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Abstract We study thermodynamics of black hole solu-
tions in Lanczos–Lovelock anti-de Sitter gravity in d + 1
dimensions coupled to nonlinear electrodynamics and a
Stückelberg scalar field. This class of theories is used in
the context of gauge/gravity duality to describe a high-
temperature superconductor in d dimensions. A larger num-
ber of coupling constants in the gravitational side is necessary
to widen the domain of validity of physical quantities in dual
quantum field theory (QFT). We regularize the gravitational
action and find the finite conserved quantities for a planar
black hole with scalar hair. Then we derive the quantum sta-
tistical relation in the Euclidean sector of the theory, and we
obtain the exact formula for the free energy of the supercon-
ductor in the holographic QFT. Our result is analytic and it
includes the effects of backreaction of the gravitational field.
We further discuss on how this formula could be used to
analyze second order phase transitions through the discon-
tinuities of the free energy, in order to classify holographic
superconductors in terms of the parameters in the theory.

1 Introduction

The proposal of Maldacena about an equivalence between
the anti-de Sitter (AdS) gravity and the conformal field
theory (CFT) in a smaller spacetime dimension [1–4] has
brought to many successful applications of this correspon-
dence to strongly coupled quantum systems. This conjec-
tured holographic-type duality between two theories is still
the only approach to field theories where strong coupling
results are calculated exactly from its gravitational weakly
coupled dual system.

We are interested in studying thermal phase transitions
in quantum field theories in the context of AdS/CFT corre-
spondence. The temperature in holographic quantum field
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theory (QFT) is identified with the Hawking temperature of
the black hole in AdS gravity which arises from quantum
effects near the event horizon. A phase transition occurs in a
theory when its effective potential changes as a consequence
of temperature variations and leads to vacuum instabilities.
We assume that the temperatures are high enough in order to
favor transitions due to temperature fluctuations, and not the
ones that happen because of quantum fluctuations. In par-
ticular, we shall focus on high-temperature superconductors
whose critical temperature, Tc, is above the limit of applica-
bility of the Bardeen–Cooper–Schrieffer (BCS) theory, and
we use the gauge/gravity duality to describe phase transitions
as a fundamental phenomenon and not an effective one, as in
the BCS model.

Typical features of the superconducting phase in a super-
conductor are related to its response to electric and magnetic
fields, such as the infinite conductivity (i.e., superconductiv-
ity) and the expulsion of magnetic field from it (the Meissner
effect). Thus, in order to obtain a holographic superconduc-
tor in d dimensions, the dual AdSd+1 space has to contain
an electrically charged black hole coupled to charged matter,
for example, a complex scalar field [5]. Then the electromag-
netic field becomes a source for an electromagnetic current
in the boundary QFT and the scalar field couples to an order
parameter. In addition, on the gravity side a charged black
hole will develop a scalar hair as the Hawking temperature
increases, which will correspond to a phase transition of a
superconductor on the QFT side. The holographic procedure
enables to compute dynamical transport properties of a such
superconductor directly from the gravitational dynamics.

Second order phase transitions are present in holographic
QFT dual to general relativity minimally coupled to the
Maxwell field and one complex scalar. Even in this sim-
plest case, in order to obtain information about a holographic
superconductor, one faces the technical problem of solving
nonlinear field equations of matter interacting with gravity
in AdS space. The easiest way to circumvent this problem
is to take a probe limit, that is, to study the dynamics of the
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matter fields in the black hole background, i.e., neglecting
the gravitational backreaction. Then one might use numer-
ical methods to solve the equations of motion. For exam-
ple, in [6], the authors study electric and magnetic fields in
a holographic Stückelberg superconductor [7] with a mini-
mally coupled scalar field in a four-dimensional planar AdS
black hole background. They calculate the critical exponent,
superconductivity, the energy gap, free energy and specific
heat in this theory using numerical methods. A similar prob-
lem in the background of a planar black hole with a monopole
and a multiplet of complex scalar fields in four dimensions
was discussed in [8]. In d dimensions, a more general sys-
tem has been analyzed in [9,10], where a number of physi-
cal quantities was obtained for the Stückelberg holographic
superconductor with the scalar potential �n , finding first
order (n > 2) and second order (n = 2) phase transitions.
A linear combination of the potentials with different n was
also discussed. In the same context, but adding Weyl cor-
rections, it was found in [11] that the critical exponent does
not depend on the Weyl parameter, which just confirms its
universal value 1/2 that does not depend on the details of the
dynamics of the system. It is worthwhile mentioning that the
holographic models of high-temperature superconductivity
also successfully explain the large ratio of the energy gap to
critical temperature compared to conventional superconduc-
tors [5,6].

A semi-analytic approach to phase transitions in four
dimensions is beautifully described by Gubser [12,13] as a
symmetry breaking effect, where a superconductor is formed
near the black hole horizon. Different types of superconduc-
tors (s-wave [14,15] and p-wave [16,17], whose order param-
eters are the scalar and the vector, respectively) are explained
using Abelian and non-Abelian gauge fields. Analytic cal-
culations in the asymptotic region near the phase transition
point are performed in five-dimensional AdS gravity in [18]
for the Stückelberg equations of motion that are solved in
the probe limit. The backreaction of the hairy charged black
hole in four dimensions has been included in [19], where
a semi-analytic solution is obtained by matching smoothly
the near-horizon series with the asymptotic solution at the
matching point located between the horizon and the infinity.

In order to explain different types of holographic high-Tc

superconductors discovered in nature, which do not fit any
theoretical description, one needs a broad class of different
CFTs coming from AdS gravities in the bulk. A massive
scalar field in AdS space can give as many unitary CFTs
on the boundary as there are possible boundary conditions,
but in general there are just few ones (for example Dirichlet,
Neumann and mixed boundary conditions) [20]. This is not
enough to explain the variety of properties of these supercon-
ductors. Thus, in higher dimensions, it is natural to consider
a generalization of general relativity in AdS space, that is,
higher-curvature Lanczos–Lovelock AdS gravities [21–23]

that depend on a family of coupling constants and still pos-
sess second order field equations in the metric field. The
presence of these couplings can change physical properties
of holographic quantities, such as critical temperature and
transport coefficients ratios. In recent work on holographic
superconductors with electromagnetic and charged scalar
fields that deal with nonlinear gravitational effects, Einstein–
Gauss–Bonnet (EGB) AdS gravity quadratic in curvature,
was studied in an arbitrary dimension [24,25] in the probe
limit and using the numerical methods. A typical result is
that the Gauss–Bonnet (GB) coupling decreases the critical
temperature of the superconductor and thus makes the con-
densation harder [26–31]. In these references, an analytical
approach to the condensation in a holographic dual to EGB
gravity that includes an effect of the backreaction of black
holes in five dimensions was also discussed. Again, inclu-
sion of the backreaction of the gravitational field makes the
condensation harder in these theories. Interestingly, in [32]
it was found that for very strong GB couplings, the critical
temperature begins to increase. Another technique to ana-
lytically study the critical phenomena, based on the varia-
tional method for the Sturm–Liouville operator, was used in
[33]. Different aspects of a holographic superconductor with
the GB term were also analyzed in [19,24,25,29–32,34–40],
showing that the higher-order curvature corrections can mod-
ify the universal ratio of the gap in the frequency-dependent
conductivity to critical temperature (ωg/Tc = 8). Similarly,
in dual holographic hydrodynamics, the universal ratio bound
of the shear viscosity to entropy density, η/s ≤ 1/4π [41],
can be changed by higher-order curvature terms (see, e.g.
[42]). Another way to modify the ratio ωg/Tc is in dilaton
extensions of holographic superconductors [43].

On the other hand, gauge theories which are described by
nonlinear actions for Abelian or non-Abelian connections
have also become standard in the context of superstring the-
ory and provide richer physics in holographic theories. For
example, introduction of the Born–Infeld electrodynamics
(in presence of EGB AdS black holes) affects the forma-
tion of the scalar hair since it changes the transition point of
the phase transition from the second order to the first order
[24,25]. Also, a power-Maxwell electromagnetic field in the
background of the Schwarzschild AdS black hole makes the
scalar hair harder to condensate for larger power parameter
[44]. In both cases the critical exponent of the system remains
the same as in the Landau–Ginzburg mean field theory, that
is, 1/2, and the same happens for a large class of nonlin-
ear electrodynamics models. Inclusion of a dynamical elec-
tromagnetic field in holographic superconductors was dis-
cussed in [45], which was crucial to obtain properties such
as the Meissner effect. Notice that, although the magnetic
field makes the condensate harder to form, a negative GB
coupling enhances the condensation when the field is not too
strong [46].
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Newer results on nonlinear effects in holographic super-
conductors can be found in [47–50]. For more on holographic
superconductors, see the comprehensive lectures in, e.g.,
[51,52].

In our approach, we are interested in analytic study of the
effects of higher-order gravitational terms in AdS gravity and
nonlinear electrodynamics on phase transitions in high-Tc

holographic superconductors of the Stückelberg type, which
includes the backreaction of the black holes. The goal is to
find an exact formula for the free energy of a superconductor
in an arbitrary dimension d that is UV finite and it depends
on at most on [d/2] gravitational coupling parameters of the
Lanczos–Lovelock action and two arbitrary functions stem-
ming from the NED and Stückelberg actions. In the course
of this, we shall renormalize the IR sector of AdSd+1 gravity,
which corresponds to a UV renormalization of a holographic
quantum effective action. As a result, we shall obtain the
result that the free energy of the system at finite T satisfies
the quantum statistical relation. Since the free energy and the
corresponding statistical partition function contain all ther-
modynamic information about the holographic quantum sys-
tem, this formula will open the possibility to analyze the local
and global minima of the thermodynamic potential and, in
this way, detect all possible phase transitions in the theory
depending on the values of coupling constants, similarly as
in the Landau–Ginzburg description of superconductivity.

