-
tically (see for example [58–61] and references therein). It
turns out that it is the sign of M1 that will determine the char-
acter of the singularity curve and the apparent horizon near
the center. If we require M1 = 0 (as is often done in astro-
physical scenarios, where one desires to have only quadratic
terms in the density and pressures), the behavior of the appar-
ent horizon and of the singularity curve near the center will
be determined by the value of M2. In the following we will
therefore consider M1 = 0 and M2 < 0. The case M2 > 0
is not physically relevant, as it implies a density increasing
with the radius.

Mathematically, since in the dust collapse there are no
pressures, the matching with the outside region can be done
at any radius and therefore, if one shows that the singularity
is locally naked (meaning that there are outgoing geodesics
originating at the singularity and reaching a finite radius with-
out being trapped), then one can choose rb for the matching in
order to make it globally naked (meaning that such geodesics
can reach observers at infinity). In a realistic scenario, things
might be different (see for example [62]) and when pressures
are considered it is preferable to perform the matching with
the exterior region at the radius where the pressure vanishes.
Nevertheless, the possibility remains that the central singu-
larity be visible to far away observers (see for example [63]).

The above formalism is enough to obtain the necessary
information about the behavior of the dust cloud close to
r = 0 and close to the formation of the singularity. Two
scenarios are possible:

1. In the black hole case, the trapped surfaces form at an
outer shell before the formation of the singularity. Essen-
tially each shell r > 0 becomes trapped at a time smaller
than the time of formation of the central singularity, ts(0).

2. In the naked singularity case, the trapped surfaces form at
the center at the time of formation of the singularity. This
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means that the shell r = 0 becomes trapped at the time
ts(0), and light rays escaping from the central singularity
can reach far away observers. At later times the trapped
surface expands, thus covering the singularity.

The equation of motion is given by Eq. (2.13) with M(r)

in place of M0 and the solution takes again the form

a(r, t) =
(

1 − 3

2

√
M(r)t

)2/3

. (2.17)

The singularity curve is described by the condition that
a(ts(r), r) = 0 which gives

ts(r) = 2

3
√

M(r)
, (2.18)

from which we can see that different shells become singular
at different times, with the central shell becoming singular
first in the case that M2 < 0. The apparent horizon curve is
given by

tah(r) = ts(r) − 2

3
r3 M(r), (2.19)

and it is easy to check that tah is also increasing from the cen-
ter and that tah(0) = ts(0). Therefore, in the inhomogeneous
dust case with M2 < 0 the central singularity is not trapped
at the time of its formation and it may become trapped only
afterwards. This means that for certain choices of the bound-
ary radius the high density region that develops close to the
singularity is causally connected to the outside universe (see
for example [58–60] and [64] for the complete conformal
structure of the model). Such a collapsing cloud can poten-
tially bear an observational signature different from that of
the black hole case discussed above. Not every negative value
of M2 is allowed. From the condition that the energy density
is positive throughout the cloud we get the constraint

M2 > −3

5

M0

r2
b

. (2.20)

The gravitational collapse of a dust cloud is just a sim-
ple toy model, but it has the advantage that it can be treated
analytically. Obviously, if one wishes to describe a star, pres-
sures are important.1 Of course here we are investigating a
mathematical toy model describing a simple light spectrum
emitted from the vicinity of a naked singularity that has no
resemblance to the real spectrum emitted by a realistic col-
lapsing object. However, this investigation is important in
that it helps us answer the question of principle of whether

1 Though it has been suggested that matter might approach a dust-
like behavior close to the formation of the singularity where very
strong gravitational fields are present (essentially particles falling in
with velocity close to the speed of light are not able to interact) [65].

the visibility of the region surrounding the singularity could
have long range effects in such a way as to make it distin-
guishable from the formation of a black hole. Therefore these
models can constitute a first step to investigate what could
possibly be observationally detectable if such naked singu-
larities happened in realistic star collapse or in the formation
of supermassive compact objects. In fact, if one thinks about
supermassive compact objects, the formalism is exactly the
same, but the time scales are much longer. Actually, in this
case the dust model could be a better approximation than
in the star collapse case, since supermassive objects are less
dense than stars and tracing of geodesics inside a supermas-
sive collapsing object is more meaningful.

