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Abstract Successful models of pure gravity mediation
(PGM) with radiative electroweak symmetry breaking can
be expressed with as few as two free parameters, which can
be taken as the gravitino mass and tan β. These models easily
support a 125–126 GeV Higgs mass at the expense of a scalar
spectrum in the multi-TeV range and a much lighter wino as
the lightest supersymmetric particle. In these models, it is
also quite generic that the Higgs mixing mass parameter, μ,
which is determined by the minimization of the Higgs poten-
tial is also in the multi-TeV range. For μ > 0, the thermal
relic density of winos is too small to account for the dark mat-
ter. The same is true for μ < 0 unless the gravitino mass is of
order 500 TeV. Here, we consider the origin of a multi-TeV
μ parameter arising from the breakdown of a Peccei–Quinn
(PQ) symmetry. A coupling of the PQ-symmetry breaking
field, P , to the MSSM Higgs doublets, naturally leads to a
value of μ ∼ 〈P〉2/MP ∼ O(100) TeV and of the order
that is required in PGM models. In this case, axions make up
the dark matter or some fraction of the dark matter with the
remainder made up from thermal or non-thermal winos. We
also provide solutions to the problem of isocurvature fluctu-
ations with axion dark matter in this context.

1 Introduction

The mass of the Higgs boson [1,2] at around 126 GeV is near
the upper limit of the predictions in commonly studied mod-
els of the supersymmetric standard model such as the con-
strained minimal supersymmetric standard model (CMSSM)
[3–13].1 This rather large Higgs boson mass and the null
results of the sparticle searches at the LHC [17–22] seem to

1 The difficulty in obtaining a 126 GeV Higgs in the CMMSSM has
been relaxed recently with the inclusion of higher order corrections to
the Higgs mass calculation [14–16]..
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hint to rather heavy sparticles [23–34], and possibly heavy
top squarks with masses in the range of tens to hundreds of
TeV.

Among the models with heavy sparticles, models with a
mild hierarchy between sfermion and gaugino masses such
as pure gravity mediation (PGM) [35–41] and models with
strongly stabilized moduli [42–49] are very successful not
only phenomenologically but also cosmologically, and they
have spectra which are characteristic of split supersymmetry
[50–54] with anomaly mediation [55–60]. In these models,
the sfermions obtain tree-level masses of the order of the
gravitino mass, m3/2, while the gaugino masses are domi-
nated by one-loop masses from anomaly mediation [55–60].

In the original version of PGM [35,36], it was assumed
that the supersymmetric Higgs mixing term, the μ-term, is
generated via the tree-level couplings to an R-symmetry
breaking sector which generates the non-vanishing vacuum
expectation value of the superpotential [61–63]. In this case,
the μ term and the supersymmetry breaking bilinear B term
are two independent parameters and are both of the order
of the gravitino mass, m3/2. In previous papers, we showed
that models based on PGM with [39] and without [40] scalar
mass universality, could explain virtually all experimental
constraints with successful radiative electroweak symmetry
breaking (EWSB). In this case, one can impose the supergrav-
ity boundary condition B0 = A0 − m3/2 which is essentially
−m3/2 since A0 is also determined by anomalies and hence
small compared with m3/2. The universal scalar mass, m0 is
fixed by m3/2. The μ term is determined by the minimization
of the Higgs potential. The ratio of the Higgs vacuum expec-
tation values (VEVs) can be treated as a free parameter so
long as a Giudice–Masiero coupling, cH , is included in the
Kähler potential, K . The value of cH � 1 is then also fixed
by the minimization of the Higgs potential.

In this paper, we discuss another version of PGM, in which
the μ-term originates from the breaking of a Peccei–Quinn
(PQ) symmetry [64] via a dimension five operator [65,66].
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The size of the μ-term is determined by the PQ-breaking
scale, fP Q , and hence it can be related to the axion dark
matter density. In practice, the μ term and fP Q are then
determined by the EWSB boundary conditions at the weak
or SUSY scale. As in [39], the B-term is fixed to −m3/2 at
the input UV scale. However, because the Higgs fields carry
PQ charge in this model, a Giudice–Masiero coupling is not
allowed in K , and therefore some departure of scalar mass
universality is required [40]. With cH = 0, tan β must also be
determined by the EWSB boundary conditions at the weak
or SUSY scale. We will explore a three-parameter version of
the PGM where the three free parameters are chosen to be
the gravitino mass, m3/2, and the two soft Higgs masses, m1