In this paper, we shall focus on the first part of the above
problem and only discuss the second part, which is work in
progress.

2 Lanczos–Lovelock AdS gravity and the equations
of motion

The Lanczos–Lovelock (LL) gravity [21–23] in D = d + 1
dimensions is described by an action polynomial in the Rie-
mann curvature in such a way that its equations of motion
still keep properties of general relativity and give rise to at
most second order field equations in the metric. This happens
because the pth term of the LL polynomial, L p, is a dimen-
sional continuation of the Euler density in 2p dimensions,

ILL = 1

2κ2

∫
dd+1x

√−g
[d/2]∑
p=0

αp L p,

L p = 1

2p
δ
μ1...μ2p
ν1...ν2p Rν1ν2

μ1μ2
. . . R

ν2p−1ν2p
μ2p−1μ2p , (1)

where δ
μ1...μ2p
ν1...ν2p = δ

μ1
ν1 δ

μ2
ν2 . . . δ

μ2p
ν2p

+ · · · denotes the com-
pletely antisymmetric product of 2p Kronecker’s deltas. In
our notation, the metric field gμν is mostly positive and
the Riemann curvature reads Rμναβ = ∂α�

μ
νβ − ∂β�

μ
να +

�
μ
λα�

λ
νβ − �

μ
λβ�

λ
να .

The last non-vanishing term in the sum, Ld+1, is the
Euler topological invariant that does not contribute to the
dynamics, so it has not been included in the series. The
terms with L2p>d+1 are identically vanishing. The strength
of gravitational interaction is determined by the Newton
constant G N = κ2/8π . The gravitational part of the the-
ory depends on the set of the coupling constants, αp, of
dimension [length]2p−2. The first term in the LL polyno-
mial is constant, L0 = 1, so that α0 = −2� is related
to the cosmological constant, that we shall assume to be
negative, � = −d (d − 1) /2�2. Here, � is the AdS radius.
The linear term in the curvature is the Einstein–Hilbert term
L1 = R, normalized as α1 = 1. Other terms can be seen
as higher-order curvature corrections to general relativity.
The simplest, quadratic correction is given by the GB term
L2 = R2 − 4RμνRμν + Rμνλσ Rμνλσ with the coupling
α2 = α. Even though we assume that the constants αp are
arbitrary for p ≥ 2, from the point of view of the AdS/CFT
correspondence, there are restrictions on their values related
to preserving of the causality in the boundary of asymptoti-
cally AdS spacetime [53–55].

The metric is coupled to the Abelian gauge field Aμ(x)
with the associated field strength Fμν=∂μAν−∂ν Aμ through
the quadratic invariant F2 = gμαgνβFμνFαβ . In order to
include nonlinear effects, we choose the electromagnetic
field described by nonlinear electrodynamics (NED) whose
Lagrangian density is an arbitrary function in the invariant
F2,

INED = 1

2κ2

∫
dd+1x

√−g L(F2). (2)

The gravitational and NED fields are coupled to a complex
scalar field �̂ = �ei p, where nonlinear effects are intro-
duced through a non-minimal coupling of the Stückelberg
action [7],

IS = 1

2κ2

∫
dd+1x

√−g

×
[
−1

2
(∂�)2 − 1

2
m2�2 − 1

2
F(�) (∂p − A)2

]
. (3)

Here,�(x) and p(x) are real scalar fields, and F(�) is an
arbitrary real function that satisfies F(0) = 0 and F(�) ≥ 0
in order to ensure positivity of the kinetic term for p. The
minimal coupling between the scalar and EM fields is recov-
ered by choosing the interaction as Fminimal(�) = �2.

The total bulk action,

I0 = ILL[g] + INED[g, A] + IS[g, A, �, p], (4)

depends on the set of constants in the gravity part, κ , � and
αp, and two arbitrary functions L(F2) and F(�) determin-
ing completely the matter couplings.
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Our goal is to understand for which gravitational parame-
ter range and what interaction with the matter (within a cho-
sen class of theories) it is possible to have a phase transition
of second order in holographically dual QFT.

Provided the boundary terms have been added to the bulk
action, which we shall discuss later in detail, the action
reaches an extremum for the following equations of motion:

δgμν : −
[d/2]∑
p=0

αp

2p+1 gνλδ
λν1...ν2p
μμ1...μ2p Rμ1μ2

ν1ν2
. . . R

μ2p−1μ2p
ν2p−1ν2p =Tμν,

δAμ : ∇ν
(

4Fμν
dL

d F2

)
= −F(�)

(∇μ p − Aμ
)
,

δ� :
(
∇2 − m2

)
� = 1

2

dF
d�

(∇ p − A)2 ,

δp : ∇μ
[
F(�)

(∇μ p − Aμ
)] = 0, (5)

where ∇μ is covariant derivative with respect to the affine
connection �μνλ. The symmetric energy-momentum tensor
for the matter fields, conveniently normalized as Tμν =
− 4κ2√−g

δ(INED+IS)
δgμν , has the form

Tμν = 1

2
gμν L + dL

d F2 2FμλFλν

− 1

4
gμν

[
(∂�)2 + m2�2 + F(�) (∂p − A)2

]

+ 1

2
∂μ�∂ν� + 1

2
F(�)

(
∂μ p − Aμ

)
(∂ν p − Aν) .

(6)

In order to ensure a non-negative energy density of the
matter, we impose the weak energy condition on the energy-
momentum tensor,w = −Tμν uμuν ≥ 0, for a time-like unit
vector uμ.

The system of equations (5) can be simplified by noticing
that the last equation is not independent from the others and
can be consistently eliminated by fixing the U (1) gauge sym-
metry, p(x) → p(x)+α(x). From now on, we set p(x) = 0.

In order to have an asymptotically AdS spacetime, we
assume that there exists the AdS vacuum (Tμν = 0) with
constant curvature globally, Rν1ν2

μ1μ2 = − 1
�2

eff
δ
ν1ν2
μ1μ2 , with an

effective AdS radius, �eff. Plugging in this condition in the
gravitational equation (5) gives rise to a polynomial

0 =
[d/2]∑
p=0

αp

(d − 2p)!
(
−�−2

eff

)p
, (7)

which has at most [d/2] different roots 1/�2
eff for a given set

of the coefficients {αp}.
Now we want to describe a charged AdS black hole solu-

tion to (5). It is well known that black holes exist in pure
LL AdS gravity [56–59] and in LL AdS gravity coupled

to NED, in particular in Born–Infeld electrodynamics [60].
Their thermodynamics has also been studied [61,62]. For a
recent review on Lovelock gravities, see, e.g., [63], and in
the context of holography [64].

3 Charged planar black hole in Einstein–Gauss–Bonnet
gravity

We start from the EGB AdS action, the simplest LL gravity
different from general relativity defined in D ≥ 5 dimen-
sions that includes a quadratic correction in the spacetime
curvature given by the GB term,

IEGB = 1

2κ2

∫
dd+1x

√−g

×
[

R−2�+ α
(

R2 − 4RμνRμν+Rμνλσ Rμνλσ
)]
.

(8)

In the framework of String Theory, the GB term arises in
the low-energy limit and the constant α is positive. In our
case, we are rather concerned about restrictions imposed in
a dual QFT, se we keep α an arbitrary real constant. The
gravitational equations of motion in (5) becomes

Gμ
ν + Hμ

ν = Tμν , (9)

where we have introduced the Einstein tensor with the cos-
mological term,

Gμ
ν = Rμν − 1

2
δμν R +�δμν , (10)

and the Lanczos tensor that describes contribution of the
quadratic-curvature gravitational terms,

Hμ
ν = −α

8
δμμ1...μ4
νν1...ν4

Rν1ν2
μ1μ2

Rν3ν4
μ3μ4

,

= −α
2
δμν

(
R2 − 4Rαβ Rαβ + Rαβλσ Rαβλσ

)

+ 2α
(
R Rμν −2RμλRλν−2Rμλνσ Rλσ+Rμαλσ Rναλσ

)
.

(11)

In EGB AdS gravity, second order polynomial (7) gives
two (real) different radii square

�
(±)2
eff = 2α (d − 2) (d − 3)

1 ±
√

1 − 4α
�2 (d − 2) (d − 3)

, (12)

when α < αCS = �2

4(d−2)(d−3) . Then the l.h.s. of the gravita-
tional equations of motion (9) can be factorized,

−α
8
δμμ1...μ4
νν1...ν4

(
Rν1ν2
μ1μ2

+ 1

�
(+)2
eff

δν1ν2
μ1μ2

)

×
(

Rν3ν4
μ3μ4

+ 1

�
(−)2
eff

δν3ν4
μ3μ4

)
= Tμν . (13)
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Note that only the negative branch with the radius �(−)eff
(“stringy” vacuum) reduces to the bare AdS radius � when
α → 0, whereas �(+)eff is a new AdS vacuum typical for the
EGB gravity. A linearized theory around the stringy vacuum
shows the presence of the ghosts [65] indicating that this vac-
uum might be false, but the unstable modes are not excited by
the spherically symmetric black hole [66,67]. Thus, because
we are looking at the thermal CFTs dual to spherical black
holes, we shall allow, in principle, both vacua in our discus-
sion.