2.3 Exterior geometry

The whole spacetime can be described by a collapsing inte-
rior given by the LTB metric (in comoving coordinates {t, r})
that matches at the boundary rb to a vacuum exterior given
by the Schwarzschild metric (in Schwarzschild coordinates
{T, R})

ds2
out = −

(
1 − 2MSch

R

)
dT 2 +

(
1 − 2MSch

R

)−1

d R2

+ R2d�2. (2.21)

The two manifolds match across the 3-surface � given by
r = rb, which corresponds to ρ = ρb(t) = ρ(rb, t), in the
interior and R = Rb(T ) in the exterior. The matching of the
two manifolds is achieved imposing the continuity of the first
and second fundamental forms across the surface. Continuity
of the first fundamental form reduces to continuity of the
metric across the surface. The induced metric on the surface
can be written as

ds2
� = −dt2 + ρb(t)

2d�2 =

= −
(

1 − 2MSch

Rb

)
dT 2 +

(
1 − 2MSch

Rb

)−1

×
(

d Rb

dT

)2

dT 2 + R2
bd�2, (2.22)

and the coordinate transformation on the boundary of the
cloud � that relates t to T is given by

dt

dT
=

√(
1 − 2MSch

Rb

)
−

(
1 − 2MSch

Rb

)−1 (
d Rb

dT

)2

.

(2.23)

The metric components are continuous across � and we can
express the trajectory of the boundary as ρb(t) = Rb(T (t)).
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3 Tracing photons

In this section we discuss the theoretical aspects of the proce-
dure by which we intend to trace light rays from the collaps-
ing cloud to far away observers. We consider the geodesics
starting at some far away initial radius R∗ at the time T = T̄
so that R(T̄ ) = R∗. Then we follow R(T ) tracing the photon
backwards in time along the path from the observer to the
collapsing cloud. Three scenarios are possible:

1. The photon escapes to infinity never hitting either the
cloud or the event horizon.

2. The photon hits the event horizon.
3. The photon hits the collapsing cloud, thus reaching the

boundary Rb(T ) at a time antecedent the formation of the
horizon. In this case, the photon can either escape from
the cloud, thus crossing again the boundary at a later time,
or hit the event horizon.

First of all, we consider the Schwarzschild solution to con-
struct the image of the object for a far away observer. This is
the image seen after that all the photons coming from the LTB
region reached the observer. Then we will consider the LTB
region describing the collapsing cloud. This evolves from
the initial time Ti = T (ti ) until the formation of the event
horizon at Ttr = T (ttr ) after which, from the perspective
of external observers, we are left with a black hole. There-
fore the image seen by the far away observer will change
in time from the initial moment until the formation of the
horizon.

Given the spherical symmetry of the spacetime, motion
happens always on a plane and we can restrict our analysis
to the equatorial plane without any loss of generality. Null
geodesics are then described by the equation

(
d R

dλ

)2

= E2 − L2

R2

(
1 − 2M

R

)
, (3.1)

for the Schwarzschild exterior and by

(
dt

dλ

)2

− ρ′
(

dr

dλ

)2

− L2

ρ2 = 0,

d2r

dλ2 + 2
ρ̇′

ρ′
dr

dλ

dt

dλ
+ ρ′′

ρ′

(
dr

dλ

)2

− L2

ρ3ρ′ = 0, (3.2)

for the LTB interior. Here λ is an affine parameter, while
E and L are the conserved energy and angular momentum
related to the killing vectors as defined below. Once the pho-
ton hits the boundary of the cloud, as in the case (3) above, to
trace it inside the cloud we have to change coordinates from
T to t via Eq. (2.23) and follow the geodesic r(t) (using the
comoving time t as the affine parameter) obtained by solving

equation (3.2) with the same value for L as the one used for
the outer part of the trajectory.2

3.1 Geodesics in the Schwarzschild spacetime

The Schwarzschild spacetime is static and spherically sym-
metric. We can thus define two quantities conserved along
geodesics. They are related to the Killing vectors associated
to time translations and rotations. These quantities are the
energy E and angular moment L and are given by

E =
(

1 − 2MSch

R

)
dT

dλ
, L = R2 dφ

dλ
. (3.3)

Since the trajectory of a photon is independent of its energy
E , for the study of null geodesics it is more convenient to use
the “impact parameter” b = L/E instead of E and L . All the
equations depend now on b and E and L never appear. From
the expression of the Schwarzschild metric, we can write the
equation for null geodesics as

(
d R

dT

)2

=
(

1 − 2MSch

R

)2

−
(

1 − 2MSch

R

)3 b2

R2 . (3.4)

which, once integrated with the initial condition R(T̄ ) =
R∗, gives the trajectory R(T ) of the photon in the exterior
spacetime.