and m2.
We show further that successful phenomenological mod-

els can be constructed if only the soft mass of the up-
type Higgs, m2, is non-universal. Thus the family of PQ-
symmetric PGM models can be expressed in terms of only
two parameters, m3/2 and m2. In fact, viable solutions are
possible with m1 = m3/2 and m2 = 0. Thus, if the up-
type Higgs multiplet is associated with a pseudo Nambu–
Goldstone boson [67–69] or if the Higgs soft mass is pro-
tected by a (partial) no-scale structure [70,71] of the Kähler
potential as discussed in [40], we are reduced to a theory
with one single free parameter! Finally we will show that an
alternative model for breaking the PQ-symmetry based on
[72] may allow full universality to be restored.

As in previous studies of PGM, we also find that the light-
est supersymmetric particle (LSP) is the neutral wino. In the
R-parity conserving case, the model allows several dark mat-
ter scenarios, including one with pure wino dark matter with
possible non-thermal sources such as the late time decay of
the gravitino. As we will see, even if the wino contribution
to the relic density is negligible (as is the case for the thermal
contribution when μ > 0), it is possible that axions make up
the entire dark matter, or of course it is also possible that the
dark matter is an axion–wino mixture. In the scenario where
a significant portion of the dark matter is the axion, the wino
can be much lighter than the 3 TeV as required by thermal
dark matter constraints. In fact, it could have a mass below
1 TeV and fall within the reach of the LHC at 14 TeV [38].
While it is well known that models with axion dark matter
generally overproduce isocurvature fluctuations [73–78], it
is also known that the problem may be resolved if the axion
decay constant takes on values during inflation which are
large compared to the nominal low-energy value [79]. We
show several ways, this can be implemented in the models
presented.

The organization of the paper is as follows. In Sect. 2,
we summarize PGM with universal and non-universal Higgs
masses. We then generalize the model to include a PQ-
symmetry in which the μ-term originates from PQ-symmetry
breaking. In Sect. 3, we briefly review the properties of axion

dark matter. There, we also propose several solutions to the
problem of isocurvature fluctuations including a novel model
of dynamical PQ-breaking. In Sect. 4, we demonstrate that
this version of PGM achieves successful EWSB. Here, we
will consider the case with two non-universal Higgs soft
masses, that is, the three-parameter version of the model. We
will see, however, that the down-type Higgs soft mass may
remain universal, and successful models are still obtained.
We will further demonstrate that even in the special case
where m2 = 0, viable models are possible so long as
300 TeV � m3/2 � 850 TeV. Before concluding, we will
briefly describe in Sect. 5 an alternative model for breaking
the PQ-symmetry in which full universality may be restored.
The final section is devoted to discussions.

2 µ-term from PQ-symmetry breaking

2.1 Pure gravity mediation

In pure gravity mediation models, it is assumed that all fields
in the supersymmetry (SUSY) breaking sector are charged
under some symmetry (e.g. an R-symmetry). Under this
assumption, the gaugino masses and the A-terms of the chi-
ral multiplets are suppressed at the tree level in supergravity
and they are dominated by the anomaly-mediated contribu-
tions [55–60]. The soft squared masses of the scalar bosons
are, on the other hand, generated at the tree level and are
expected to be of the order m2

3/2 with a generic Kähler poten-
tial. If we optionally assume a flat Kähler manifold for all
the MSSM fields, all of the MSSM scalar fields obtain the
universal soft mass squared equal to m2

3/2. In our analysis,
we take the model with universal scalar masses as our start-
ing point. We will assume universality at the grand unified
(GUT) scale and run all quantities down to the weak scale
through 2-loop RGEs and minimize the Higgs potential. As
in the CMSSM, minimization allows us to solve for μ and
the bilinear supersymmetry breaking B-term. As we will see
in our later analysis, we will be required to consider a slightly
relaxed assumption where the Kähler manifold is flat for all
the MSSM fields except for the Higgs doublets, which leads
to non-universal Higgs soft masses (NUHM) [80–95].