On the other hand, we shall omit the Chern–Simons point,
αCS, in the space of parameters, where the theory has the
unique AdS radius (�(−)2eff = �

(+)2
eff = �2/2) and the AdS

vacuum is two-fold degenerate, because in that point the EGB
Lagrangian becomes a Chern–Simons AdS gravity [68] that
has augmented number of gauge symmetries and has to be
treated independently [69].

To study black holes, we assume a static, maximally
symmetric metric in the local coordinates xμ = (t, r, ym),
m = 2, . . . d,

ds2 = gμν(x) dxμdxν = − f (r) dt2

+ dr2

f (r)N (r)
+ r2γmn(y) dymdyn . (14)

The radial coordinate is chosen so that the boundary is
placed at radial infinity, r → ∞, and parameterized by
xi = (t, ym). The metric γnm of the transversal section
r = Const describes a (d − 1)-dimensional space with
the constant curvature k = 1, 0 or −1, corresponding to
spherical, flat or hyperbolic geometry, respectively. In par-
ticular, k determines the geometry of the event horizon of
the black hole, r+, defined as the largest root of the equa-
tion f (r+) = 0. We are interested in the outer region only,
r ≥ r+, where f (r) ≥ 0. The function N (r) > 0 is finite at
the horizon.

In order to have flatter boundary that is suitable for a holo-
graphic description of a fluid, we shall restrict our study
to planar AdSd+1 black holes with noncompact horizons,
k = 0, whose transversal section is R

d−1 with the flat met-
ric γmn = δmn . We also require that the curvature is slowly
varying, that is, the black hole horizon is big, r+ � �eff.

Planar asymptotically AdS spacetimes have the metric
functions that behave for large r as,

f (r) → r2

�2
eff

+ O (1/r),

f (r)N (r) → r2

�2
eff

+ O (1/r), (15)

independently on how fast O (1/r) tends to zero. The Hawk-
ing temperature of the black hole (14) in this spacetime reads

T = 1

4π
f ′(r+)

√
N (r+), (16)

and it increases linearly with r+, so that the large horizon
approximation corresponds to high temperatures in a holo-
graphically dual field theory.

We also assume that the black hole is electrically charged,
with an Abelian gauge field that has the same isometries as
the metric (14),

Aμ = φ (r) δt
μ. (17)

The field strength is expressed in terms of the electric field
E(r) = −φ′(r) as Fμν = E(r) δtr

μν , where the prime denotes
the radial derivative. Note that F2 = −2N E2.

The unknown functions f (r), N (r), φ(r) and �(r) obey
the differential equations

0 = Eμν := Gμν + Hμν − Tμν,

0 = Eμ := 1√−g
∂ν

(
4
√−gFμν

dL
d F2

)
− Fgμν Aν,

0 =E := 1√−g
∂μ
(√−g gμν∂ν�

)−m2�− 1

2

dF
d�

gμν AμAν .

(18)

For sufficiently high temperatures, these equations pos-
sess a solution without scalar field, � = 0, that is dual to a
holographic QFT without condensate. Its most general form
for an arbitrary GB coupling α and the NED Lagrangian
L(F2) was found in [70],

f (r) = r2

2α (d − 2) (d − 3)

×
[

1 ±
√

1−4α (d−2) (d−3)

(
1

�2 − μ

rd
+ 2T (q, r)
(d − 1) rd

)]
,

(19)

where μ is an integration constant related to the black hole
mass, and the positive function T (q, r) corresponds to the
total matter energy in the region between the horizon and the
distance of radius r ,

T (q, r) = 2

d

(
1

4
rdL − qr E + (d − 1) qφ

)∣∣∣∣
r

r+
. (20)

When � = 0, the electric field is calculated from the
algebraic equation

E
dL

d F2

∣∣∣∣
F2=−2E2

= − q

rd−1 . (21)

In the special case of the Born–Infeld Lagrangian L(F2)

[71], the solution and its thermodynamics were discussed in
[72].

When� 
= 0, (18) become a system of nonlinear differen-
tial equations. With help of the identities given in Appendix
A, we write them in components as

123



2975 Page 6 of 19 Eur. Phys. J. C (2014) 74:2975

Er
r = d − 1

2

[
(d − 2)

N f

r2 + N f ′

r
− 2α

× (d−2) (d − 3) N 2
(

f f ′

r3 + d − 4

2

f 2

r4

)
− d

�2

]
−T r

r ,

E t
t = Er

r + N ′ f

2r
(d − 1)

(
1 − 2α (d − 2) (d − 3)

N f

r2

)

+ 1

2
f N � ′2 + Fφ2

2 f
, (22)

where the matter energy-momentum tensor contributes
through

T r
r = 1

2
L+2N E2 dL

d F2 +Fφ2

4 f
−1

4
m2�2+1

4
f N� ′2. (23)

One can also check that, as an effect of the backreaction
of the gravitational field, the components T t

t and T r
r differ,

that is,

T t
t = T r

r − 1

2
f N � ′2 − Fφ2

2 f
. (24)

The presence of the scalar field decreases total matter
energy density (because f , N , F > 0 outside the horizon).
This means that, if a solution with the scalar field exists,
then we can expect that it would decrease the total energy of
the system and, therefore, be energetically more favorable,
producing a phase transition.

The scalar field equation (18) in the chosen ansatz reads

E =
√

N

rd−1

(
rd−1

√
N f � ′)′ − m2� + dF

d�

φ2

2 f
. (25)

In the NED equation in (18), only the time-like component
is non-trivial,

E t = −
√

N

rd−1

(
4rd−1

√
N E

dL
d F2

)′
+ Fφ

f
. (26)

We define the electric potential at distance r measured
with respect to the horizon r+ as

φ(r) = −
r∫

r+

ds E(s). (27)

The quantity of physical interest is the chemical potential
� = φ(∞) − φ(r+), or the potential at infinity measured
with respect to the event horizon,

� = φ(∞) = −
∞∫

r+

ds E(s). (28)

This choice of the reference point satisfies φ(r+) = 0,
since any other referent point would lead to non-vanishing
φ(r+) and a negative effective mass of the scalar field [12,
13]. Indeed, the electric potential couples to the scalar field so
that, from (25), it contributes to its effective mass as m2

eff =
m2− φ2

f
dF
d�2

∣∣∣
�=0

. This mass can be divergent on the horizon

unless we impose φ = 0 there. It is also worthwhile noticing
that the effective potential for the scalar field, leading to the
equation of motion (25), has the form

Veff = 1

2
m2�2 − φ2

2 f
F(�), (29)

and because F is positive, the interaction decreases the effec-
tive potential and therefore the total energy of the system. The
systems with unbounded potentials in gravity are, in general,
known to lead to hairy black hole solutions.

Finally, it is straightforward to check that the gravitational
equation En

m is not independent. Using the expressions (102)
given in Appendix A, we find

Em
n =δm

n

[(
rd−1Er

r

)′
rd−2 + r f ′

2 f

(
Er

r − E t
t

)+ r

2

(
� ′E − E E t)

]
,

(30)

and therefore this equation always vanishes.
The field equations (22), (25), and (26) are at most second

order differential equations in { f, N , φ,�}, defined between
the horizon and the asymptotic boundary. Thus, for each field
we have to impose at most two boundary conditions, at r+
and r → ∞. Asymptotic sector we shall discuss later. As
respect to r+, we require that all fields and their derivatives
are finite on the horizon, as well as f (r+) = 0 , φ(r+) = 0
and f ′(r+) fixed by the temperature. Then the values of other
fields and their derivatives at r+ can easily be deduced from
the equations of motion. The scalar field, for example, has to
satisfy

m2�(r+) = 4πT
√

N (r+)� ′(r+, (31)

and E(r+) and N ′(r+) are obtained from (22) and (26).
For an arbitrary r , the field equations are not exactly sol-

uble when ψ 
= 0. To deal with them analytically, one can
use the matching method, that was first applied to supercon-
ductors with higher-order corrections in [73]. The method
consists in finding two approximative solutions to the equa-
tions of motion in the leading order: one in the vicinity of
the horizon and another in the asymptotic region. These two
solutions are matched smoothly at the arbitrary intermediate
point. This technique allows to obtain an analytic expres-
sion for the critical temperature. The results depend on the
matching point parameter zm , even though its presence does
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not change quantitatively the features of a phase transition.
Another analytic method found in the literature is the Sturm–
Liouville one, which was used to study holographic super-
conductors in [33].

In our approach, we shall use only an asymptotic expan-
sion. When the gravity action is finite in the asymptotic
region, its expansion in the vicinity of the AdS boundary can
be viewed as a holographic reconstruction of the bulk fields
(metric and matter fields) starting from the boundary field
data [74]. This method cannot be used to fix all parameters
in the expansion because there always remain some unfixed
coefficients at a given order, depending on the dimension.
This ambiguity is well understood in the Fefferman–Graham
coordinate frame [75] as coming from non-local terms in the
quantum effective action, precisely the ones related to the
holographic stress tensor [76]. Even with this ambiguity, the
subleading orders encode the information on the existence
of phase transitions for a given set of coupling constants.
When the transition exists, they enable one to calculate the
critical temperature and the critical exponent in an analytic
way.