The other ingredient necessary to trace the photon back-
ward in time from the observer to the cloud is the trajectory of
the boundary of the cloud as given by Rb (T ). This allows us
to determine whether and when the photon hits the boundary
of the collapsing object. From Eq. (2.23) we use the equation
of motion (2.13) written at the boundary as

dρb

dt
= −

√
F

ρb
= −

√
2MSch

Rb
, (3.5)

and, noting that at the boundary of the collapsing object is
ρb(t) = Rb(T (t)), we get

dRb

dT
= dRb

dt

dt

dT
= dρb

dt

dt

dT
. (3.6)

Now making use of Eq. (2.23) we obtain

dRb

dT
= −

√
2MSch

Rb

(
1 − 2MSch

Rb

)
, (3.7)

2 If we restrict to the case of radial null geodesics (L = 0) we get
dt
dr = ±ρ′ where the plus sign denotes outgoing geodesics, while the
minus sign is for ingoing geodesics. Then the problem of studying the
behavior of radial null geodesics emanating from the center of the dust
cloud translates into the Cauchy problem given by Eq. (3.2) with the
initial value t (0) = t0, where t0 ∈ [ti , ts(0)].
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that, once integrated, gives

T (Rb) = T0 − 2

3

R3/2
b√

2MSch
− 2

√
2MSch Rb

+2MSch ln
(√

Rb + √
2MSch

)
+

−2MSch ln
(√

Rb − √
2MSch

)
, (3.8)

that can be inverted to obtain Rb(T ). The intersection of
the null geodesic R(T ) with the boundary curve Rb(T ) then

gives the time ¯̄T at which the photon traveling along the
geodesics hits the boundary.

3.2 Geodesics in the LTB spacetime

Some of the photons that are traced back in time from the
screen will hit the boundary of the cloud and propagate in the
interior. These are the actual photons that are coming from
the collapsing object and we need to evaluate geodesics in the
LTB interior in order to trace them. These were first studied
in [66]. The null geodesics in the interior can be obtained
from

dt

dλ
=

√
ρ′2

(
dr

dλ

)2

+ b2

ρ2 , (3.9)

d2r

dλ2 = −2
ρ̇′

ρ′

√
ρ′2

(
dr

dλ

)2

+ b2

ρ2

dr

dλ
− ρ′′

ρ′

(
dr

dλ

)2

+ b2

ρ3ρ′ .

(3.10)

The photon now propagates inside the cloud following the
null geodesics with initial conditions at the boundary, namely
the photon motion in the LTB interior starts with position

ρb = Rb(
¯̄T ) at the time ¯̄t = t ( ¯̄T ). From the expression for

ρ = ra with a given by Eq. (2.17), we can find the time at
which the photon coming from the observer’s screen is at the
boundary in the interior coordinates. We have

d Rb

dλ
= −

√
2MSch

Rb

dt

dλ
+ R′

b
dr

dλ
, (3.11)

(
dT

dλ

)2

=
(

1− 2MSch

Rb

)−2
[(

d Rb

dλ

)2

+
(

1− 2MSch

Rb

)
b2

R2
b

]
.

(3.12)

Now, with the help of Eq. (3.2), we get

dT

dλ
=

(
1 − 2MSch

R

)−1
(

dt

dλ
− R′

√
2MSch

R

dr

dλ

)
, (3.13)

and eventually we arrive at the initial conditions at the bound-
ary for the first derivatives of t (λ) and r(λ), namely

dt

dλ
= dT

dλ
+

√
2MSch

R
d R
dλ(

1 − 2MSch
R

) , (3.14)

dr

dλ
= 1

ρ′

√(
dt

dλ

)2

− b2

R2 . (3.15)

With the above equations, it is straightforward to numerically
calculate all the photon trajectories.

3.3 Observed spectrum

In the following, we consider two examples, namely the
homogeneous collapse model, where we set M = M0, and
the inhomogeneous one, where we have M = M0 + M2r2.
The spectrum at the time T measured by the distant observer
is given by [67]

I (T, νobs) =
∫

2πb db
∫

γ

g3 jdl, (3.16)

where γ is the photon’s path, j is the emissivity per unit vol-
ume in the rest frame of the emitter and g is the gravitational
redshift,

g = νobs

νe
= kμv

μ
obs

kνvν
e

= E
dt
dλ

, (3.17)

νobs is the photon frequency as measured by the distant
observer, νe is the photon frequency with respect to the emit-
ter,vμ

obs = (1, 0, 0, 0) is the 4-velocity of the distant observer,
v

μ
e = (1, 0, 0, 0) is the 4-velocity of the emitter, and kμ is

the 4-momentum of the photon. Also dl is the proper length
in the rest frame of the emitter and in our model it turns out
to be equal to dt

dl =
√

3gi j
dxi

dλ

dx j

dλ
dλ = dt . (3.18)