In the original PGM model, we assumed that the holo-
morphic bilinear of the two-Higgs doublets, Hu Hd , has a
vanishing R-charge and appears in the Kähler potential and
the superpotential,

K |Hu Hd = cH Hu Hd + h.c., (1)

W |Hu Hd = c′
H m3/2 Hu Hd , (2)

where cH and c′
H are O(1) coefficients [61–63]. From these

terms, the μ and the B-parameters are given by
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μ = cH m3/2 + c′
H m3/2, (3)

Bμ = 2cH m2
3/2 − c′

H m2
3/2. (4)

In minimal supergravity, we would take cH = 0, so that μ =
c′

H m3/2 and B = −m0, neglecting the small contribution
from anomaly-mediated A-terms. Minimization of the Higgs
potential in this case allows one to solve for μ (c′

H ) and tan β.
Inclusion of cH allows one to keep tan β as a free parameter
solving instead for μ (c′

H ) and cH [96]. Thus, there are two
independent parameters, which can be chosen as m3/2 and
tan β.2

2.2 PQ-symmetric PGM

Now, let us move on to the PQ-symmetric PGM model where
the μ-term is generated by the breaking of the PQ-symmetry.
In this case, instead of the above potentials in Eqs. (1) and
(2), the μ-term is generated via,

W |Hu Hd = k
P2

MP
Hu Hd , (6)

where k denotes a dimensionless constant and P is a PQ-
symmetry breaking field with PQ-charge +1. MP = 2.4 ×
1018 GeV refers to the reduced Planck scale. We assumed that
the holomorphic bilinear Hu Hd has a PQ charge of −2 and
the charges of other MSSM matter fields are appropriately
assigned. As a result, the Kähler term in Eq. (1) is not allowed.

From this potential, we obtain the μ- and the B-para-
meters,

μ = k
〈P〉2

MP
, (7)

Bμ = −m3/2μ. (8)

Therefore, theμ-parameter is determined by the PQ-breaking
scale and, for example, μ = O(100) TeV is realized for
〈P〉 = O(1012) GeV. It should be noted that μ cannot be
much larger than the gravitino mass for successful EWSB.3

The B-parameter is, on the other hand, fixed to −m3/2 (at the
GUT scale), which should be contrasted to the above orig-
inal PGM where the B-parameter (through cH ) is an inde-
pendent parameter which for convenience can be exchanged
with tan β as described above. As we will discuss later, this
restricted parameter set conflicts with full scalar mass uni-
versality.

2 The Bμ term may also obtain comparable contributions from higher
dimensional operators in the Kähler potential,

�K |Hu Hd = Z† Z

M2
P

Hu Hd + h.c. (5)

where Z denotes the supersymmetry breaking field.
3 EWSB requires either m2

t̃
∼ μ2 or Bμ ∼ μ2. In either case, we get

μ ∼ m3/2.

In summary, the PQ-symmetric PGM model is more
restricted than the original PGM model and has effectively
only one parameter:

m3/2 (9)

with full scalar mass universality. Since B is fixed, the EWSB
conditions amount to solving for tan β and the constant k in
Eq. (6), which has no solution. Here, we have traded the size
of μ-term with the Z -boson mass, fixed to m Z � 91.2 GeV.
Even with the NUHM2 [91,92], the model has only three
parameters:

m3/2, m1, m2, (10)

where m1,2 denote the soft masses of the two Higgs dou-
blets, Hd , Hu . However, as we shall see, viable solutions are
possible with non-universality extended only to the up-type
Higgs, i.e., we will be able to keep m1 = m3/2. Furthermore,
we will also see that the special case of m2 = 0 also yields
acceptable solutions, so if H2 originates as a pseudo Nambu–
Goldstone boson, or H2 is part of a no-scale structure in K ,
we are again reduced to a one-parameter theory.

3 Supersymmetric axion model

3.1 Brief review of the PQ-breaking model

Before going on to study the parameter space for the PQ-
symmetric PGM model, let us discuss the supersymmetric
axion model [97] in a little more detail. As a simple exam-
ple, we may take the following model of spontaneous PQ-
symmetry breaking:

WPQ = λX (P Q − v2
P Q), (11)

where λ is a dimensionless coupling and vP Q a dimensionful
parameter. The superfields X , P , and Q have PQ-charges, 0,
+1, and −1, respectively, with vacuum values,

〈P〉 = 〈Q〉 � vP Q, 〈X〉 � m3/2/λ, (12)

so that the PQ-symmetry is spontaneously broken,4 and we
are left with an axion, saxion, and axino at an energy scale
much lower than vP Q .