In order to develop the above ideas in detail, first we
have to remove the infrared divergences in the action. Then
we shall construct the on-shell action that will yield, in the
Euclidean section, the thermodynamic potential of the black
hole that is identified with the free energy in holographic
QFT. This result can be obtained exactly.

4 Euclidean bulk action

We evaluate the bulk action (4) using the equations of motion
and show that it is divergent. The Euclidean action I E

0 =
−i I0 = ∫

dd+1x
√−g L0 is obtained by the Wick rotation

of the time coordinate, t = −iτ , where the Euclidean time τ
is periodic, with the period T −1, in order to avoid a conical
singularity at the horizon. Assuming that the bulk Lagrangian
L0, evaluated on-shell for a static and maximally symmetric
solution, depends only on the radial coordinate, we obtain

I E
0 = − Vd−1

T

∞∫

r+

dr
rd−1

√
N

L0(r), (32)

where Vd−1 = ∫
dd−1 y

√
γ is the (infinite) volume of the

flat transversal section. The physical quantity is an action per
unit volume.

Using the gravitational equation of motion (22), the EGB
term becomes

LEGB = −
√

N

rd−1

×
[√

N f ′ (rd−1 − 2α (d − 1) (d − 2) rd−3 N f
)]′ − 2T t

t .

(33)

Furthermore, the NED Lagrangian density, L, and the
scalar field Lagrangian density, LS, can be calculated directly
from the energy-momentum tensor (24),

L + LS = 2T t
t − 4N E2 dL

d F2 + Fφ2

f
. (34)

Summing up all contributions, the bulk Euclidean action
becomes

I E
0 = Vd−1

2κ2T

∞∫

r+

dr

[
rd−1

√
N f ′

(
1 − 2α (d − 1) (d − 2)

N f

r2

)]′

+ Vd−1

2κ2T

∞∫

r+

dr rd−1
(

4
√

N E2 dL
d F2 − Fφ2

f
√

N

)
, (35)

where we omit writing that dL
d F2 is evaluated at F2 =

−2N E2. In order to show that the second line in the above
equation is also a total derivative, we use the electromagnetic
equation of motion ( 26) and write

rd−1
(

4
√

N E2 dL
d F2 − Fφ2

f
√

N

)
= −

(
4rd−1

√
NφE

dL
d F2

)′
,

(36)

and we arrive at the final form of the bulk action,

I E
0 = Vd−1

2κ2T

[
rd−1

√
N f ′

(
1 − 2α (d − 1) (d − 2)

N f

r2

)

−4rd−1
√

N φE
dL

d F2

]∣∣∣∣
∞

r+
. (37)

This expression is valid for any charged black hole solu-
tion, independently on its explicit form, for all NED and
scalar interactions L and F , and any value of the GB con-
stant α.

Equation (37) is clearly divergent for the global AdS
space, and therefore it is IR divergent in asymptotically AdS
sector, and it has to be regularized by a suitable addition of
boundary terms.

5 Variational principle and boundary terms

An action functional is well defined if it satisfies the finite
action principle, that is, it is differentiable upon taking varia-
tional derivatives in the fields and free from IR divergences.
This means that the action has to reach an extremum for a
given set of boundary conditions. Removal of the divergences
in the asymptotic region can be achieved if one supplements
the boundary term B to the bulk action I0, so that the total

123



2975 Page 8 of 19 Eur. Phys. J. C (2014) 74:2975

action I = I0 + B fulfills the above conditions. As a con-
sequence, the finite total action also ensures the finiteness
of the Noether charges and the Euclidean action, which is
necessary for studying the black hole thermodynamics.

The pure gravitational part of the bulk action I0 does not
fulfill the above conditions. Indeed, the on-shell boundary
terms obtained from the variation of (4) can be written, using
the Stokes theorem in the spacetime with a boundary whose
an outward-pointing unit normal is nμ, as

δ I0 = 1

2κ2

∫
dd x

√−h nμ

×
[
−δμμ1μ2μ3

νν1ν2ν3
gναδ�ν1

μ1α

(
αRν2ν3

μ2μ3
+ 1

(d − 1) (d − 2)
δν2
μ2
δν3
μ3

)

+ δAν 4Fμν
dL

d F2 − δ�∇μ� − F δp
(∇μ p − Aμ

)]
. (38)

In order to identify the boundary quantities in a simple
way, it is convenient to choose the local coordinates as xμ =
(r, xi ), where xi (i = 2, . . . d) parameterize the boundary
placed at r = Const, so that the normal vector has the form
nμ = (N (r), 0). This choice of nμ defines a Gauss-normal
frame

ds2 = N 2 (r) dr2 + hi j (r, x) dxi dx j , (39)

where both the lapse functionN (r) and the induced boundary
metric hi j (r, x) can be related straightforwardly to the metric
functions f (r) and N (r) used in the black hole ansatz (14),

N 2 = 1

f N
, hi j =

(− f 0
0 r2δmn

)
,

√−h = rd−1
√

f .

(40)

The extrinsic curvature of the boundary is defined as a
covariant derivative of the unit normal, Kμν = −∇μnν . In a
Riemann space it is symmetric, and in the ansatz (14) it has
only non-vanishing components Ki j , or

K i
j =hik Kkj =−1

2

√
N f hikh′

k j =
(

− f ′
2

√
N
f 0

0 −1
r

√
N f δm

n

)
.

(41)

In the Gaussian frame, a variation of the Christoffel sym-
bol gives rise to the terms proportional to both the variation
of the induced metric, δhi j , and the variation of the extrinsic
curvature, δKi j . This action, clearly, it is not differentiable,
since δ I0/δhi j is not well defined. The differentiability of
the gravitational action for the Dirichlet boundary conditions
on the induced metric can be recovered by addition of the
Gibbons–Hawking term. However, obtained Dirichlet action
still remains IR divergent. To heal these divergences, one

should apply one of known regularization methods suitable
for application of the holographic principle, i.e., covariant
and background independent. One possibility is to use the
holographic renormalization [74,77], that is systematic, but
technically involved procedure in higher dimensions, where
a complete counterterm series has not been written explicitly
yet.

We turn, therefore, to an alternative expression for a
boundary term that regularizes gravity action, called Koun-
terterms because it depends explicitly on the extrinsic curva-
ture Ki j . An advantage of this procedure is that the boundary
term is well known for any LL gravity in any dimension
because its form is universal, of a geometric origin [78,79].
Additionally, it is background independent, covariant and in
Fefferman–Graham coordinates gives the results consistent
with the holographic renormalization [80], in cases when the
last one can be done explicitly.

The Kounterterms have different form in even and odd
dimensions. In even dimensions D = 2n > 4, the gravita-
tional part of the boundary term corresponds to the nth Chern
form in d = 2n − 1 boundary dimensions,

BEGB,2n−1 = c2n−1

∫
d2n−1x

√−h

×
1∫

0

du δ j1... j2n−1
i1...i2n−1

K i1
j1
�

i2i3
j2 j3
(u) . . . �i2n−2i2n−1

j2n−2 j2n−1
(u),

(42)

where the constant c2n−1 reads [81]

c2n−1 = − (−�2
eff)

n−1

κ2 (2n − 2)!

(
1 − 2α

�2
eff

(2n − 2) (2n − 3)

)
.

(43)

The tensor �i1i2
j1 j2

= Ri1i2
j1 j2

− u2
(

K i1
j1

K i2
j2

− K i1
j2

K i2
j1

)
has

symmetries of the Riemann tensor and it is constructed from
the intrinsic boundary curvature Ri

jkl(h) and the extrinsic

curvature K i
j . With the boundary term (42), the action prin-

ciple for the gravitational fields is well posed if the spacetime
is asymptotically locally AdS,

Ri1i2
j1 j2

+ 1

�2
eff

δ
i1i2
j1 j2

= 0, on ∂M. (44)

For the flat transversal section,Ri
jkl vanishes in BEGB,2n−1

and the parametric integral can be solved exactly,

BEGB,2n−1 = (−1)n−1 (2n − 2)! c2n−1

∫
d2n−1x

√−h det K i
j .

(45)
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Using (40) and (41), the determinant of the extrinsic cur-
vature is evaluated as

det K i
j = 1

d! δ
i1...id
j1... jd

K j1
i1
. . . K jd

id
= −N n− 1

2
f ′ f n− 3

2

2r 2n−2 . (46)

Similarly, the Euclidean gravitational boundary term in
even dimensions, calculated in the chosen ansatz, reads

B E
EGB,2n−1 = V2n−2

2T
(−1)n (2n − 2)! c2n−1 lim

r→∞
(

N n− 1
2 f n−1 f ′) .

(47)

In odd dimensions D = 2n + 1, a universal boundary
term is derived from the second fundamental form, and its
expression given in terms of a double parametric integration
reads

BEGB,2n = c2n

∫
d2n x

√−h

1∫

0

du

×
u∫

0

ds δ j1... j2n
i1...i2n

K i1
j1
δ

i2
j2
�

i3i4
j3 j4
(u, s) . . . �i2n−1i2n

j2n−1 j2n
(u, s).

(48)

Now the matrix with the symmetries of the Riemann
tensor is given by the expression �

i1i2
j1 j2

= Ri1i2
j1 j2

−
u2
(

K i1
j1

K i2
j2

− K i1
j2

K i2
j1

)
+ s2

�2
eff
δ

i1i2
j1 j2

, and the coefficient c2n

has the same as the one in Einstein–Hilbert AdS gravity [82],
only the AdS radius is replaced by the effective one,

c2n = − (−�2
eff)

n−1

κ223n−3 (n − 1)!2
(

1 − 2α

�2
eff

(2n − 1) (2n − 2)

)
.