In the next section, for the sake of clarity, we will use two sim-
ple emissivity functions. In the first model, we assume that
the emission is monochromatic with rest-frame frequency ν�

and proportional to the square of the energy density (as we
may expect in a two-body collision),

j = ε2δ (νe − ν�) . (3.19)

In the second example, we replace the monochromatic emis-
sion with an exponential function that could somehow mimic
a thermal emission (even if, strictly speaking, our object is
made of dust and therefore the temperature is zero)

j = ε2ν2
e exp

(
− νe

ε1/4

)
. (3.20)

123



2983 Page 8 of 12 Eur. Phys. J. C (2014) 74:2983

Fig. 1 Left panel light curve
luminosity of an LTB collapsing
object with the emissivity
function described by Eq. (3.19),
for the homogeneous/black hole
(red solid curve) and the
inhomogeneous/naked
singularity case (blue dashed
curve). Right panel zoom of the
left panel at the peak of the
luminosity. T in units
2MSch = 1. Luminosity in
arbitrary units

4 Results and discussion

Here we report the results for the spectrum measured by
observers at infinity for the two cases discussed above with
a specific choice of the parameters involved. The first model
is the homogeneous dust collapse (Oppenheimer–Snyder
model), which terminates with the creation of a black hole.
In this case the high density region that develops close to the
formation of the singularity is always covered by the hori-
zon. The second example is the inhomogeneous dust collapse
model in which we find the formation of a singularity that
can be visible to far away observers. The singular point from
which null geodesics can propagate to infinity is that of ts(0)

as given in Eq. (2.19). All the other points in the singularity
curve ts(r) are covered by the apparent horizon, neverthe-
less it can be shown that once there exists one radial null
geodesic emanating from ts(0) that can reach observers at
infinity then there exist a whole family of null geodesics and
also non-radial and non-null geodesics can escape (see for
example Refs. [68,69]). Still, the amount of radiation that
can escape from the high density region close to the singu-
larity could in principle be very small and thus negligible in
comparison with the spectrum emitted from the low density
region which behaves similarly to the homogeneous cloud.
This in fact turns out to be the case as the qualitative features
of both spectra as a result are found to be similar.

For the numerical calculations we have therefore set a
scale by fixing the total mass of the object in both cases.
More specifically, we have set the total mass 2MSch = 1.
What changes is the way the mass is distributed within the
cloud. Having fixed the value of the parameter M0 = 0.01
to be the same in both models, in order to have the same
total mass we must retrieve a different boundary in the two
cases.3 Then for the inhomogeneous collapse model we have
set M2 = −0.00015. The parameter M2 of the second model
has been chosen, among all the allowed values for which
the singularity is globally visible, in such a way to have the
maximal effect in the difference between the two light curves.

3 Another way of proceeding might have been to fix the same boundary
for both models and thus have different values of M0.

From the relation 2MSch = r3
b M(rb), we find that the radius

of the boundary rb is ≈4.64 in the homogeneous model and
≈6.06 in the inhomogeneous one. Let us notice that, for the
above choice of M0 and M2, the maximum boundary radius
for the inhomogeneous collapse model is ≈6.32 (the density
at larger radii becomes negative and thus unphysical), and this
also maximizes the difference in the light curves between the
homogeneous and inhomogeneous collapse. The calculations
have been performed from the distant observer (locate at the
radius R∗ = 107 in units 2MSch = 1) backward in time to
the collapsing object. At any time as measured by the distant
observer, the photon trajectory is characterized only by the
impact parameter b. Geodesics in the exterior Schwarzschild
spacetime have been computed with a fourth order Runge–
Kutta method. As in the interior LTB spacetime we have
a second order differential equation, we decided to use the
Runge–Kutta–Nystrom method [70] for the calculation of
the trajectories.

The evolution of the light curve luminosity as a function
of the proper time of the distant observer T for the homo-
geneous/black hole and inhomogeneous/naked singularity
scenarios are reported in Figs. 1 and 2, respectively for the
monochromatic emissivity of Eq. (3.19) and the thermal-like
one of Eq. (3.20). Figures 3 and 4 show instead some spectra
at specific times. The blueshift (νobs > ν∗) shown in some
panels of Fig. 3 is an effect experienced by those photons that
can propagate for a long time inside the collapsing object, so
that the blueshift gained in the interior solution exceed the
redshift in the exterior Schwarzschild spacetime from the sur-
face of the object to the distant observer. The phenomenon
is explained in some detail in Ref. [71].