Due to SUSY breaking effects, the saxion and the axino
obtain masses of the order of the gravitino mass, and hence
they decay quickly to a pair of the gluinos and a gluino/gluon
pair, respectively, and cause no cosmological problems. The
axion, on the other hand, remains very light and has a very

4 Here, we are assuming that the soft squared masses of P and Q are
equal to each other. When the soft squared masses of P and Q are quite
different from each other, the B-parameter in Eq. (8) obtains a sizable
correction [98,99].
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long lifetime, and it can be a good dark matter candidate with
a relic density [100],

�ah2 = 0.18

(
FP Q

1012 GeV

)1.19 (
�

400 MeV

)
(13)

where � denotes the QCD scale and the decay constant FP Q

is defined by vP Q and determined by a domain wall number
NDW = 6 in this case. We assumed the initial axion amplitude
a � FP Q . Thus, the axion can be the dominant dark matter
component for FP Q � 7 × 1011 GeV, assuming that the
mis-alignment angle is of the order of π .

It should be noted that axion dark matter models are sus-
pect to problems with domain walls and isocurvature fluc-
tuations. The former problem is, however, solved relatively
easily if the PQ-symmetry is broken before the primordial
inflation starts and is never restored after the end of inflation.
In this case, the domain walls are not formed after inflation,
and hence there is no domain wall problem.

The latter problem, the overproduction of isocurvature
fluctuations [73–78], on the other hand, puts a severe con-
straint on the Hubble scale during inflation. In fact, in order
to suppress the isocurvature mode in the axion dark matter
enough to be consistent with the constraint set by CMB obser-
vations [101], the Hubble scale during inflation is required
to be rather small (i.e. H � 2 × 107 GeV), which is much
smaller than the one in more conventional models of infla-
tion, where H ∼ 1013 GeV.

It is, however, possible to relax the constraint on H , if the
axion decay constant, FP Q , were larger than its low-energy
value during inflation [79]. Roughly, we would require
H/FP Q � 3 × 10−5 to resolve the problem, and hence
FP Q � 3 × 1017 GeV during inflation for H ∼ 1013 GeV.
Such a large PQ-breaking scale during inflation can be
achieved, for example, when P in the above model picks
up a negative mass squared contribution along the P Q flat
direction, in a similar way that Affleck–Dine fields [102]
pick up large VEVs to generate a baryon asymmetry (for a
concrete model in this context see [103]).

The PQ-breaking scale can also be large during inflation
when the radial component of the PQ-breaking field, σ ≡
P = Q flows into the so-called attractor solution during
inflation [79]. In this case, the PQ-breaking field scales as
λ−1/2 where λ is the coupling in Eq. (11) [104]. This may
require couplings as small as 10−8 to 10−12 depending on the
particular model of inflation. Because the amplitude of the
P and Q fields are large during inflation, it is possible that
subsequent large oscillations could pass through P = Q = 0
which would amount to the restoration of the PQ-symmetry
and could lead to domain wall formation. To determine if
domain walls form, a detailed analysis of the relaxation of
the P and Q fields is needed. It is important to note that the
amount of relaxation depends on the model of inflation. For

inflation models quadratic in the inflaton, the PQ fields relax
too slowly and domain walls are formed; see [105].

It is also possible to relax this problem by considering
a Giudice–Masiero-like term involving the PQ fields in the
Kähler potential,

K ⊃ −cP Q

(
P Q + P† Q†

)
. (14)

Since the product of P and Q have R and P Q charge zero,
this additional term cannot be forbidden. During inflation, the
Kähler potential now gives a correction to the scalar potential

�V = −cI H2cP Q

(
P Q + P† Q†

)

+cI H2
(
|P|2 + |Q|2

)
, (15)

where cI ≈ 3 and H is Hubble’s constant. Adding this to the
scalar potential for the P Q fields from the superpotential, we
find

V = |λ|2
∣∣∣∣P Q − cP QcI

|λ|2 H2 − �2
∣∣∣∣
2

+cI H2
(
|P|2 + |Q|2

)
+ V0, (16)

where V0 keeps track of the constant pieces in the poten-
tial. To get PQ-breaking during inflation, we need cP Q > 1.
During inflation, the new minimum is around

P = Q ∼
(

cP QcI

|λ|2
)1/2

H. (17)

To sufficiently suppress the isocurvature perturbations, we
need a somewhat small coupling,

|λ|√
cP QcI

� 3 × 10−5, (18)

which is effectively the constraint of λ � 10−4.
In this scenario, after inflation the P and Q fields will relax

back to the true minimum set by �. The masses of the P and
Q fields during inflation are of the order of

√
(cP Q − 1)cI H .