(49)

The action is stationary on-shell for asymptotically locally
AdS spaces that satisfy δKi j = 0 on ∂M [81]. The last
condition is equivalent to the Dirichlet boundary condition
on the induced metric, as Ki j and hi j are proportional in the
leading order near the boundary.

Evaluated on the equations of motion, the Euclidean
boundary term reads

B E
EGB,2n = − V2n−1

T n
2n−2 (2n − 1)! c2n

× lim
r→∞

√
N

⎡
⎣
(

f − r f ′

2

)(
−N f + r2

�2
eff

)n−1

+ nr f ′ (−N f )n−1
2 F1

(
1 − n,

1

2
; 3

2
; r2

�2
eff N f

)]
,

(50)

where the ordinary hypergeometric function 2 F1

(
1 − n, 1

2 ;
3
2 ; r2

�2
eff N f

)
, represented by the hypergeometric series (see

Appendix B), is just a compact way to write the countert-
erm series using the expansion

2 F1

(
1 − n,

1

2
; 3

2
; r2

�2
eff N f

)

=1 − n − 1

3

r2

�2
eff N f

+ (n − 1) (n − 2)

10

r4

�4
eff N 2 f 2

+· · · .
(51)

The above series converges when r2

�2
eff N f

< 1.

Now we consider the Abelian gauge field and ask the
action to be stationary under its variation. The NED surface
term in (38) vanishes when the gauge field is held fixed on
the boundary, δAi = 0. If the boundary condition is chosen
in that way, the Euclidean action corresponds to an ensem-
ble with fixed electric potential, φ, and it is proportional to
the Gibbs thermodynamic potential G(T, φ, . . .) in grand
canonical ensemble.

We shall, however, choose the boundary term of the form

BNED = 2

κ2

∫
dd+1x ∂μ

(√−g AνFνμ
dL

d F2

)
. (52)

In this case, the on-shell variation of the total NED action
becomes

δ (INED+BNED)=− 2

κ2

∫
dd x Aμ δ

(√−h nνFνμ
dL

d F2

)
.

(53)

When hi j is fixed on the boundary (the Dirichlet boundary
conditions for the metric), the gauge field Aμ has to satisfy

the Neumann-like boundary condition δ
(

Fri
dL
d F2

)
= 0 in

order to give rise a stationary action. We will show in the
next section that the electric charge Q is proportional to the
quantity

√−h nν Fνμ dL
d F2 and, thus, keeping Fri

dL
d F2 fixed

on ∂M describes a thermodynamic system whose electric
charge is kept constant, δQ = 0. In that case, the Euclidean
action is related to the Helmholtz free energy F(T, Q, . . .)
in the canonical ensemble. A choice of canonical or grand
canonical ensemble is, therefore, governed by the choice of
the boundary terms, because its addition to the Euclidean
action is seen as the Legendre transformation G = F−Qφ of
the corresponding thermodynamic potentials. A discussion
of the choice of an electromagnetic boundary term in 4D
Maxwell theory coupled to EH gravity and its application to
black hole thermodynamics has been discussed in [83].
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The on-shell evaluation of the Euclidean action of the
boundary term (52) has the form

B E
NED = 2Vd−1

κ2T
lim

r→∞

(
rd−1φ

√
N E

dL
d F2

)
. (54)

Finally, for the scalar field, the action is stationary when
� and p are held fixed on the boundary. We also note that the
Euclidean action (37) does not have terms associated to scalar
field, which means that there are no divergences associated to
it either, and we can safely choose BS = 0. Thus, we choose
Dirichlet boundary conditions for the scalar field. Note that
the vanishing of the scalar IR divergences is an effect of
the gravitational backreaction. Namely, in the matter fields
probe limit, when this backreaction is not taken into account,
the scalar field becomes divergent and it requires additional
counterterms (see, for example [9,10]). Our result that the
backreaction heals the divergences is a particular feature of
the chosen matter couplings—one should not expect the same
to happen for, e.g., non-minimal interaction between � and
the EM field, such as σ(�)L(F2).

In the next section, we use the Noether theorem to calcu-
late conserved quantities associated to the local symmetries
in the theory.

6 Conserved quantities

The action is invariant under Abelian gauge transformations
that act non-trivially on the following fields:

δλAμ = ∂μλ, δλ p = λ, (55)

and whose associated Noether current reads

Jμ(λ) = ∂ν

(√−g

2κ2 λ 4Fμν
dL

d F2

)
. (56)

The charge density in the radial foliation is described by

the component Jr (λ) = ∂i

(√−g
2κ2 λ 4Fri dL

d F2

)
. Applying the

Stokes theorem to the boundary manifold at r → ∞ with the
metric hi j whose time-slice boundary t = Const, denoted by
�∞, is defined by an outward-pointing time-like unit normal
ui = (ut , um) = (−√

f , 0
)
, we obtain a general formula for

the total electric charge of the black hole,

Q = −2Vd−1

κ2 lim
r→∞

(
rd−1

√
N E

dL
d F2

)
. (57)

This form of the charge justifies the interpretation of the

boundary condition δ
(

Fri
dL
d F2

)
= 0 mentioned in the pre-

vious section as having Q fixed.

Energy-momentum of the black hole is associated to the
time-like diffeomorphisms ξ = ξμ∂μ that act on the fields
as Lie derivatives,

£ξ gμν = ∇μξν + ∇νξμ, £ξ� = ξν∂ν�,

£ξ Aμ = ∂μ
(
ξν Aν

)− ξνFμν, £ξ p = ξν∂ν p. (58)

The gravitational contribution to the conserved charges in
EGB gravity coupled to NED, where the same regularization
method is used, is calculated in [70] as

Q[ξ ] =
∫

�∞

dd−1 y
√

det (gmn) u j ξ
i q j

i , (59)

where ξ is an asymptotic Killing vector. The charge density
tensor q j

i (r) has different form in even and odd dimensions,
depending on the boundary terms. In our case, ξ = ∂t and
gmn = r2δmn , so that the total energy is

Q[∂t ] = −Vd−1 lim
r→∞ rd−1

√
f qt

t . (60)

In even dimensions (D = 2n), the charge density tensor
is given by the formula [70]

(q2n)
j
i = 1

2κ2 (2n − 2)!2n−2 δ
j j2... j2n−1
i1i2...i2n−1

K i1
i

×
[(
δ

i2i3
j2 j3

+ 2α (2n − 2) (2n − 3) Ri2i3
j2 j3

)

× δ
i4i5
j4 j5

. . . δ
i2n−2i2n−1
j2n−2 j2n−1

+κ2 (2n − 2)! c2n−1 Ri2i3
j2 j3

. . . Ri2n−2i2n−1
j2n−2 j2n−1

]
, (61)

where the Gauss–Codazzi relation Ri j
kl = Ri j

kl − K i
k K j

l +
K i

l K j
k has to be used in order to express q j

i completely in
terms of the boundary quantities. Evaluating the above tensor
in the ansatz (40) and (41), the total energy becomes

Q2n[∂t ] = V2n−2

2κ2 lim
r→∞ r2n−2

√
N f ′

×
[

1 − 2α (2n − 2) (2n − 3)
N f

r2

+κ2 (2n − 2)! c2n−1

(
− N f

r2

)n−1
]
. (62)

On the other hand, in odd dimensions (D = 2n + 1), the
charge density tensor contains the following terms [70]:

q j
i = (qvac)

j
i + 1

2κ2 (2n − 1)!2n−2 δ
j j2... j2n
i1...i2n

K i1
i δ

i2
j2

×
[(
δ

i3i4
j3 j4

+ 2α (2n − 1) (2n − 2) Ri3i4
j3 j4

)
δ

i5i6
j5 j6

. . . δ
i2n−1i2n
j2n−1 j2n
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+ 2κ2 (2n − 1)! nc2n

1∫

0

du

(
Ri3i4

j3 j4
+ u2

�2
eff

δ
i3i4
j3 j4

)

× . . .

(
Ri2n−1i2n

j2n−1 j2n
+ u2

�2
eff

δ
i2n−1i2n
j2n−1 j2n

)]
, (63)

where

(qvac)
j
i = 2n−2c2n

1∫

0

du u δ j j2... j2n
ki2...i2n

(
K k

i δ
i2
j2

+ K k
j2δ

i2
i

)

×
(

1

2
Ri3i4

j3 j4
− u2 K i3

j3
K i4

j4
+ u2

�2
eff

δ
i3
j3
δ

i4
j4

)
× · · ·

×
(

1

2
Ri2n−1i2n

j2n−1 j2n
−u2 K i2n−1

j2n−1
K i2n

j2n
+ u2

�2
eff

δ
i2n−1
j2n−1

δ
i2n
j2n

)
,

(64)

and again we have to use the Gauss–Codazzi relation for Ri j
kl

to express the tensor in terms of the boundary quantities. Note
that the charge density does not vanish identically for global
AdS, Ri2i3

j2 j3
= − 1

�2
eff
δ

i2i3
j2 j3

, because the contribution (qvac)
j
i

accounts for the vacuum energy of AdS space. The vacuum
energy depends only on the properties of the “empty” space,
that is, the topological parameter k, the effective AdS radius
and the gravitational couplings κ2,α; thus the presence of the
scalar field does not influence on it. The formula for the vac-
uum energy of GB black holes in asymptotically AdS space
was evaluated in [81], but because in our case the topologi-
cal parameter is zero (k = 0), it vanishes. This can be seen
explicitly. Evaluating qt

t in our ansatz, we obtain

qt
t = (qvac)

t
t + K t

t

κ2

⎡
⎣1 − 2α (2n − 1) (2n − 2)