As we can see from both the light curve luminosity and the
spectra, there are no qualitatively significant features that can
differentiate between the two scenarios. While in the inho-
mogeneous/naked singularity case we could have expected a
much higher luminosity originating from the central region
with high energy density just before the formation of the
naked singularity, it turns out that the size of this region is
too small, and the time scale too short, to produce a sig-
nificant emission of radiation. On the one hand, this result
may suggest that the formation of a spacetime singularity
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Fig. 2 As in Fig. 1 for the
emissivity function in
Eq. (3.20). T in units
2MSch = 1. Luminosity in
arbitrary units

Fig. 3 Spectra of an LTB
collapsing object with the
emissivity function described by
Eq. (3.19), for the
homogeneous/black hole (red
solid curve) and the
inhomogeneous/naked
singularity case (blue dashed
curve). Luminosity in arbitrary
units

visible to distant observers in our Universe is not a catas-
trophic event incompatible with observations. It would seem
that even within this simple and extremely idealized collapse
model it is impossible to observationally distinguish the birth
of a black hole from that of a naked singularity. Therefore,
provided that the scenario is not drastically altered by some
other effects (like for example those induced in the strong
field regime by some theory of quantum gravity), the creation

of a spacetime naked singularity as the endstate of collapse
might not have significant direct observational consequences
for far away observers. While we cannot at present exclude
the possibility of testing the weak cosmic censorship conjec-
ture and/or probe the high densities region where classically
we would expect the formation of a spacetime singularity
with astrophysical observations, it is clear that such possibil-
ities are at least challenging, even in principle, and are likely
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Fig. 4 As in Fig. 3 for the
emissivity function in
Eq. (3.20). Luminosity and νobs
in arbitrary units

to remain challenging also in the case of more sophisticated
theoretical models that account for more realistic scenarios
and astrophysical effects.

5 Summary and conclusions

In general relativity, gravitational collapse of type I matter
fields satisfying basic energy conditions ends with the forma-
tion of a singularity of the spacetime, where the matter den-
sity diverges and standard physics breaks down. In particular
this is the case for dust collapse, where, in the absence of pres-
sures, a spacetime singularity is the only allowed outcome
of collapse under the basic assumption of the positivity of
mass and energy density. Spacetime singularities may either
be hidden behind a horizon, as in the case of black holes, or
be naked and thus visible to distant observers. We now know
many physically meaningful examples of naked singulari-
ties created as the endstate of collapse of matter fields that
respect the standard energy conditions, starting with regular

initial data. On the other hand, the weak cosmic censorship
conjecture asserts that singularities produced in any generic
gravitational collapse scenario must be hidden within black
holes and cannot be seen by distant observers. The validity of
this conjecture is still an open and controversial problem, but
it is a key-assumption in black hole thermodynamics and it is
of crucial importance for astrophysics where observed mas-
sive compact objects that exceed the Chandrasekhar mass
limit are usually assumed to be black holes.

In the present paper, we have tried to address the question
whether it is possible to observationally test the weak cosmic
censorship conjecture by measuring the radiation emitted by
a collapsing body. In order to have a first understanding of
the basic features of the problem, we decided to begin by
studying the simplest theoretical collapse model, the LTB
model, for which an analytical solution is known and easily
calculated and to simplify as much as possible the assump-
tions related to the emitted radiation. In this scenario the
final product of collapse can be either a black hole or a naked
singularity, depending on the values chosen for the parame-
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ters that determine the density profile. The naked singularity
that forms as the endstate of dust collapse is naked only for a
“short time” in comoving coordinates. Nevertheless this time
may have been quite large once the photons emitted from the
high density region reach observers at infinity.

We have computed the radiation emitted by these collaps-
ing objects and their light curves, which can potentially track
the evolution of the collapse, in order to find observational
signature capable of distinguishing the birth of a black hole
from the one of a naked singularity. Our collapse model is
very simple and assume that the object is optically thin to the
emitted radiation, which should make much easier the pos-
sibility of distinguishing the two scenarios than a realistic
case with a lot of astrophysical complications. The answer
to our question is not intuitively accessible, as the final result
depends on several relativistic effects, like the gravitational
redshift and the time delay between the collapsing star and
the distant observer. Within our simple model, we did not
find any specific signature to identify the naked singularity
scenario. As shown in Figs. 1 and 2, the light curves for
black holes and naked singularities do not seem to be qual-
itatively different. Roughly speaking, the reason is that the
high density region formed just before the formation of the
singularity is too small to produce an observational signature
in the flux reaching the distant observer. While our finding
cannot definitively exclude the possibility of observationally
probing the high density region where classically we would
expect the formation of a spacetime singularity, observational
tests of the weak cosmic censorship conjecture seem to be at
least extremely challenging, even in principle and even in the
simplest case where we neglect all the possible astrophysical
complications.
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