Therefore, during their relaxation back to the true minimum,
P and Q will track the minimum (so long as cP Q is not very
close to 1) and no domain walls will be formed, that is, the
PQ-symmetry remains broken.

3.2 Dynamical PQ-symmetry breaking

We may also consider an alternative mechanism for realizing
a large PQ-breaking scale during inflation. If PQ-breaking
scale is generated dynamically it is possible to get this dynam-
ical scale large during inflation. To illustrate this mechanism,
let us consider a supersymmetric SU (2) gauge theory with
four fundamental chiral fields, P1,2 and Q1,2, and four sin-
glet fields Si j (i, j = 1 · · · 2). The superfields P , Q, and S
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have PQ-charges +1, −1, and 0, respectively, and they are
coupled through the superpotential,

W =
∑

i, j=1,2

λSi j Pi Q j , (19)

where λ is again a dimensionless coupling. Below the dynam-
ical scale of SU (2), �P Q , the model can be described by the
six composite mesons,

MP P � P1 P2/�P Q, MQ Q � Q1 Q2/�P Q,

MP Qi j � Pi Q j/�P Q, (20)

whose effective superpotential terms are roughly given by

Weff �
∑

i j

λ�P Q Si j MP Qi j + X (Pf(M) − �2
P Q). (21)

Here, X denotes the Lagrange multiplier to impose the quan-
tum deformed moduli constraint on the mesons [106],

Pf(M) = MP P MQ Q + 1

2

∑
εi jεkl MP Qik MP Q jl = �2

P Q .

By noting that the MP Q obtain masses of O(λ�P Q) from
the first term in Eq. (21), we find that the PQ-symmetry is
spontaneously broken by

〈MP P 〉 = 〈MQ Q〉 � �P Q, 〈X〉 � m3/2, 〈MP Q〉 = 0,

(22)

Therefore, this model is a dynamical realization of the pre-
vious model defined in Eq. (11).5

Now let us assume that the gauge coupling constant of
SU (2) is given by a VEV of a singlet field φ through the
gauge kinetic function, f = (1/g2

0 + φ2), assuming g0 =
4π and 〈φ〉 = O(1) at the Planck scale. Then the effective
gauge coupling at the Planck scale is perturbative, 1/g2 =
(1/g2

0 +〈φ〉2), with 〈φ〉 chosen so that the condensation scale
is �P Q � 1012 GeV. However, if φ gets a large positive mass
during inflation, the VEV of φ will be suppressed, 〈φ〉 �
1. Since the VEV independent part of the gauge coupling
is already strong at the Planck scale, we get �P Q = MP

during inflation. In this way, we can easily realize a large PQ-
breaking scale during inflation, and hence the isocurvature
fluctuations in axions can be suppressed. φ can be given a
mass by adding the following interactions:

W = λ′Y
(
φ2 − M2

P

)
. (23)

At the minimum of the potential, φ has a Planck scale VEV
which generates a mass for φ of the order of λ′MP , avoiding
a moduli problem.6

5 This model is close to the model of dynamical PQ-breaking proposed
in [108], where the PQ-symmetry and supersymmetry are broken simul-
taneously.
6 If φ gets a positive Hubble-induced mass2 > (λ′MP )2, φ will be
stabilized at its origin φ = 0.

4 Results

We are now in a position to explore the necessary parameter
space for the PQ-symmetric PGM model. We begin with the
three-parameter version of the model defined by the gravitino
mass, and the two soft Higgs masses. All other scalars are
assumed to be universal at the GUT scale (the renormaliza-
tion scale where the two electroweak couplings are equal).
All masses and couplings are run down to the weak scale,
where the Higgs potential is minimized, thus determining μ

(or k in this context) and tan β. Gaugino masses and A-terms
assume their anomaly-mediated values and B0 = −m3/2. As
we have seen previously [40], PGM solutions with cH = 0
are possible so long as we allow the Higgs soft masses to
depart from universality.