× N f

r2 + 2κ2 (2n − 1)! 2n−2c2n

1∫

0

du

(
− N f

r2 + u2

�2
eff

)n−1
⎤
⎦ ,

(65)

where the integral can be expressed in terms of the hyperge-
ometric function, as explained in Appendix B. Now we can
show that the vacuum energy,

(qvac)
t
t = 2n−2

n
(2n − 1)! c2n

√
N

f

(
f

r
− f ′

2

)(
− N f

r2 + 1

�2
eff

)n−1

,

(66)

does not contribute to the total energy Q[∂t ]. For planar black
holes in asymptotically AdS spacetime, the metric functions
f and N satisfy the conditions (15). Evaluating the limit of
(qvac)

t
t in (60), we get

Evac = −V2n−1
2n−2

n
(2n − 1)! c2n lim

r→∞
√

N

×
(

f − r f ′

2

)(
−N f + r2

�2
eff

)n−1

= 0, (67)

as expected. Thus, what remains is

Q2n+1[∂t ] = − V2n−1

κ2 lim
r→∞ r2n−1

√
f K t

t

×
[

1 − 2α (2n − 1) (2n − 2)
N f

r2

+ 2κ2 (2n − 1)! 2n−2c2n

(
− N f

r2

)n−1

× 2 F1

(
1 − n,

1

2
; 3

2
; r2

�2
eff N f

)]
. (68)

In both even and odd dimensions D, total energy corre-
sponds to the black hole mass that can be written as

M = VD−2

2κ2 lim
r→∞ MD(r), (69)

with the function of radial coordinate given in even dimen-
sions by

M2n(r) = r2n−2
√

N f ′
[

1 − 2α (2n − 2)

× (2n − 3)
N f

r2 + κ2 (2n − 2)! c2n−1

(
− N f

r2

)n−1
]
,

(70)

and in odd dimensions as

M2n+1(r) = √
N f ′

[
r2n−1

(
1 − 2α (2n − 1) (2n − 2)

N f

r2

)

+ 2κ2 (2n − 1)! 2n−2c2n r (−N f )n−1

× 2 F1

(
1 − n,

1

2
; 3

2
; r2

�2
eff N f

)]
. (71)

Without scalar field, N = 1 and the above formulas match
the ones of [70].

It is straightforward to check that scalar and electromag-
netic fields do not contribute to the mass. We shall show
explicitly that, in the Euclidean section, addition of the
boundary term B E

NED performs a Legendre transformation of
the thermodynamic potential. On the other hand, the scalar
field does not contribute to the mass because the time-like
isometry leaves the static scalar fields invariant, £∂t� = 0
and £∂t p = 0, leading to the given result. Furthermore, we do
not need the counterterms for �. Thus, the above formula is
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the final, exact expression for the total energy of black holes
with hair in nonlinear GB AdS gravity interacting with the
St ückelberg scalar and NED field.

Now we proceed to evaluate the free energy for a chosen
class of solutions.

7 Quantum statistical relation for a GB superconductor

Using the nomenclature of [84], quantum statistical relation
is an expression for a thermodynamic potential of the system
held at fixed temperature obtained using the quantum statis-
tical mechanics, that is, directly from the partition function
defined as exponent of the Euclidean action. The charges
within it are the Noether ones, a consequence of the sym-
metries of the action, and they are expected to match the
thermodynamic charges that appear in the first law of thermo-
dynamics. This formula differs from the Smarr-like relation
stemming from integration of the first law.

In order to find the statistical relation, we have to calculate
the Euclidean action. Adding the contributions of the bound-
ary terms (47) and (54) to the bulk action (37), the electro-
magnetic part cancels out at infinity and the total Euclidean
action in even dimensions reads

I E = V2n−2

2κ2T
lim

r→∞ M2n(r)

− Vd−1

2κ2T

[√
N f ′ (rd−1−2α (d−1) (d−2) rd−3 N f

)

−4rd−1
√

N φE
dL

d F2

]∣∣∣∣
r=r+

, (72)

where we recognized the radial function M2n(r) from (70).
The terms in the second line do not depend on the parity
of the dimension d. On the horizon, the functions f and φ

vanish and N and E
dL

d F2 are finite, so using the definition of

the Hawking temperature (16) and the black hole mass (69),
we can write the Euclidean action as

I E = T −1 M − S, (73)

where the entropy S = − Vd−1
T

[
rd−1√ f (q − qvac)

t
t

]∣∣
r+ is,

as usual, the Noether charge on the horizon, giving

S = 2πVd−1rd−1+
κ2 . (74)

Note that the GB term does not contribute to the entropy
when the black hole is planar. Additionally, the Stückelberg
scalar does not modify the area law, as it happens for a con-
formally coupled scalar field f (�)R or other non-minimal
interactions between � and curvature invariants [85].

A similar expression for the Euclidean action is found in
odd dimensions, as well. Summing up (37), (50), and (54)
and recognizing the expression for the mass (71) and vacuum
energy (67), we obtain the total black hole energy, instead of
the mass only,

I E = T −1 (M + Evac)− S, (75)

which finally reduces to (73) because Evac = 0. The quan-
tum statistical relation in canonical ensemble implies that the
Helmholtz free energy, F = T I E , has the correct form of
the Legendre transformation of the internal energy,

F = M−T S = Vd−1

2κ2 lim
r→∞ MD(r)−2πT Vd−1rd−1+

κ2 . (76)

Thus, we obtain the exact expression for the thermody-
namic potential of the family of black holes in EGB gravities
that interact non-minimally with matter. The functions L and
F do not enter this formula explicitly, but through the cou-
pling constants.

8 Free energy of a Lovelock superconductor
in canonical and grand canonical ensemble

The result for the free energy (76) can be generalized to any
hairy LL AdS black hole coupled to NED and Stückelberg
field. As shown in [78,79], the LL AdS action is regularized
by the same boundary term as the one in Einstein–Hilbert
or EGB gravity with negative cosmological constant in even
or odd dimensions, which is known to be universal for any
Lovelock gravity. The only quantity that changes is the coef-
ficient cd , which depends on �eff as one of the roots of the
polynomial (7). Proceeding in the same way as in the EGB
case, the Lovelock action evaluated on the black hole ansatz
has the form

ILL = 1

2κ2

∫
d D x

[d/2]∑
p=0

αp
rd−1

√
N

(d − 1)!
(d − 2p + 1)!

N

r2

(
− f N

r2

)p−2

×
[

pN ′

2

(
(2p − 1) f f ′ + 2 (d − 2p + 1)

f 2

r

)

+ N

(
p f f ′′ + p (p − 1) f ′2 + 2p (d − 2p + 1)

f f ′

r

+ (d − 2p + 1) (d − 2p)
f 2

r2

)]
. (77)

Compared with the dynamics of the EGB gravity, when
the higher-order curvature corrections are added to the action,
only the gravitational equations of motion change,
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Er
r =

[d/2]∑
p=0

αp
(d − 1)!

2 (d − 2p)!
(

− f N

r2

)p−1

×
(

p
f ′N
r

+ (d − 2p)
f N

r2

)
− T r

r

E t
t = Er

r +
[d/2]∑
p=1

αp
p (d − 1)!

2 (d − 2p)!
(

− f N

r2

)p−1

× f N ′

r
+ 1

2
f N � ′2 + Fφ2

2 f
, (78)

and they reduce to (22) in EGB case. Using these equations,
the total bulk action coupled to the matter fields generalizes
(37) to

I E
0 = Vd−1

2κ2T

⎡
⎣rd−1

√
N f ′

[d/2]∑
p=1

αp
p (d − 1)!

(d − 2p + 1)!

×
(

− f N

r2

)p−1

− 4rd−1
√

N φE
dL

d F2

⎤
⎦
∣∣∣∣∣∣
∞

r+

. (79)

Now we follow the steps of Sects. 5–7 in order to show
that the mass has the form (69).

In even dimensions, the boundary term is given by the for-
mula (42), where the Lovelock parameters αp are introduced
as

(
δ

i2i3
j2 j3

+ 2α (2n − 2) (2n − 3) Ri2i3
j2 j3

)
δ

i4i5
j4 j5

· · · δi2n−2i2n−1
j2n−2 j2n−1

+ · · ·

=
n∑

p=1

αp
p (2n − 2)!
(2n − 2p)! Ri2i3

j2 j3
. . . R

i2p−2i2p−1
j2p−2 j2p−1

δ
i2pi2p+1
j2p j2p+1

. . . δ
i2n−2i2n−1
j2n−1 j2n−1

,

(80)

and the effective AdS radius in c2n−1 is the one for the LL the-
ory. After a straightforward calculation, one arrives at a radial
function that defines the black hole mass in even dimensions,

M2n(r) = r2n−2
√

N f ′
⎡
⎣n−1∑

p=1

αp
p(2n − 2)!
(2n − 2p)!

(
− N f

r2

)p−1

+κ2 (2n − 2)! c2n−1

(
− N f

r2

)n−1
]
. (81)

In odd dimensions, the boundary term has the form (48)
with the following generalization:

(
δ

i3i4
j3 j4

+ 2α (2n − 1) (2n − 2) Ri3i4
j3 j4

)
δ

i5i6
j5 j6

· · · δi2n−1i2n
j2n−1 j2n

+ · · ·

=
n∑

p=1

αp
p (2n − 1)!