In Fig. 1, we show examples of the m1, m2 plane for fixed
values of m3/2 = 60, 150, 300, and 400 TeV. The red dot-
dashed curves show contours of the light Higgs mass, mh

from 122–130 GeV in 1 GeV intervals. The region with
124 GeV < mh < 128 GeV is shaded green. In all cases,
we have assumed the supergravity boundary condition of
B0 = −m3/2 and cH = 0, and calculate μ and tan β. The
solid black contours show μ/m3/2 and as one can see, this
ratio is close to one over much of the displayed planes. The
exception occurs when m2

2 is large and positive causing μ

to become small. In the figure, when m3/2 = 60 TeV, the
region shaded blue at the top right of the figure has μ2 < 0
indicating the lack of an EWSB solution. The region at low
and negative m2

1 is also excluded as there the Higgs pseudo-
scalar mass, m2

A < 0. Note the sign of the soft Higgs masses
in the figure refers to the sign of the mass squared. The gray
dotted curves show the calculated values of tan β which are
typically around 4–5 when m3/2 = 60 TeV, and which are
closer to 2 at larger m3/2.

As one can see all of the viable solutions displayed in
the figures require some degree of non-universality. In each
case displayed, forcing Higgs mass universality would either
require a value of m1 too small corresponding to a light Higgs
with mass <124 GeV, or a value of m2 too large to allow
EWSB solutions. As one can see, m1 can be made universal,
when the gravitino mass is �300 TeV. For m3/2 = 300 TeV
as shown in the lower left panel, m1 = m3/2 is very close
to the mh = 124 GeV contour when m2 is relatively small.
When m3/2 = 400 TeV as shown in the lower right panel,
There is no problem is obtaining a suitable Higgs mass. But
for m2 � 300 TeV, μ2 quickly runs negative and we lose the
ability to satisfy the EWSB boundary conditions. At smaller,
m2 the results are in fact quite insensitive to the particular
value of m2. Therefore, in the following, we will set m2 = 0.

The vanishing of the up-type Higgs soft mass at the uni-
versality scale can be explained [40] if either this Higgs field
was part of a no-scale structure [70,71] of the Kähler poten-
tial as in
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Fig. 1 The (m1, m2)plane for fixed m3/2 = 60,150, 300, and 400 TeV.
Shown are the contours for the light Higgs mass, mh (red, dot dashed)
from 122–130 GeV in 1 GeV intervals. The region with a Higgs
mass between 124 and 128 GeV is shaded green. The gray dotted
curves show the calculated values of tan β. The range spans 2–15 when
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tours of μ/m3/2 (solid, black) which are typically close to 1. The blue
shaded regions (when shown) correspond to regions where no EWSB
is possible

K = yy∗ − 3 log

(
1 − 1

3
(H2 H∗

2 + K (Z))

)
+ log |W |2

(24)

where Z is the field(s) which breaks supersymmetry, and y
represents all other fields including H1. The resulting soft
masses for the Higgs doublets in this case is m2

2 = 0. Alter-
natively, it is possible that the up-type doublet appears as
a Nambu–Goldstone boson described by the coset space,
U (3)/SU (2) × U (1) [67–69].

Having fixed m2 = 0, it is possible to display the param-
eter space on a single two-dimensional m1, m3/2 plane, as in

Fig. 2. As one can see, for low(er) values of m3/2, the value
of m1 needed to obtain mh between 124 and 128 GeV (shown
as the shaded green region) requires non-universality in the
Higgs soft masses and m1 > m3/2. When m3/2 � 300 TeV,
solutions with m1 = m3/2 become possible. In all cases, we
find 2 � tan β � 4.

We can go further and insist on universality of the down-
type Higgs soft mass. Results for this restrictive case are
shown in Fig. 3 where we plot μ/m3/2, tan β (left) and
mh (right) as a function of m1 = m3/2 for m2 = 0. As
one can see, in this case, for a wide range of values of
m3/2, μ/m3/2 � 1 and tan β � 2.2. However, in order
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Fig. 2 The (m1, m3/2) plane for fixed m2 = 0. Shown are the contours
for the light Higgs mass, mh (red, dot dashed) from 122–132 GeV
in 4 GeV intervals. The region with a Higgs mass between 124 and
128 GeV is shaded green. The gray dotted curves show the calculated
values of tan β. The black solid line shows the down-type universal case,
where m1 = m3/2. The blue shaded regions (when shown) correspond
to regions where no EWSB is possible

to obtain mh > 124 GeV, we need 300 TeV � m3/2 �
850 TeV.

5 Universality with PQ-symmetry breaking

By generalizing the model for PQ-symmetry breaking, it may
be possible to restore full scalar mass universality. The par-
ticular model we consider was first presented in [72] and
relates the PQ scale with see-saw scale for generating neu-
trino masses. The superpotential for this model is

WP Q = f

MP
P3 Q + g

MP
Hu Hd P Q + 1

2
hi j P Ni N j , (25)

where P, Q are the fields responsible for breaking the PQ-
symmetry with charges (−1, 3), Ni are the right handed neu-
trinos with PQ charge 1/2, and Hu,d have PQ charge −1. In
this model the right handed neutrino masses are generated by
PQ-symmetry breaking, which is of the order of 1012 GeV
as discussed above. In pure gravity mediation models, these
fields will also get supersymmetry breaking parameters. The
relevant supersymmetry breaking soft masses and A-terms
are

− Lsoft ⊃ m2
Q |Q|2 + m2

P |P|2 + m2
N |N |2

+ f
m A

MP
P3 Q + h.c. (26)

with

m2
Q(μGUT) = m2

P (μGUT) = m2
N (μGUT) = m2

3/2

m A(μGUT) = m3/2. (27)

The RG equations for these soft masses are dominated by
the couplings hi j . In fact, if the number of neutrinos is large
enough and the hi j are large enough, m2

P will be driven neg-
ative and the PQ-symmetry is broken. The VEVs of 〈P〉 and
〈Q〉 will effectively be free parameters determined by hi j and
f . Breaking the PQ-symmetry in this manner will generate
independent VEVs for 〈Q〉 and 〈P〉. Because both 〈P〉 and
〈Q〉 are none zero, the F-terms for P, Q will also be non-
zero and independent. With this set up, μ and Bμ are linearly
independent as in Eqs. (3) and (4) and in contrast to the case
considered in Eqs. (7) and (8). This additional freedom in
μ and Bμ makes universal soft mass for the MSSM fields
possible. For this scenario, the parameter space, defined by
m3/2 and tan β, will be identical to that considered in [39].

There is another way to get universality for the scalar
masses with the PQ-symmetry breaking. If we again include
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Fig. 3 Solutions for μ/m3/2 and tan β (left) and for mh (right) in the one-parameter version of the PQ-symmetric PGM model. Here m1 = m3/2
and m2 = 0
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the Giudice–Masiero mixing term for the P and Q in the
Kähler potential, the relationship for B of the Higgs bosons
changes to

Bμ = −m3/2
(
1 − 2cP Q

)
μ. (28)

Due to the freedom in B from the cP Q term, we can indepen-
dently define μ and B. This allows for solutions to the EWSB
conditions to be found by solving for k and cP Q leaving tan β

as a free parameter.7

6 Discussions

The relatively large Higgs mass determined at the LHC cou-
pled with the lack of discovery of any superpartners indi-
cates that the scale of supersymmetry must be higher than
originally thought if it is realized at low energy at all. While
it remains possible that the discovery of supersymmetry is
around the corner at scales close to 1 TeV and well within
reach on a 14 TeV LHC collider [16,33,34], it is also possible
that the supersymmetry scale is significantly higher and sits
in the range of 100–1000 TeV as expected in PGM models
[35–41], models with strongly stabilized moduli [42–49], or
in so-called models of mini-split supersymmetry [107].

In either case, we are forced to address the question regard-
ing the scale of supersymmetry breaking. In models where
the SUSY scale is upwards of 100 TeV, gaugino masses are
generally generated at the 1-loop level through anomalies.
In that case, the lightest supersymmetric particle is usually
the wino. For μ > 0, the wino relic density is too small
to account for the dark matter of the universe, but the wino
might be a viable candidate when μ < 0 and the SUSY scale
is of the order of 500 TeV (see e.g. [39]). However, even in
that case, there are strong constraints against wino dark mat-
ter from higher-energy gamma-ray observations [109,110].
In this context the axion becomes an attractive dark matter
candidate.