(2n − 2p + 1)! Ri3i4
j3 j4

. . . R
i2p−1i2p
j2p−1 j2p

δ
i2p+1i2p+2
j2p+1 j2p+2

. . . δ
i2n−1i2n
j2n−1 j2n

,

(82)

and using the AdS radius that depend on all LL coupling con-
stants. The vacuum energy vanishes for the planar solutions,
Evac = 0, and the radial function that determines the black
hole mass is

M2n+1(r) = √
N f ′

⎡
⎣r2n−1

n∑
p=1

αp
p (2n − 1)!

(2n − 2p + 1)!
(

− N f

r2

)p−1

+ κ2 (2n − 1)! 2n−1c2n r (−N f )n−1

× 2 F1

(
1 − n,

1

2
; 3

2
; r2

�2
eff N f

)]
. (83)

The Helmholtz free energy obtained from the quantum
statistical relation has the usual form,

F = Vd−1

2κ2 lim
r→∞ MD(r)− 2πT Vd−1rd−1+

κ2 . (84)

At this point, it is straightforward to write an analogous
result in the grand canonical ensemble. Let us recall once
more that the previous results, calculated in the canonical
ensemble, are obtained from the action that fulfills the bound-
ary conditions δ Ican = 0 when T , Q and � are held fixed
on the boundary, and the on-shell Euclidean action becomes
I E
can = T −1 F = T −1 M − S.

On the other hand, in grand canonical ensemble, the action
is stationary for the boundary conditions δ Igrand can = 0 when
T , φ and� are held fixed on the boundary which, in practice,
is realized by not adding the NED boundary term (52) to the
bulk action. As explained in Sect. 5, its Euclidean continua-
tion is related to the Gibbs potential G as

I E
grand can = T −1G = T −1 M − S − T −1 Q�, (85)

which is exactly a Legendre transformation of the Helmholtz
free energy. Here the mass has the same form as before and
the conjugated variables� and Q are [see Eqs. (28) and (57)],

�= lim
r→∞φ(r), Q =−2Vd−1

κ2 lim
r→∞

(
rd−1

√
N E

dL
d F2

)
.

(86)

Without scalar field, the above results coincide with the
ones found in [86,87] for the EGB case.

It is worthwhile mentioning that all presented results
can be generalized to topological black holes with non-flat
transversal section (k 
= 0), in the case one is interested in the
study of the effects of the horizon topology to the properties
of superconductors [88].
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9 Discussion: from the free energy to the phase
transition

The Helmholz free energy formula for LL AdS (84), which
includes backreaction of the gravitational fields, contains all
thermodynamic information about the holographic quantum
system described by the partition function Z = e−F/T . The
theory depends on a large number of parameters [up to [d/2]
Lovelock gravity parameters, electromagnetic coupling con-
stants contained in the function L(F2) and the scalar cou-
plings in F(�)]. Phase transitions will occur only for some
values of these parameters. In the present literature, their val-
ues are chosen arbitrarily, in the points of the parameter space
known that they would have a phase transition.

We address a different question, focused on obtaining a
criterion about the parameters choice and, using it, a clas-
sification of all possible LL superconductors. This would
enable theoretical design of a superconductor with the desired
features through the choice of the coupling constants. In
that way, the diversity of high-Tc superconductors would be
directly related to the diversity of dual gravitational theories.

As the first step, we have to analyze the local and global
minima of the free energy using the renormalized formula
(84) and detect all possible phase transitions through the dis-
continuities in the free energy, similarly to an analysis in the
Landau–Ginzburg description of superconductivity.

In d-dimensional thermal QFT, the temperatures are high.
Since the gauge/gravity duality prescription relates T to the
Hawking temperature proportional to the horizon area, high
T corresponds to large black hole radius r+. More precisely,
in the gravity side, we have to require that the black hole
horizon is big, r+ � �eff, which we can also take as the first
approximation in analytic calculations.

Thus, to obtain an initial information about possible phase
transitions—that is, to detect development of hair in the black
hole due to presence of the scalar field– we need only an
asymptotic solution, but calculated in the subleading order.
This enables to identify the point of the phase transition and
also calculate its critical exponent β and the critical temper-
ature. Once there is a classification of the superconductors,
we can also calculate the transport coefficients (supercon-
ductivity, energy gap, etc.), where further knowledge on the
behavior of the solution away from the asymptotic region is
also required.

To be more precise, let us focus again to the EGB
AdS gravity with the matter. We have to power-expand in
�eff/r << 1 all unknown functions f (r), N (r),�(r), φ(r)
and all given functions F(�(r)),L(F2(r)). Note that F
and L can be chosen arbitrarily, as they define interactions
between the gravity and matter fields, whereas f , N , � and
φ should be uniquely determined for given boundary con-
ditions set. Thus, assuming the known asymptotic behavior,
any function X (r) can be expanded in powers of 1/r , where

the constants �eff are absorbed in the coefficients Xn for the
sake of simplicity. We numerate only non-vanishing coeffi-
cients Xn with n ≥ 0.

In general, we are interested in generic black holes, that
is, the ones where (i) the equation of motion for the field
X (r) uniquely determines the coefficient Xn in the nth order
of the asymptotic power expansion in terms of the leading
order, and (ii) there are no anomalies, that is, no logarithmic
terms in the expansion are present.

There will also be other particular solutions [that do not
fulfill the condition (i)] that have to be considered separately.
The anomalies [that do not satisfy (ii)] are of particular inter-
est and they will be addressed somewhere else.

For an asymptotically AdS spacetime that satisfies (15),
we seek a solution in the form

f (r) = r2

�2
eff

(
1 + f0

ru
+ f1

ru1
+ · · ·

)
,

N (r) = 1 + N1

rs1
+ · · · ,

�(r) = �0

r�
+ �1

r�1
+ · · · ,

φ(r) = �+ φ0

rλ
+ φ1

rλ1
+ · · · , (87)

where 0 < u < un < un+1 and similarly for all other power
factors. The interaction is given in terms of the set of param-
eters that determine its fall-off,

F(�) = F0

ra
+ F1

ra1
+ · · · ,

L(F2) = L0

rb
+ L1

rb1
+ · · · . (88)

For example, a = 2� implies that F behaves as the min-
imal coupling of the scalar field. If b = 2 (λ+ 1), the and
NED coupling belongs to the class of the Born–Infeld-like
Lagrangians that have the same weak-field behavior as the
Maxwell electrodynamics (linear in F2 = −2Nφ′ 2).

Solving the equations of motion at different orders of 1/r
leads to several branches of solutions, a couple of them con-
tain the minimal scalar coupling and Born–Infeld-like theo-
ries. A complete set of asymptotic solutions will be discussed
in detail in a classification of holographic superconductors
[89].

Let us mention some common features of all solutions,
mostly independent on the dynamics. The scalar field behaves
as � ∼ r−(d−�) �source for large r . A dual operator O�

coupled to the scalar in a holographic CFTd has, therefore, a
conformal dimension dim O� = � that must be greater than
the CFT unitarity bound, dim O� ≥ d−2

2 [90]. The equation
of motion (25) gives a well-known relation that determines
� in terms of the scalar mass,

�(�− d) = m2�2
eff, (89)

123



Eur. Phys. J. C (2014) 74:2975 Page 15 of 19 2975

where it was assumed that there is no conformal anomaly,
that is, � 
= d, and the electromagnetic interaction does
not modify the asymptotic sector, a > 2� − 2. This equa-
tion leads to two branches for the scalar field, � = �+ and
� = �− = d−�+. If d−� < 0, the scalar field is divergent
in IR sector and the dual operator with dim O� > d is irrel-
evant deformation of the theory. If the scalar field falls off
sufficiently fast (d − � ≥ 0), O� is relevant or a marginal
operator satisfying dim O� ≤ d, and it can be turned on
without destroying the UV fixed point of the dual QFTd . We
are interested in the last case because we want to interpret
�(r) as the black hole hair, so we need it to be regular every-
where, including the IR region. These conditions allow for a
tachyonic scalar field that still gives unitary CFT, known as
the Breitenlohner–Freedman window [91,92]. As regards the
scalar observable in QFTd that will play the role of the order
parameter of a superconductor, it can be only a normalizable
mode. It is common to take the source to be switched off,
�source = 0, and then�0 = 〈O�〉 is a normalizable operator
[18,51,52] and it is of the leading order in the near-boundary
expansion, as presented in (87).

The first integral of the NED equation (26) gives an inte-
gration constant that is related to the Noether charge,

4rd−1
√

N E
dL

d F2 = −2κ2 Q

Vd−1
+
∫

dr
rd−1Fφ√

N f
. (90)

Non-vanishing Q fixes the fall-off of the electric potential
as λ = b − d. The source φ0 is, then, an algebraic function
of the electric charge, Q = Q(φ0), given by

L0

φ0
= 2κ2(b − d)(b − d + 1)

bVd−1
Q. (91)

Similarly, the first integral of the gravitational equation E t
t

gives rise to an integration constant that depends on the black
hole mass obtained from the Noether formula (69),

rd−2 N f − α (d − 2) (d − 3) rd−4 N 2 f 2 − rd

�2

= − 2κ2 M

(d − 1) Vd−1
+
∫

dr
2rd−1

d − 1
T t

t (r). (92)

The requirement M 
= 0 determines the leading order of
this equation as u = d and also imposes the requirement that
the subleading order of N (r)must be small enough, s1 > d.
The integration constant is then related to the coefficient f0

by

f0 = − 2κ2�2
eff

(d − 1) Vd−1

(
1 − 2α

�2
eff
(d − 2) (d − 3)

) M. (93)

It is worthwhile noticing that this is not the unique way
to obtain M 
= 0 from the asymptotic expansion—other

branches can involve the scalar field contribution and even
the electric charge. However, it remains to analyze how these
new branches modify the UV sector of dual QFT.

We shall not write here the subleading orders of the solu-
tions. Each order of the field equations solves one of the coef-
ficients Xn as polynomials in f0,φ0 andψ0, that is, M , Q and
〈O�〉. Furthermore, imposing the boundary conditions on the
horizon will involve also the parameters T and r+ and elim-
inate the mass as an independent variable. As a result, using
the asymptotic solution, the free energy F(T, Q, 〈O�〉) can
be cast into the form

F̃(r+, φ0, �0) = F(T (r+, φ0, �0), Q(φ0),�0). (94)

An analysis of the extrema of this function for constant Q
and T is then a well-posed problem.

10 Conclusions

Motivated by an application of AdS/CFT correspondence to
d-dimensional high-Tc superconductors that do not have a
generally accepted theoretical model, we study the Stück-
elberg scalar field in (d + 1)-dimensional asymptotically
AdS spacetime coupled to gravitational and electromagnetic
fields. On the AdSd+1 gravity side, the black hole solution is
associated to a thermal, dual QFTd and the scalar field cou-
ples to the order parameter of the superconductor in QFTd .

In order to involve a wider class of holographic supercon-
ductors, we include nonlinear effects in the gravity action:
the GB term and LL generalization of general relativity that
is polynomial in the Riemann curvature and has [d/2] cou-
pling constants, NED field described by an arbitrary function
L(F2) and the Stückelberg modification of the scalar field
kinetic term through the function F(�). Of course, because
we are ultimately interested in lower-dimensional QFTs, one
should also introduce other higher-order curvature terms not
of Lovelock type.

On the other hand, study of phase transitions in QFTs can
teach us about instabilities of black hole solutions in LL-AdS
gravities, as well.

We focus to the maximally symmetric, charged, AdS black
holes with flat horizons. Using the Kounterterm regulariza-
tion of the AdS gravity action that is universal for all LL grav-
ities, we obtain the exact formula for the IR divergence-free
Euclidean action and the finite Noether charges. Depending
on the choice of the NED boundary term, the Euclidean action
is identified with the appropriate thermodynamic potential
in canonical or grand canonical ensemble. These thermody-
namic potentials, obtained from the gravitational quantum
statistical relation, correctly reproduce the Legendre trans-
formation of the internal energy of the superconductor in a
dual QFT.
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We also note that the effect of the backreaction cancels all
divergences in the scalar field. Furthermore, the Stückelberg
scalar does not contribute to the black hole mass. As regards
the entropy, it still respects the horizon area law because, in
the flat transversal section, there is no LL contribution to the
Euclidean action, and the Stückelberg field does not induce
extra terms that were noted for other kinds of non-minimal
couplings of the scalar field.

Let us emphasize that the novelty of our analytic method
is that it provides a holographic free energy formula for the
Stückelberg superconductor without using any approxima-
tion. The phase transitions now can be analyzed as in the
Ginzburg–Landau model, that is, by studying its extrema.
This technique can also be applied to 5D Einstein–Hilbert
AdS gravity. However, thanks to the regularization method
employed, the formula is extended to all LL-AdS gravities
in higher dimensions.

A natural direction for future research is to discuss how
these results can be used to obtain physical information about
a holographic superconductor. More explicitly, the study of
local and global minima of the free energy of a holographic
superconductor can identify all possible discontinuities of
second order associated to phase transitions. This method
would enable one to classify all LL AdS superconductors in
the space of parameters. By looking only at the asymptotic
solutions in the leading and subleading orders, it is possi-
ble to obtain information as regards the critical temperature
and critical exponent. As concluding remarks, we discuss the
general features of the asymptotic solutions.
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Appendix A: Black hole ansatz identities

The metric of the maximally symmetric, planar black hole in
a spacetime with local coordinates xμ = (t, r, ym) has the
form

gμν =
⎛
⎝

− f (r) 0 0
0 1

f (r)N (r) 0
0 0 r2δmn

⎞
⎠ , √−g = rd−1

√
N
, (95)

where f (r) ≥ 0 and N (r) > 0. In this ansatz, the Riemann
tensor Rμνλρ = Rμσλρgσν has non-vanishing components

Rtr
tr = −1

2

(
N f ′′ + 1

2
f ′N ′

)
, Rtn

tm = − N f ′

2r
δn

m,

Rn1n2
m1m2

= − f N

r2 δn1n2
m1m2

, Rrn
rm = − ( f N )′

2r
δn

m, (96)

plus the components obtained from the antisymmetry in the
pairs of indices. The prime denotes the radial derivative.

The components of the Ricci tensor, Rμν = Rμλνλ , are given
by

Rt
t = − 1

2r

[
r N f ′′ + 1

2
r f ′N ′ + (d − 1) N f ′

]
,

Rr
r = − 1

2r

[
r N f ′′ + 1

2
r f ′N ′ + (d − 1) ( f N )′

]
,

Rn
m = − 1

r2 δ
n
m

[
r N f ′ + 1

2
r f N ′ + (d − 2) f N

]
. (97)

The Ricci scalar, R = Rμμ , then reads

R = − 1

r2 N
[
r2 f ′′ + 2 (d − 1) r f ′ + (d − 1) (d − 2) f

]

− 1

2r
N ′ [r f ′ + 2 (d − 1) f

]
, (98)

and the GB term is

1

4
δμ1...μ4
ν1...ν4

Rν1ν2
μ1μ2

Rν3ν4
μ3μ4

= 2 (d − 1) (d − 2)

r4

×
[

N N ′
(
(d − 3) r f 2 + 3

2
r2 f f ′

)

+ N 2 (r2 f f ′′ + r2 f ′2 + 2 (d − 3) r f f ′

+1

2
(d − 3) (d − 4) f 2

)]
. (99)

The components of the Einstein tensor with the negative
cosmological constant have the form

Gr
r = d − 1

2r2

[
r N f ′ + (d − 2) N f − d

r2

�2

]
,

Gt
t = Gr

r + d − 1

2r
N ′ f,

Gn
m = 1

2r2 δ
n
m

[
r2 N f ′′ + 2 (d − 2) r N f ′ + 1

2
r2 N ′ f ′

+ (d − 2) r N ′ f + (d − 2) (d − 3) N f − d (d − 1)
r2

�2

]
,
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and the Lanczos tensor in components reads

Hr
r = −α (d − 1) (d − 2) (d − 3)

f

r3 N 2
(

f ′+ d − 4

2r
f

)
,

Ht
t = Hr

r − α (d − 1) (d − 2) (d − 3)
f 2 N N ′

r3 ,

Hn
m = −α (d − 2) (d − 3) δn

m
1

r2

[
N 2 f f ′′ + N 2 f ′2

+3

2
N N ′ f f ′ + 1

r
(d − 4)

(
2N 2 f f ′ + N N ′ f 2

)

+ (d − 4) (d − 5)
f 2 N 2

2r2

]
. (101)

We also write the following auxiliary expressions:

Gm
m =

(
rd−1Gr

r

)′
rd−2 − d − 1

4
N ′ f ′,

Hm
m =

(
rd−1 Hr

r

)′
rd−2 +α (d − 1) (d−2) (d − 3)

N N ′ f f ′

2r2 .

(102)

Appendix B: Ordinary hypergeometric function

The ordinary hypergeometric function in the integral repre-
sentation is given by

2 F1 (a, b; c; z)

= �(c)

�(b)�(c − b)

1∫

0

dt
tb−1 (1 − t)c−b−1

(1 − zt)a
, �(c) > �(b) > 0.

(103)

It can be expanded in the hypergeometric series whose
coefficients are given by the Pochhammer symbol, (a)p,

2 F1 (a, b; c; z) = 1 + ab

c
z + a (a + 1) b (b + 1)

2c (c + 1)
z2 + · · ·

=
∞∑

p=0

(a)p(b)p

(c)p

z p

p! , (104)

which converges when c is not a negative integer for all |z| <
1, and on the unit circle |z| = 1 if �(c − a − b) > 0.

In this text, we need the following integrals represented
in terms of the hypergeometric functions:

1∫

0

du
(
−β+u2w

)n−1 = (−β)n−1
2 F1

(
1 − n,

1

2
; 3

2
; w
β

)
,

1∫

0

ds
(

1 − s2
)n−1 = 2 F1

(
1 − n,

1

2
; 3

2
; 1

)

= 22n−2 (n − 1)!2
(2n − 1)! , (105)

as well as the integrals used in Sects. 5 and 6,

In(β,w) =
1∫

0

du

u∫

0

ds
[
−u2β + (2n − 1) s2w

]

×
(
−u2β + s2w

)n−2 = (w − β)n−1

2n
,

Jn(β,w) =
1∫

0

du

u∫

0

ds
[
− (2n − 1) u2β + s2w

]

=
(
−u2β + s2w

)n−2
(−β)n−1

2 F1

×
(

1 − n,
1

2
; 3

2
; w
β

)
− (w − β)n−1

2n
. (106)
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