In addition to the dark matter problems, most low-energy
supersymmetric models suffer from the μ-problem. Even in
models where the scale of supersymmetry breaking is gen-
erated spontaneously, the μ term, being supersymmetric, is
typically put in by hand as a bilinear in the superpotential.
Therefore, the dynamical generation of the μ term, through
the coupling of the MSSM Higgs doublets to Standard Model
singlets with non-zero PQ charge [65,66] offers an attractive
solution to, potentially, both the μ term and the dark matter
problems.

From Eq. (13), it is clear that a PQ scale of close to
1012 GeV is needed, if axions are to be the dominant form of

7 There will be some restrictions on this parameter space from the fact
that cP Q > 1.

dark matter in the universe. Thus if axions make up any sig-
nificant component of the dark matter (say, at least 10 % of
the dark matter), the μ term is expected to be at least several
TeV. If axions are the dominant form of dark matter, then the
μ term is expected to be of the order of 100 TeV or more.

In this paper, we have shown how a model of PGM can
be constructed in the context of supergravity with a PQ cou-
pling to the MSSM Higgs doublets. Because of this coupling,
a Giudice–Masiero-like term in the Kähler potential is not
allowed and we must deviate slightly from pure scalar mass
universality. Allowing for the possibility of non-universal
Higgs masses, we have shown that viable models exist with
(non-Higgs) scalar mass universality which respect minimal
supergravity boundary conditions for the B-term. Gaugino
masses and A-terms are assumed to arise from anomaly-
mediated contributions. All soft terms and couplings are run
down from the universality scale (assumed to be the GUT
scale), and minimization of the Higgs potential is used to
determine the μ term and tan β. If axions are the dominant
form of dark matter, the coupling of the Higgs doublets to
the PQ fields thus generates a μ term of the order of 100 TeV,
which sets the scale for supersymmetry breaking. While it is
possible to find solutions with μ � m3/2 (for example when
m2 is large and μ2 is driven to 0), it is not possible to find
solutions with μ 
 m3/2. Thus fixing μ � O(100) TeV in
order to obtain a significant axion relic density forces us into
the domain where supersymmetry is broken at a similarly
high scale.8

Fortuitously, it also possible to find solutions of the type
just described with a Higgs mass in the range determined at
the LHC. For relatively low m3/2 � 300 TeV, we require
m1 � m3/2. While for larger m3/2 up to 850 TeV, solutions
with m1 = m3/2 are possible. Our results are not particularly
sensitive to m2, though m2 < m3/2 is quite generic. If the up-
type Higgs is a pseudo Nambu–Goldstone boson or is part
of a no-scale structure so that m2 = 0, we are left with a
particularly simple model with one free parameter, m3/2. For
m3/2 > 300 TeV, we have mh > 124 GeV, μ/m3/2 � 1, and
tan β � 2.2.

We have also shown several mechanisms which suppress
isocurvature fluctuations despite having a dominant compo-
nent of axion dark matter. The simplest possibility, which
may not apply here, is that described in [79] and requires
only a small coupling λ in Eq. (11). The constraint on λ can
be significantly relaxed if a Giudice–Masiero-like term is
added to the Kähler potential as in Eq. (14). Finally, we have
proposed a novel dynamical mechanism for the generation
of the axion decay constant which allows FP Q � MP during
inflation, and smaller values (O(1012) GeV) at low energy.

8 See [108] for a similarly motivated model.
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Note added

After this paper was submitted, BICEP2 [111] reported
detection of B modes giving r = 0.20+0.07

−0.05. With r this
large, isocurvature perturbations are even more problematic.
However, the mechanism proposed in Sect. 3 is still viable for
solving the isocurvature perturbations if FP Q is close to the
Planck scale during inflation. With FP Q close to the Planck
scale, explicit breaking of the PQ-symmetry from gravity-
induced Planck suppressed operators could be important. It
is possible that these higher dimensional operators, which are
negligible in the vacuum state, could give the axion a large
mass during inflation, further suppressing the isocurvature
perturbations.
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